• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Imperial College London Featured Masters Courses
University of Worcester Featured Masters Courses
Coventry University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"optimization"×
0 miles

Masters Degrees (Optimization)

  • "optimization" ×
  • clear all
Showing 1 to 15 of 124
Order by 
This programme gives you a flexible syllabus to suit the demands of employers that use modern financial tools and optimization techniques in areas such as the financial sector and energy markets. Read more

Programme description

This programme gives you a flexible syllabus to suit the demands of employers that use modern financial tools and optimization techniques in areas such as the financial sector and energy markets.

We will give you sound knowledge in financial derivative pricing, portfolio optimization and financial risk management.

We will also provide you with the skills to solve some of today’s financial problems, which have themselves been caused by modern financial instruments. This expertise includes modern probability theory, applied statistics, stochastic analysis and optimization.

Adding depth to your learning, our work placement programme puts you at the heart of financial organisations such as Aberdeen Asset Management, Barrie & Hibbert and Lloyds Banking Group.

Programme structure

This programme involves two taught semesters of compulsory and option courses, followed by a dissertation project.

Compulsory courses:

Discrete-Time Finance
Finance, Risk and Uncertainty
Fundamentals of Optimization
Optimization Methods in Finance
Research-Linked Topics
Risk-Neutral Asset Pricing
Simulation
Stochastic Analysis in Finance I
Stochastic Analysis in Finance II

Option courses:

Advanced Time Series Econometrics
Combinatorial Optimization
Credit Scoring
Fundamentals of Operational Research
Financial Risk Management
Computing for Operational Research and Finance
Large Scale Optimization for Data Science
Microeconomics 2
Nonlinear Optimization
Numerical Partial Differential Equations
Parallel Numerical Algorithms
Programming Skills
Risk Analysis
Stochastic Modelling
Stochastic Optimization

Career opportunities

Graduates have gone on to work in major financial institutions or to continue their studies by joining PhD programmes.

Read less
This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Read more

Programme description

This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Operational Research (OR) is an important skill that is in high demand.

This MSc will give an Operational Research perspective on computational optimization.

Programme structure

This programme involves two taught semesters of compulsory and option courses followed by your dissertation project.

Compulsory courses:

Computing for Operational Research and Finance
Fundamentals of Optimization
Fundamentals of Operational Research
Methodology, Modelling and Consulting Skills
Probability and Statistics
Simulation
Stochastic Modelling

As part of your option course choices, Operational Research with Computational Optimization requires you to study a combination from:

Stochastic Optimization
Combinatorial Optimization
Nonlinear Optimization
Large Scale Optimization for Data Science.

Career opportunities

The skills you will learn are in demand by a vast range of high-profile organisations including consultancy firms, companies with operational research departments such as airlines or telecommunications providers, financial firms and the public sector.

Recent graduates have joined British Airways, the Government OR Service, Barclays, Deloitte, Capgemini and smaller specialised OR, finance and energy companies.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights, handling large data sets to managing investments and minimizing risks. Read more

Programme description

This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights, handling large data sets to managing investments and minimizing risks. The skills of Operational Research (OR) and Data Science are in high demand.

The MSc in Operational Research with Data Science is a new, forward-looking programme that delivers high-quality training in operational research, optimization and statistics. Students will have strong technical skills in these areas and the ability to apply them using appropriate software.

This MSc programme delivers:

technical skills in operational research, optimization and statistics
practical skills in programming and modelling for a wide range of applications
communications skills in writing and audio-visual presentation

Programme structure

You need to obtain a total of 180 credits to be awarded the MSc. All students take courses during semester 1 and 2 to the value of 120 credits, of which compulsory course units comprise 50 credits. Successful performance in these courses (assessed through coursework or examinations or both) permits you to start work on a three-month dissertation project (60 credits) for the award of the MSc degree.

