• Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
Middlesex University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of St Andrews Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Cardiff University Featured Masters Courses
"optoelectronic"×
0 miles

Masters Degrees (Optoelectronic)

  • "optoelectronic" ×
  • clear all
Showing 1 to 13 of 13
Order by 
The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Read more

Overview

The photonics research groups in the physics departments of Heriot-Watt and St. Andrews Universities are internationally renowned, and have many links with industrial and university groups around the world. Major activities are based around optoelectronics, laser development, semiconductor physics, materials technology, ultra-fast phenomena, modern optics, and instrumentation. This expertise is brought to the teaching of our one-year taught MSc course (See http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/ ).

Previously called Optoelectronic and Laser Devices, this MSc course has been updated and enhanced, recognising the explosive growth of the UK and global photonics industry, fostered by the world-wide expansion in the exploitation of optical in telecommunications.

Students spend one semester at each university, and then undertake a three-month research project, normally in a UK company. Companies participating in recent years include Bookham Technologies, BAE Systems, Edinburgh Sensors, Cambridge Display Technology, Defence Science and Technology Laboratory, Indigo Photonics, Intense Photonics, Kamelian, Nortel, Renishaw, Rutherford Appleton Laboratory, Thales, Sharp and QinetiQ.

Find more information here http://www.phy.hw.ac.uk/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Photonics and Optoelectronic Devices. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

Students receive postgraduate training in modern optics and semiconductor physics tailored to the needs of the optoelectronics industries. Graduates gain an understanding of the fundamental properties of optoelectronic materials and optical fibres, and experience of the technology and operation of a wide range of laser semiconductor devices appropriate to the telecommunications, information technology, sensing, and manufacturing industries.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (See http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-photonics-and-optoelectronic-devices/

Read less
Offered in collaboration with Heriot-Watt University. This programme is aimed at graduates in physics or electrical engineering who seek postgraduate education in photonics to enhance their opportunities in industry/ commerce or in PhD research in photonics. Read more

MSc in Photonics and Optoelectronic Devices

• Offered in collaboration with Heriot-Watt University.

• This programme is aimed at graduates in physics or electrical engineering who seek postgraduate education in photonics to enhance their opportunities in industry/ commerce or in PhD research in photonics.

• The programme is tailored to balance fundamental understanding with industrial relevance.

• You gain an understanding of the fundamental properties of optoelectronic materials and devices with vocational training in modern optics, laser physics and semiconductor physics. You also gain practical experience in the operation of a wide range of laser devices and optoelectronic technologies.

• You develop an appreciation of the widespread practical applications of coherent light sources in communications, material processing and testing, optical processing, medical treatments and diagnostics, and environmental monitoring.

• The industrial project placement occupies 12-14 weeks from late May to August and is assessed in September after the submission of a dissertation.

• The admissions process will be run by the University of St Andrews in 2016 and by Heriot-Watt University in 2017.

Features

* In the UK Research Excellence Framework 2014, the quality of research undertaken by PHYESTA, the joint research School of Physics & Astronomy between the Universities of St Andrews and Edinburgh, was ranked third in the UK and top in Scotland.

* The School has around 40 academic staff, around 70 postdoctoral researchers, including 7 SUPA, EPSRC, STFC and Royal Society Research Fellows, around 80 research students and around 20 students on taught postgraduate courses.

* The MSc course in Photonics and Optoelectronic Devices is offered in collaboration with Heriot-Watt University, allowing students access to the expertise at both sites.

* St Andrews has recently opened £3.7 million of specialist research labs in photonic microfabrication and in high resolution condensed matter physics.

* We are a member of the Scottish Universities Physics Alliance (SUPA), whose Graduate School provides a comprehensive range of graduate level courses in physics and astronomy.

Postgraduate community

The postgraduate community in the School of Physics & Astronomy includes typically ten students in our MSc class, two to ten engineering doctorate students taking taught modules, plus around 80 PhD research students. Students on the MSc course come from all over the world, with a mix of students from the UK, EU and overseas.