Compulsory courses (50 credits):

Fundamentals of Optimization
Fundamentals of Operational Research
Methodology, Modelling and Consulting Skills
Computing for Operational Research and Finance
Statistical Regression Models

Themed courses (50-70 credits):

Simulation
Machine Learning & Pattern Recognition
Bioinformatics 1
Stochastic Modelling
Credit Scoring
Large Scale Optimization for Data Science
Modern Optimization Methods for Big Data Problems
Optimization Methods in Finance
Combinatorial Optimization
Time Series Analysis and Forecasting
Advanced Computing for Operational Research
Operational Research in Telecommunications
Biomedical Data Science
The Analysis of Survival Data
Likelihood and Generalized Linear Models
Probabilistic Modelling and Reasoning

Optional courses (0-20 credits) chosen from postgraduate courses in the following areas:

Finance
Industry
Optimization
Statistics
Data Science

Learning outcomes

At the end of this programme you will have:

flexible problem-solving skills based on deep knowledge of operational research, optimization, data analysis techniques and the ability to apply them using appropriate software
transferable skills to maximize their prospects for future employment, including writing, oral presentation, team-working, numerical and logical problem-solving, planning and time-management

Career opportunities

Graduates will gain the transferable skills required to pursue careers in a data-rich operational research environment, and will be in an ideal position to apply for work in a wide range of institutions in the public and private sector. The degree is also excellent preparation for further study in operational research, optimization or data science.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
Master in BIG DATA. Read more
Master in BIG DATA : Data Analytics, Data Science, Data Architecture”, accredited by the French Ministry of Higher Education and Research, draws on the recognized excellence of our engineering school in business intelligence and has grown from the specializations in Decision Support, Business Intelligence and Business Analytics. The Master is primarily going to appeal to international students, "free movers" or those from our partner universities or for high-potential foreign engineers who are looking for an international career in the domain of Business Analytics.

This program leads to a Master degree and a Diplôma accredited by the French Ministry of Higher Education and research.

Objectives

Business Intelligence and now Business Analytics have become key elements of all companies.

The objective of this Master is to train specialists in information systems and decision support, holding a large range of mathematic- and computer-based tools which would allow them to deal with real problems, analyzing their complexity and bringing efficient algorithmic and architectural solutions. Big Data is going to be the Next Big Thing over the coming 10 years.

The targeted applications concern optimization in the processing of large amounts of data (known as Big Data), logistics, industrial automation, but above all it’s the development of BI systems architecture. These applications have a role in most business domains: logistics, production, finance, marketing, client relation management.

The need for trained engineering specialists in these domains is growing constantly: recent studies show a large demand of training in these areas.

Distinctive points of this course

• The triple skill-set with architecture (BI), data mining and business resource optimization.
• This master will be run by a multidisciplinary group: statistics, data mining, operational research, architecture.
• The undertaking of interdisciplinary projects.
• The methods and techniques taught in this program come from cutting-edge domains in industry and research, such as: opinion mining, social networks and big data, optimization, resource allocation and BI systems architecture.
• The Master is closely backed up by research: several students are completing their end-of-studies project on themes from the [email protected] laboratory, followed and supported by members from the laboratory (PhD students and researcher teachers).
• The training on the tools used in industry dedicated to data mining, operational research and Business Intelligence gives the students a plus in their employability after completion.
• Industrial partnerships with companies very involved in Big Data have been developed:
• SAS via the academic program and a ‘chaire d’entreprise’ (business chair), allowing our students access to Business Intelligence modules such as Enterprise Miner (data mining) and SAS-OR (in operational research).

Practical information

The Master’s degree counts for 120 ECTS (European Credit Transfer System) in total and lasts two years. The training lasts 1252 hours (611 hours in M1 and 641 hours in M2). The semesters are divided as follows:
• M1 courses take place from September until June and count for a total of 60 ECTS
• M2 courses take place from September until mid-April and count for a total of 42ECTS
• A five-month internship (in France) from mid- April until mid- September for 9 ECTS is required and a Master thesis for 9 ECTS.

Non-French speakers will be asked to participate to a one week intensive French course that precedes the start of the program and allows students to gain the linguistic knowledge necessary for daily interactions.