You are taught by internationally-leading research experts, and the relatively small size of the School means that there can be real interaction between students and staff. Lecture classes are relatively small, ranging from about 30 students down to groups of just a few. The teaching staff are proud to have the reputation of being accessible to students, and enjoy explaining the excitement of physics and its applications to their students. Well-equipped teaching laboratories allow you to explore the science of photonics in “research mode”, and interact directly with academic staff and the School’s early-career researchers.

Teaching methods

• Teaching comprises lectures, tutorials, and laboratory work.
• The teaching laboratory offers the photonics students a wide choice of experiments.
• Work for lecture modules is assessed largely through examinations whereas the laboratory work is assessed in a continuous manner. Lecture courses are examined at the end of each semester.
• MSc students select their project topic part way through the course. This is assessed by the submission of a dissertation and an oral exam.
• You are also invited to attend relevant research seminars and departmental colloquia given by departmental research staff, specialists from other universities and specialists from industry.

Careers

The MSc programme aims to produce graduates with appropriate knowledge, skills and attitudes to go on to be successful in the photonics area, be it in industrial/commercial positions, or undertaking PhD study in universities.

Typically half the class will start PhD or EngD programmes after graduation, while the other half will take up industrial and commercial positions. Commercial destinations of graduates from a recent year-group include laser development, sales and marketing with consumer/office optoelectronics, product support of optical metrology equipment, theoretical modelling of photonic structures, university teaching, internship with a national laser lab, and semiconductor optoelectronics research.

Read less
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. Read more
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. The OEPE program has both theoretical and experimental research activities. The graduates of the OEPE program will work at frontiers of technology with a broad spectrum of application areas: from automotive and home lighting to information and communications, from life sciences and health to displays, from remote sensing to nondestructive diagnostics, and from material processing to photovoltaics. Individuals with B.S. degrees in electrical and electronic engineering, optics, optoelectronics, physics, and related science and engineering disciplines should apply for graduate study in the OEPE Program.

Current faculty projects and research interests:

• 2D/3D Displays and Imaging Systems
• Advanced Signal Processing
• Femtosecond Lasers
• Metamaterials
• Microwaves
• Nano-optics
• Optical Communication
• Optical MEMS
• Plasma Physics
• Plasmonics
• Quantum Communication
• Quantum Optics
• Remote Sensing
• Silicon Photonics
• Solid State Lasers

Read less
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. Read more
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. It provides an excellent opportunity to acquire the skills needed for a career in the most dynamic fields in optical communications.

This programme builds on the internationally-recognised research strengths of the Photonics and High Performance Networks research groups within the Smart Internet Lab. Optical fibre communications form the backbone of all land-based communications and is the only viable means to support today's global information systems. Research at Bristol is contributing to the ever-increasing requirement for bandwidth and flexibility through research into optical switching technology, wavelength conversion, high-speed modulation, data regeneration and novel semiconductor lasers.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks focuses on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks focuses on networks for cloud computing, cloud-based networking, grid computing and e-science.

The group at Bristol is a world leader in the new field of quantum photonics, with key successes in developing photonic crystal fibre light sources, quantum secured optical communications and novel quantum gate technologies.

The programme is accredited by Institute of Engineering and Technology until 2018, one of only a handful of accredited programmes in the UK.

Programme structure

Your programme will cover the following core subjects:

Semester one (50 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles
-Optoelectronic devices and systems

Semester two (70 credits)
-Advanced optoelectronic devices
-Data centre networking
-Advanced networks
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Research project (60 credits)
A substantial research project is initiated during the second teaching block and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future optical communication systems, along with associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

-◾The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
◾You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
◾You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Electronic devices
◾Introduction to research in nanoscience and nanotechnology
◾Micro- and nano-technology
◾Nanofabrication
◾Research methods and techniques
◾MSc project.

Optional courses

◾Applied optics
◾Cellular biophysics
◾Microwave electronic & optoelectronic devices
◾Microwave and mm wave circuit design
◾Microscopy and optics
◾Nano and atomic scale imaging
◾Semiconductor physics.

Projects

◾The programme builds towards an extended project, which is an integral part of the MSc programme: many projects are linked to industry or related to research in the school. Our contacts with industry and our research collaborations will make this a meaningful and valuable experience, giving you the opportunity to apply your newly learnt skills.
◾To complete the MSc degree you must undertake a project worth 60 credits that will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers your ability to apply them in industrially relevant problems.
◾MSc projects are associated with Glasgow's James Watt Nanofabrication Centre, one of Europe's premier research cleanrooms. Projects range from basic research into nanofabrication and nanocharacterisation, to development of systems in optoelectronics, microbiology and electronic devices which require such fabrication.
◾You can choose from a list of approximately 30 projects published yearly in Nanoscience and Nanotechnology.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾Over 250 international companies have undertaken commercial or collaborative work with the JWNC in the last 5 years and over 90 different universities from around the globe presently have collaborations with Glasgow in nanoscience and nanotechnology.
◾Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the nanofabrication industry.

Career prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Oxford’s MSc in Microelectronics, Optoelectronics and Communications offers a fantastic opportunity to study a part-time engineering conversion course, helping students to gain the key skills needed to embark on an engineering career. Read more
Oxford’s MSc in Microelectronics, Optoelectronics and Communications offers a fantastic opportunity to study a part-time engineering conversion course, helping students to gain the key skills needed to embark on an engineering career. The course is designed to fit around busy working schedules, and offers both foundational and advanced modules in the three sub-disciplines.

This conversion course aims to provide students with all the essential transferrable skills and analytical abilities needed to progress in the engineering sector.

This is a joint programme drawing on the Department of Engineering Science's research expertise with the flexible learning approach offered by the Department for Continuing Education's Continuing Professional Development Centre.

Topics

Fundamentals of Microelectronics and Communications
Advanced Microelectronics
Wireless Communications
Fundamentals of Optoelectronic Devices and Applied Optics
Optical Communications
Engineering in Society or
Organic Electronics and Nanotechnology for Optoelectronic Devices

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics. Read more
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are an electronics and electrical engineering graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline or physical science and you want to change field; looking for a well rounded postgraduate qualification in electronics and electrical engineering to enhance your career prospects, this programme is designed for you.
◾The MSc in Electronics and Electrical Engineering includes lectures on "Nanofabrication", "Micro- and Nanotechnology", "Optical Communications" and "Microwave and Millimetre Wave Circuit Design", "Analogue CMOS circuit design", VLSI Design and CAD", all research areas undertaken in the James Watt Nanofabrication Centre.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Electronics and Electrical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Courses include

(six normally chosen)
◾Bioelectronics
◾Computer communications
◾Control
◾Digital signal processing
◾Electrical energy systems
◾Energy conversion systems
◾Micro- and nano-technology
◾Microwave electronic and optoelectronic devices
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Power electronics and drives
◾Real-time embedded programming
◾VLSI design
◾MSc project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronics and Electrical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾This programme is aimed at training new graduates as well as more established engineers , covering a broad spectrum of specialist topics with immediate application to industrial problems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronics and Electrical Engineering include: Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, software development, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
The optoelectronics market is expected to grow significantly in coming years. This specialist optoelectronics Masters course will give you access to optoelectronics expertise, so you can take advantage of new opportunities in this field. Read more
The optoelectronics market is expected to grow significantly in coming years. This specialist optoelectronics Masters course will give you access to optoelectronics expertise, so you can take advantage of new opportunities in this field.

Optoelectronics includes electronic devices that source, detect and control light. On this course you will benefit from high-level vocational training in lasers, LED lighting and semiconductors, tailored to the needs of the optoelectronics and optical communications industries.

As part of your studies, you will also benefit from the latest research within the field. You will be able to attend relevant research seminars and departmental seminars that are held regularly throughout the year. These events reflect the most up-to-date thinking from academics and specialists from industry.

The teaching team, many of whom have published research in optoelectronics, lead the University’s Wireless and Optoelectronics Research and Innovation Centre This informs our teaching, so you will benefit from cutting-edge Course Content that embodies the latest research.