[[Organization ]]
M1 modules are taught from September to June (60 ECTS, 611 h)
• Data exploration
• Inferential Statistics (3 ECTS, 30h, 1 S*)
• Data Analysis (2 ECTS, 2h, 1 S)
• Mathematics for Computer science
• Partial Differential Equations and Finite Differences (3 ECTS, 30h, 1 S)
• Operational Research: Linear Optimization (2 ECTS, 20h, 1 S)
• Combinatory Optimization (2 ECTS, 18h, 1 S)
• Complexity theory (1 ECTS, 9h, 1 S)
• Simulation and Stochastic Process (3 ECTS, 30h, 2 S**)
• Introduction to Predictive Modelling (2ECTS, 21h, 2 S)
• Deterministic and Stochastic Optimization (3 ECTS, 30h, 2 S)
• Introduction to Data Mining (2 ECTS, 21h, 2 S)
• Software and Architecture
• Object-Oriented Modelling (OOM) with UML (3 ECTS, 30h, 1 S)
• Object-Oriented Design and Programming with Java (2 ECTS, 30h, 1 S)
• Relational Database: Modelling and Design (3ECTS, 30h, 1 S)
• PLSQL (2 ECTS, 21h, 2 S)
• Architecture and Network Programming (3 ECTS, 30h, 2 S)
• Parallel Programming (3 ECTS, 30h, 2 S)
• Engineering Science
• Signal and System (3 ECTS, 21 h, 1 S)
• Signal processing (3 ECTS, 30h, 1 S)

• Research Initiation
• Scientific Paper review (1 ECTS, 9h, 1 S)
• Final research project on BIG DATA (5 ECTS, 50h, 2 S)
• Project Management
• AGIL Methods & Transverse Project (2 ECTS, 21h, 2 S)
• Languages and workshops
• French and Foreign languages (6 ECTS, 61h, 1&2 S)
• Personal and Professional Project (1 ECTS, 15, 1 S)
*1 S= 1st semester, ** 2 S= 2nd semester

M2 Program: from September to September (60 ECTS, 641h)
M2 level is a collection of modules, giving in total 60 ECTS (42 ECTS for the modules taught from September to April, plus 9 ECTS for the internship and 9 ECTS for the Master thesis).

Computer technologies
• Web Services (3 ECTS, 24h, 1 S)
• NOSQL (2 ECTS, 20h, 1 S)
• Java EE (3 ECTS, 24, 1S)
Data exploration
• Semantic web and Ontology (2 ECTS, 20h, 1 S)
• Data mining: application (2 ECTS, 20h, 1S)
• Social Network Analysis (2ECTS, 18h, 1S)
• Collective intelligence: Web Mining and Multimedia indexation (2 ECTS, 20h, 2 S)
• Enterprise Miner SAS (2 ECTS, 20h, 2 S)
• Text Mining and natural language (2 ECTS, 20h, 2 S)
Operations Research
• Thorough operational research: modelling and business application (2 ECTS, 21h, 1 S)
• Game theory (1 ECTS, 10h, 1 S)
• Forecasting models (2 ECTS, 20h, 1 S)
• Constraint programming (2 ECTS, 20h, 2 S)
• Multi-objective and multi-criteria optimisation (2 ECTS, 20h, 2 S)
• SAS OR (2 ECTS, 20h, 2 S)
Research Initiation Initiative
• Scientific Paper review (1 ECTS, 10h, 1 S)
• Final research project on BIG DATA (2 ECTS, 39, 2 S)
BI Architecture
• BI Theory (2 ECTS, 20h, 2 S)
• BI Practice (2 ECTS, 20h, 2 S)
Languages and workshops (4 ECTS, 105h, 1&2 S)
• French as a Foreign language
• CV workshop
• Personal and Professional Project
Internship
• Internship (9 ECTS, 22 weeks minimum)
Thesis
• Master thesis (9 ECTS, 150h)

Teaching

Fourteen external teachers (lecturers from universities, teacher-researchers, professors etc.), supported by a piloting committee, will bring together the training given in Cergy.

All the classes will be taught in English, with the exception of:
• The class of FLE (French as a foreign language), where the objective is to teach the students how to understand and express themselves in French.
• Cultural Openness, where the objective is to enrich the students’ knowledge of French culture.
The EISTI offers an e-learning site to all its students, which complements everything the students will learn through their presence and participation in class:
• class documents, practical work and tutorials online
• questions and discussions between teachers and students, and among students
• a possibility of handing work in online

All Master’s students are equipped with a laptop for the duration of the program that remains the property of the EISTI.