Routes of study:
The course is available to study via two routes:
- MSc Optoelectronics (with internship)
- MSc Optoelectronics (without internship)

Please note: *Internships are optional and available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

What you will study

You will study the following modules:
- Physics in Modern Optics
- Optoelectronics Devices for Telecommunications
- Optoelectronics Devices for Life Science & Measurement
- Applied Digital Signal Processing
- Embedded System Design
- Product Innovation and Entrepreneurship
- Six month Internship
- Masters Major Individual Project

Learning and teaching methods

The optoelectronics course offers an intensive but flexible learning pattern, with two start points each year – February and September. There are three major blocks during the 18 months’ study (full-time), which includes 12 months of teaching and a possible six months of internship*. Throughout your studies you will complete a 15-week final research project.

You will be taught through lectures, tutorials and workshops involving hands-on systems modeling and simulations using state-of-the-art hardware and software facilities (Zemax, Lightools etc). Students will also engage in supervised research supported by full access to world-class online and library facilities.

You are also expected to regularly attend relevant research seminars and departmental colloquia, which reflect the up-to-date research interests of the Wireless and Optoelectronics Research and Innovation Centre (WORIC).

The optoelectronics course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:

- MSc Optoelectronics (with internship):
Delivery: Full-time only | Start dates: September and February

If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.

- MSc Optoelectronics (without internship):
Delivery: Full-time and Part-time | Start dates: September and February

The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Many industries need specialists in optoelectronics systems design. Careers are available in industrial and technology sectors such as automotives, computers, consumer electronics, communications, industrial optical sensing equipment and medical laser equipment.

The major project gives you a great opportunity to deepen your knowledge and hone your skills in a specialist topic informed by your planned career, and the period of internship gives you an industrial experience that can set you apart from others immediately upon graduation.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Optoelectronics (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 25 internship places available. Students who wish to undertake an internship must apply for the MSc Optoelectronics (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Optoelectronics (without internship) which is a shorter programme.

Assessment methods

Each of the six taught modules is typically assessed through 50% coursework and 50% closed-book class test. The major project is assessed through presentation to a panel of examiners, viva and written report. Work for lecture modules is assessed largely through examinations whereas the laboratory work is assessed in a continuous manner. Lecture courses are examined at the end of each teaching block.

Facilities

There are two optoelectronics and two RF laboratories equipped with £1million worth of experimental equipments and modeling facilities. These state-of-the-art facilities are home to:

The Innova® Sabre® MotoFreD™ ion laser
Newfocus TLM-8700 fast sweep tunable laser source
Agilent 8164B Lightwave Measurement System
RENISHAW ML-10 Measurement Systems
Beam profilers: Thorlabs BC106-VIS – CCD Camera Beam Profiler, Thorlabs BP109-IR – Beam Profiler
Scanning Fabry-Perot Spectrum Analyzer. e.g. Thorlabs SA200-5B, Coherence 0464H08
Anritsu MS9710B Optical Spectrum Analyzer
Ocean Optics spectrometers. e.g. HR4000 and USB4000
Edwards E306A Coating System Thermal Vacuum Evaporator
SCS G3-8 Spin Coater
ZEPTO laboratory plasma cleaner ZEPTO
FUJIKURA FSM-40S ARC FUSION SPLICER
National Instruments FPGA and Digitizer
Signal generator: TG210 2MhZ function Generator
Oscilloscopes: HP infinium Oscilloscope, HM507 Combiscope
Anechoic Chamber suitable for frequencies above 1 GHz.
Various measurement systems for 2, 10, 20, 40, & 60 GHz links
VubiQ 60 GHz development kits
Three 60 GHz Backhaul links (Sub10 Systems)
Antenna radiation patterns measurement system
Two equipped vans for outdoor measurements
Programmable or Reconfigurable Platform (DSPs, FPGAs, GPPs)
The modeling facilities include high performance computing facilities (e.g. a 24-core cluster) equipped with various optoelectronic and EM modeling packages such as FDTD solutions, Zemax, FEKO, and VPI Photonics suites. We also in-house novel RF Ray-tracing and Physical Optics EM planning tools developed by members of WORIC.