Read less
This programme is both technical and pragmatic. You will acquire the ability to integrate state-of-the-art knowledge of statistics and optimisation to address, analyse and provide a rational appraisal of a given problem in different professional contexts. Read more
This programme is both technical and pragmatic. You will acquire the ability to integrate state-of-the-art knowledge of statistics and optimisation to address, analyse and provide a rational appraisal of a given problem in different professional contexts. This is a multidisciplinary field that involves the study of mathematical optimisation techniques, operational research methods, programming and statistics with their applications to economics, finance, medicine, industrial management, natural sciences and others. The programme produces highly qualified students in statistics, operations research and econometrics with applications to economics and business management. The programme provides ideal preparation for a career in economics, health care, finance, banking, insurance, actuarial science, business management, governmental or academic institutions.

In the recent years, mathematical optimization and statistics have experienced significant new developments. With these developments, the system engineering, information science, signal and image processing, statistical error correction and cryptography are being revolutionised.

This has created urgent need, in both academic research and in practical implementation, for a new generation of mathematicians trained to work at the frontiers of mathematical optimization, statistics and their applications to engineering, healthcare, finance and economics.

Researchers at the University of Birmingham have recently shown how the modern optimization and statistical methods are successfully applied to engineering design, financial and economical data analysis, meta-analysis, economic equilibrium, network communication, and combinatorial optimization.

About the School of Mathematics

The School of Mathematics is one of seven schools in the College of Engineering and Physical Sciences. The school is situated in the Watson Building on the main Edgbaston campus of the University of Birmingham. There are about 50 academic staff, 15 research staff, 10 support staff, 60 postgraduate students and 600 undergraduate students.
At the School of Mathematics we take the personal development and careers planning of our students very seriously. Jointly with the University of Birmingham's Careers Network we have developed a structured programme to support maths students with their career planning from when they arrive to when they graduate and beyond.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
In this digital and data-rich era the demand for statistics graduates from industry, the public sector and academia is high, yet the pool of such graduates is small. Read more

Programme description

In this digital and data-rich era the demand for statistics graduates from industry, the public sector and academia is high, yet the pool of such graduates is small. The recent growth of data science has increased the awareness of the importance of statistics, with the analysis of data and interpretation of the results firmly embedded within this newly recognised field.

This programme is designed to train the next generation of statisticians with a focus on the newly recognised field of data science. The syllabus combines rigorous statistical theory with wider hands-on practical experience of applying statistical models to data. In particular the programme includes:

classical and Bayesian ideologies
linear and generalised linear models
computational statistics applied to a range of models and applications
regression
data analysis

Graduates will be in high demand. It is anticipated that the majority of students will be employed as statisticians within private and public institutions providing statistical advice/consultancy.

Programme structure

To be awarded the MSc degree you need to obtain a total of 180 credits. All students take courses during semester 1 and 2 to the value of 120 credits of which compulsory course units comprise 60 credits. Successful performance in these courses (assessed via coursework or examinations or both) permits you to start work on your dissertation (60 credits) for the award of the MSc degree. The dissertation will generally take the form of two consultancy-style case projects or an externally supervised project.

Compulsory courses (60 credits):

Statistical Theory (10 credits, semester 1)
Statistical Regression Models (10 credits, semester 1)
Bayesian Theory (10 credits, semester 1)
Statistical Programming (10 credits, semester 1)
Bayesian Data Analysis (10 credits, semester 2)
Likelihood and Generalised Linear Models (10 credits, semester 2)

Optional courses (60 credits) include:

Data Analysis (20 credits, semester 1)
Introductory Applied Machine Learning (10 credits, semester 1)
Text Technologies for Data Science (10 credits, semester 1)
Fundamentals of Optimization (10 credits, semester 1)
The Analysis of Survival Data (10 credits, semester 2)
Stochastic Modelling (10 credits, semester 2)
Multilevel Modelling (20 credits, semester 2)
Large Scale Optimization for Data Science (10 credits, semester 2)
Modern Optimization Methods for Big Data Problems (10 credits, semester 2)
Time Series Analysis and Forecasting (5 credits, semester 2)
Combinatorial Optimization (5 credits, semester 2)
Probabilistic Modelling and Reasoning (10 credits, semester 2)

Learning outcomes

At the end of this programme you will have:

knowledge and understanding of statistical theory and its applications within data science
the ability to formulate suitable statistical models for new problems, fit these models to real data and correctly interpret the results
the ability to assess the validity of statistical models and their associated limitations
practical experience of implementing a range of computational techniques using statistical software R and BUGS/JAGS

Career opportunities

Trained statisticians are in high demand both in public and private institutions. This programme will provide graduates with the necessary statistical skills, able to handle and analyse different forms of data, interpret the results and effectively communicate the conclusions obtained.

Graduates will have a deep knowledge of the underlying statistical principles coupled with practical experience of implementing the statistical techniques using standard software across a range of application areas, ensuring they are ideally placed for a range of different job opportunities.

The degree is also excellent preparation for further study in statistics or data science.

Read less
This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Read more

Programme description

This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Operational Research (OR) is an important skill that is in high demand.

Our intensive programme allows you to specialise in an area that best suits your career goals. In addition to this general MSc in Operational Research, the following degrees are offered:

-Operational Research with Risk
-Operational Research with Computational Optimization

Programme structure

This programme involves two taught semesters of compulsory and option courses followed by your dissertation project.

Compulsory courses:

Computing for Operational Research and Finance
Fundamentals of Optimization
Fundamentals of Operational Research
Methodology, Modelling and Consulting Skills
Probability and Statistics
Simulation
Stochastic Modelling

Optional courses are generally grouped into the following areas:

Finance
Industry
Optimization
Statistics

Career opportunities

The skills you will learn are in demand by a vast range of high-profile organisations including consultancy firms, companies with operational research departments such as airlines or telecommunications providers, financial firms and the public sector.

Recent graduates have joined Capgemini, British Airways, Orange, Barrie & Hibbert and HM Revenue & Customs.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Read more

Programme description

This programme will show you how to use mathematical techniques to tackle real-life problems ranging from scheduling flights and routing mobile phone calls to managing investments and minimising risks. Operational Research (OR) is an important skill that is in high demand.

This MSc will give an Operational Research perspective on risk and its management.

Programme structure

This programme involves two taught semesters of compulsory and option courses followed by your dissertation project.

Compulsory courses:

Computing for OR and Finance
Fundamentals of Optimization
Fundamentals of OR
Methodology, Modelling and Consulting Skills
Probability and Statistics
Simulation
Stochastic Modelling

Option courses are generally grouped into the following areas:

Finance
Industry
Optimization
Statistics

As part of your option course choices Operational Research with Risk requires you to study a combination from:

Credit Scoring
Financial Risk Management
Stochastic Optimization
The Analysis of Survival Data
Statistical Modelling
Risk Analysis

Career opportunities

The skills you will learn are in demand by a vast range of high-profile organisations including consultancy firms, companies with operational research departments such as airlines or telecommunications providers, financial firms and the public sector.

Recent graduates have joined British Airways, the Government OR Service, Barclays, Deloitte, Capgemini and smaller specialised OR, finance and energy companies.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career. Read more

Programme description

This programme will help you develop professionally in the theory and practice of statistics and operational research (OR), providing the foundations for a successful career.

This programme will prepare you for work in areas such as the medical and health industry, government, the financial sector and any other area where modern statistical tools and OR techniques are used. You will also develop the wider skills required for solving problems, working in teams and time management.

You will be able to identify appropriate statistical or operational techniques, which can be applied to practical problems, and will acquire extensive skills in modelling using the packages R for Statistics and Arena for simulation. In addition, you will acquire the ability to use high-level applications in Excel.

Programme structure

This MSc consists of lecture-based courses and practical, lab-based courses. You will be assessed by exams, written reports, programming assignments and a dissertation project.