Teaching

The academic staff teaching on the MSc Optoelectronics are the same people who lead and work in the WORIC. This international centre has a significant track record of innovation in lasers, sensors, nanophotonics, wireless communications, telecommunications, and optical communications and aims to provide industry with access to cutting edge innovative ideas and knowledge. WORIC has won many grants from EPSRC, TSB, EADS, as well as A4B is keen to solve real industrial problems with innovation that provides enormous market.

Read less
As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts. Read more
As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts.

Programme Structure

The MSc programmes in Biomedical Engineering are full-time, one academic year (12 consecutive months). The programmes consist of 4 core taught modules and two optional streams. Biomedical, Genetics and Tissue Engineering stream has 3 modules, all compulsory (individual course pages). The second option, Biomedical, Biomechanics and Bioelectronics Engineering stream consists of 5 modules. Students choosing this option will be required to choose 60 credit worth of modules.

The taught modules are delivered to students over two terms of each academic year. The taught modules are examined at the end of each term, and the students begin working on their dissertations on a part-time basis in term 2, then full-time during the months of May to September.

Core Modules
Biomechanics and Biomaterials (15 credit)
Design and Manufacture (15 credit)
Biomedical Engineering Principles (15 credit)
Innovation, Management and Research Methods (15 credit)
Plus: Dissertation (60 credit)

Optional Modules

60 credit to be selected from the following optional modules:
Design of Mechatronic Systems (15 credit)
Biomedical Imaging (15 credit)
Biofluid Mechanics (15 credit)
Artificial Organs and Biomedical Applications (15 credit)
Applied Sensors Instrumentation and Control (30 credit)

Module Descriptions

Applied Sensors Instrumentation and Control

Main topics:

Sensors and instrumentation – Sensor characteristics and the principles of sensing; electronic interfacing with sensors; sensor technologies – physical, chemical and biosensors; sensor examples – position, displacement, velocity, acceleration, force, strain, pressure, temperature; distributed sensor networks; instrumentation for imaging, spectroscopy and ionising radiation detection; 'lab-on-a-chip'.

Control – Control theory and matrix/vector operations; state-space systems, multi-input, multi-output (MIMO) systems, nonlinear systems and linearization. Recurrence relations, discrete time state-space representation, controllability and observability, pole-placement for both continuous and discrete time systems, Luenberger observer. Optimal control systems, Stochastic systems: random variable theory; recursive estimation; introduction to Kalman filtering (KF); brief look at KF for non-linear systems and new results in KF theory.

Artificial Organs and Biomedical Applications

Main topics include: audiology and cochlear implants; prostheses; artificial limbs and rehabilitation engineering; life support systems; robotic surgical assistance; telemedicine; nanotechnology.

Biofluid Mechanics

Main topics include: review of the cardiovascular system; the cardiac cycle and cardiac performance, models of the cardiac system, respiratory system and respiratory performance, lung models, physiological effects of exercise, trauma and disease; blood structure and composition, blood gases. oxygenation, effect of implants and prostheses, blood damage and repair, viscometry of blood, measurement of blood pressure and flow; urinary system: anatomy and physiology, fluid and waste transfer mechanisms, urinary performance and control, effects of trauma, ageing and disease; modelling of biofluid systems, review of mass, momentum and energy transfers related to biological flow systems, fluid mechanics in selected topics relating to the cardiovascular and respiratory systems; measurements in biomedical flows.

Biomechanics and Biomaterials

Main topics include: review of biomechanical principles; introduction to biomedical materials; stability of biomedical materials; biocompatibility; materials for adhesion and joining; applications of biomedical materials; implant design.

Biomedical Engineering Principles

Main topics include: bone structure and composition; the mechanical properties of bone, cartilage and tendon; the cardiovascular function and the cardiac cycle; body fluids and organs; organisation of the nervous system; sensory systems; biomechanical principles; biomedical materials; biofluid mechanics principles, the cardiovascular system, blood structure and composition, modelling of biofluid systems.