Compulsory courses

Computing for Statistics
Fundamentals of Operational Research
Fundamentals of Optimization
Likelihood and Generalised Linear Models
Methodology, Modelling and Consulting Skills
Simulation
Statistical Regression Models
Statistical Theory
Stochastic Modelling

Option courses:

The Analysis of Survival Data
Categorical Data Analysis
Clinical Trials
Computing for Operational Research and Finance
Credit Scoring
Data Analysis
Genetic Epidemiology
Large Scale Optimization for Data Science
Machine Learning & Pattern Recognition
Multivariate Data Analysis
Nonparametric Regression
Operational Research in the Airline Industry
Operational Research in Telecommunications
Risk Analysis
Stochastic Models in Biology
Stochastic Optimization
Time Series Analysis and Forecasting

Career opportunities

This programme is ideal for students who wish to apply their statistics and operational research knowledge within a wide range of sectors including the medical and health sector, government and finance. The advanced problem-solving skills you will develop will be highly prized by many employers.

Industry-based dissertation projects

The dissertation projects of approximately half the students on this programme take place in public and private sector organisations. Other students choose a University-based project.

Read less
Specialize in optimizing company decisions by using data and mathematical models and algorithms. Read more

Course details

Specialize in optimizing company decisions by using data and mathematical models and algorithms
Do you like working with data and mathematics? Do you want to specialize in solving the most complex decision problems, from supply chain management to vehicle routing and from donor kidney allocation to train scheduling? Then Business Analytics and Operations Research is the right program for you.

Apply the theory in practice, and learn to communicate efficiently with decision makers
This program teaches generic Data Science and Optimization methods that allow you to solve decision problems in a wide variety of applications. Examples from logistics include vehicle routing, supply chain optimization, and inventory management. But there are many other applications, such as donor kidney allocation and optimizing tumor treatment plans in the medical field, or dike height optimization and train scheduling in the public sector.

Because Business Analytics and Operations Research are predominantly applied fields, you will also develop the skills to successfully apply the theory in practice, and to communicate efficiently with the decision makers.

The program offers you:

- a degree qualification held in high regard by international organizations that increasingly depend on quantitative methods to support their operations, logistics and supply chain management decision-making.

- a program that is comparable to top Business Analytics and Operations Research programs in the world, both in terms of the contents of the courses and the quality of the teachers and supervisors.

- excellent career perspectives: The Master's program in Business Analytics and Operations Research is one of the programs with the best career prospects. Business Analytics and Operations Research professionals are currently in very high demand, and the demand is predicted to increase even further.

- relevant, real-world learning where the emphasis is on solving actual business problems and turning data into managerial insights, whether it is during in-class exercises or while on an internship in a company.

- BAOR Mastermind, your ideal opportunity to explore the labor market and meet your future employer! We invite companies that give you insight in real business cases. You will also get the opportunity to discuss new trends in Business Analytics and Operations Research with academics and practitioners.

- lectures by teachers and supervisors that are leading experts in this field, with strong links with practice.

- small class-sizes giving you more quality time with approachable and supportive professors and closer interaction with your classmates

Read less
The MSc Process Systems Engineering programme will widen your understanding of the fundamental concepts of process systems engineering. Read more
The MSc Process Systems Engineering programme will widen your understanding of the fundamental concepts of process systems engineering.

It will provide you with a thorough grounding in current technologies and trends that will prepare you will for a rewarding career and/or further research.

PROGRAMME OVERVIEW

This Masters programme trains graduates of engineering, science or related disciplines in general and specialist process systems engineering subjects.

Such areas are not generally covered in engineering and science curricula, and BSc graduates tend to be ill prepared for the systems challenges they will face in industry or academia on graduation.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Advanced Process Control
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Technology, Business & Research Seminars
-Process and Energy Integration
-Process Systems Design
-Supply Chain Management
-Knowledge-based Systems and Artificial Intelligence
-Biomass Processing Technology
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide a highly vocational education which is intellectually rigorous and up-to-date. It also aims to provide the students with the necessary skills required for a successful career in the process industries.

This is achieved through a balanced curriculum with a core of process systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme. The programme draws on the stimulus of the Faculty’s research activities.

The programme provides the students with the basis for developing their own approach to learning and personal development.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design, supply chain management, process and energy integration, and advanced process control technologies
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: renewable energy technologies, refinery and petrochemical processes, biomass processing technologies, and knowledge-based systems

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available systems in the process industries
-Design and/or select appropriate system components, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organising and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This masters is run jointly with Heriot-Watt University. It provides you with expertise in financial mathematics, including stochastic calculus, and a range of practical techniques for analysing financial markets. Read more

Programme description

This masters is run jointly with Heriot-Watt University. It provides you with expertise in financial mathematics, including stochastic calculus, and a range of practical techniques for analysing financial markets. You will also learn quantitative skills for developing and managing risk that are in high demand since the recent financial crisis.

Adding depth to your learning, our work placement programme puts you at the heart of organisations such as Aberdeen Asset Management, Barrie & Hibbert and Lloyds Banking Group.

Programme structure

This programme involves two taught semesters of compulsory and option courses, followed by a dissertation project.

Compulsory courses:

Credit Risk Modelling
Derivatives Markets
Derivative Pricing and Financial Modelling
Discrete-Time Finance
Financial Markets
Special Topics 1
Special Topics 2
Stochastic Analysis in Finance

Option courses:

Deterministic Optimization Methods in Finance
Financial Econometrics
Portfolio Theory
Numerical Techniques of Partial Differential Equations
Optimization Methods in Finance
Simulation
Statistical Methods
Statistical Inference
Time Series Analysis
Stochastic Control and Dynamic Asset Allocation

Career opportunities

Graduates typically work in major financial institutions or continue their studies by joining PhD programmes.

Read less
With an increasing awareness of the environmental impact of modern manufacturing, graduates with the combined skills taught on this programme are highly sought after by both process and environmental industries. Read more
With an increasing awareness of the environmental impact of modern manufacturing, graduates with the combined skills taught on this programme are highly sought after by both process and environmental industries.

If you want to develop core skills in process systems engineering, yet focusing your attention on environmental systems approaches, this Masters is for you.

PROGRAMME OVERVIEW

This programme explores technology across a wide scope of engineering disciplines and will train you in general and specialist process systems engineering – crucial aspects for finance, industrial management and computer-integrated manufacturing.

There is a wide selection of modules on offer within the programme. All taught modules are delivered by qualified experts in the topics and academic members of University staff, assisted by specialist external lecturers.

Our programme combines high-quality education with substantial intellectual challenges, making you aware of current technologies and trends while providing a rigorous training in the fundamentals of the subject.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Life Cycle Thinking
-Optimisation and Decision-Making
-Renewable Energy Technologies
-Process Modelling and Simulation
-Solar Energy Technology
-Advanced Process Control
-Technology, Business and Research Seminars
-Environmental Law
-Sustainable Development Applications
-Process and Energy Integration
-Process Systems Design
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The programme combines advanced material in two popular and complementary topics: systems engineering and environmental engineering. The key learning outcome is a balanced combination of systems and environmental skills and prepares students in a competitive market where both topics appear attractive.

The programme will provide training in general and specialist process and environmental systems engineering subjects, and prepare the students for the systems challenges they will face in industry or academia upon graduation.

The programme disseminates technology with a wide scope among engineering disciplines, with a wide selection of modules on offer. All taught modules are delivered by qualified experts in the topics and academic members of the university staff, assisted by specialist external lecturers.

The programme provides high-quality education with substantial intellectual challenges, commensurate with the financial rewards and job satisfaction when venturing into the real world. A key component is to make the student aware of current technologies and trends, whilst providing a rigorous training in the fundamentals of the subject.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in process and environmental technologies, in the areas of: life cycle assessment and sustainable development, modelling and simulation of process systems, mathematical optimization and decision making, process systems design, and process and energy integration
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: general renewable energy technologies, and solar energy in particular; advanced process control

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available systems in the process industries with focus on environmental challenges
-Design and/or select appropriate system components, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of advanced process and environmental technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organising and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Created in response to the worldwide shortage of qualified engineers in the petroleum-refining systems-engineering industry, our programme combines technologies, operations and economics with modelling, simulation, optimisation, and process design and integration. Read more
Created in response to the worldwide shortage of qualified engineers in the petroleum-refining systems-engineering industry, our programme combines technologies, operations and economics with modelling, simulation, optimisation, and process design and integration.