Biomedical Imaging

Principle and applications of medical image processing – Basic image processing operations, Advanced edge-detection techniques and image segmentation, Flexible shape extraction, Image restoration, 3D image reconstruction, image guided surgery

Introduction of modern medical imaging techniques – Computerized tomography imaging (principle, image reconstruction with nondiffracting sources, artifacts, clinical applications)

Magnetic resonance imaging (principle, image contrast and measurement of MR related phenomena, examples of contrast changes with changes of instrumental parameters and medical applications)

Ultrasound imaging (description of ultrasound radiation, transducers, basic imaging techniques: A-scan, B-scan and Doppler technique; clinical application)

Positron emission tomography (PET imaging) (principle, radioactive substance, major clinical applications)

Design and Manufacture

Main topics include: design and materials optimisation; management and manufacturing strategies; improving clinical medical and industrial interaction; meeting product liability, ethical, legal and commercial needs.

Design of Mechatronic Systems

Microcontroller technologies. Data acquisition. Interfacing to power devices. Sensors (Infrared, Ultrasonic, etc.). Optoelectronic devices and signal conditioning circuits. Pulse and timing-control circuits. Drive circuits. Electrical motor types: Stepper, Servo. Electronic Circuits. Power devices. Power conversion and power electronics. Line filters and protective devices. Industrial applications of digital devices.

Innovation and Management and Research Methods

Main topics include: company structure and organisation will be considered (with particular reference to the United Kingdom), together with the interfacing between hospital, clinical and healthcare sectors; review of existing practice: examination of existing equipment and devices; consideration of current procedures for integrating engineering expertise into the biomedical environment. Discussion of management techniques; design of biomedical equipment: statistical Procedures and Data Handling; matching of equipment to biomedical systems; quality assurance requirements in clinical technology; patient safety requirements and protection; sterilisation procedures and infection control; failure criteria and fail-safe design; maintainability and whole life provision; public and environmental considerations: environmental and hygenic topics in the provision of hospital services; legal and ethical requirements; product development: innovation in the company environment, innovation in the clinical environment; cash flow and capital provision; testing and validation; product development criteria and strategies.

Dissertation

The choice of Dissertation topic will be made by the student in consultation with academic staff and (where applicable) with the sponsoring company. The topic agreed is also subject to approval by the Module Co-ordinator. The primary requirement for the topic is that it must have sufficient scope to allow the student to demonstrate his or her ability to conduct a well-founded programme of investigation and research. It is not only the outcome that is important since the topic chosen must be such that the whole process of investigation can be clearly demonstrated throughout the project. In industrially sponsored projects the potential differences between industrial and academic expectations must be clearly understood.

Read less
Physics has always remained and still is at the center of science and technology. The laws of physics that are reached through observations and careful experimentation find applications from the subatomic particles to the astronomic formations such as stars and galaxies. Read more
Physics has always remained and still is at the center of science and technology. The laws of physics that are reached through observations and careful experimentation find applications from the subatomic particles to the astronomic formations such as stars and galaxies. On the other hand, design of advanced technology materials, fabrication of semiconductor devices, the development of optical communication systems have all evolved as applications of physics. Our department has both theoretical and experimental research activites. Quantum information theory, gravitation and condensed matter physics are among our theoretical research interests. On the experimental research side, we have three advanced laboratories where we focus on solid state lasers, optoelectronic and nano-photonic materials and devices. Our M. S. Program aims at teaching fundamental physics at a high level and coupling this knowledge with a research experience in either theoretical or applied physics depending on the interests of the student.

Current faculty projects and research interests:

• Photonic and Laser Materials
• Microphotonics
• Nanophotonics
• Gravitation, Cosmology, and Numerical Relativity
• Mathematical Physics
• Quantum Mechanics and Quantum Information Theory
• Theoretical High Energy Physics
• Quantum Optics, atomic, molecular and optical physics
• Statistical mechanics of biophysical systems

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X