PROGRAMME OVERVIEW

This programme will equip you with the essential knowledge for engineering careers in the oil, gas and petrochemical sectors.

Upon completion of the course you will have gained a comprehensive understanding of oil refining and associated downstream processing technologies, operations and economics; process safety and operations integrity; and methods for the optimal design of process systems.

You will learn about the general economics of the energy sector, oil exploration and production, as well as renewable energy systems.

Furthermore, your study of the various aspects of petroleum refining will be augmented by unique work assignments at a virtual oil-refining and chemical company.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Refinery and Petrochemical Process
-Renewable Energy Technologies
-Solar Energy Technology
-Advanced Process Control
-Technology, Business & Research Seminars
-Energy Economics and Technology
-Process and Energy Integration
-Process Systems Design
-Process Safety and Operation Integrity
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Biomass Processing Technology
-Introduction to Petroleum Production
-Wind Energy Technology
-Economics of International Oil & Gas
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide a highly vocational education that equips the students with the essential knowledge and skills required to work as competent engineers in the petrochemical sector.

This is to be achieved through combining proper material in two popular and complementary topics: process systems engineering and petroleum refining. The key objective is to develop a sound understanding of oil refining and downstream processing technologies, process safety and operation integrity, as well as systems methods for the optimal design of process systems.

A balanced curriculum is provided with essential modules from these two areas supplemented by a flexible element by way of elective modules that permit students to pursue subjects of preference relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in petroleum refining and petrochemical processing, in terms of the technologies of processes that comprise a modern refinery and petrochemicals complex
-The principles for analysing and improving the profitability of refining and petrochemicals processing
-General Safety, health, and environment (SHE) principles on a refinery and petrochemicals complex
-Methods and systems for ensuring safe and reliable design and operation of process units
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems, mathematical optimization and decision making, process systems design and process and energy integration
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: petroleum exploration and production, economics of the energy sector, sustainable and renewable systems, supply chain management

Intellectual / cognitive skills
-The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation.
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Apply knowledge of the operation of refineries to analyze and to improve the profitability of refining and petrochemical processing
-Apply relevant principles, methods, and tools to improve the safety and operation integrity of refineries
-Apply systems engineering methods such as modelling, simulation, optimization, and energy integration to improve the design of petroleum refining units and systems

Key / transferable skills
-The programme aims to strengthen a range of transferable skills that are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation.
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems. Read more
This programme is idea for graduates from engineering, science or other relevant backgrounds and who have an interest in pursuing a successful career in research, technological change and the commercialisation of renewable-energy systems.

This programme will give you opportunities to learn about major renewable-energy technologies, energy-sector economics, supply-chain management and sustainable development.

PROGRAMME OVERVIEW

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Optimisation and Decision-Making
-Process Modelling and Simulation
-Technology, Business & Research Seminars
-Renewable Energy Technologies
-Refinery and Petrochemical Process
-Solar Energy Technology
-Advanced Process Control
-Energy Economics and Technology
-Process Systems Design
-Biomass Processing Technology
-Wind Energy Technology
-Process and Energy Integration
-Knowledge-based Systems and Artificial Intelligence
-Supply Chain Management
-Introduction to Petroleum Production
-Process Safety and Operation Integrity
-Economics of International Oil & Gas
-Dissertation

FACILITIES, EQUIPMENT AND ACADEMIC SUPPORT

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

CAREER PROSPECTS

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

EDUCATIONAL AIMS OF THE PROGRAMME

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
-State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
-Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills
-Select, define and focus upon an issue at an appropriate level
-Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
-Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills
-Assess the available renewable energy systems
-Design and select appropriate collection and storage, and optimise and evaluate system design
-Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills
-Preparation and delivery of communication and presentation
-Report and essay writing
-Use of general and professional computing tools
-Collaborative working with team members
-Organizing and planning of work
-Research into new areas, particularly in the aspect of literature review and skills acquisition

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page



Cookie Policy    X