This course will train highly qualified physicists and engineers in the area of photonics, which is a key enabling technology, underpinning many areas of industry.
You'll have the opportunity to undertake a three-month research or development project based with one of our industrial partners such as M Squared Lasers.
We have a long tradition of cutting-edge photonics research, which supports our courses. Much of this work has resulted in significant industrial impact through our spin-out companies and academic-industrial collaborations.
You'll also have the opportunity to develop your entrepreneurial skills by taking courses delivered by the Hunter Centre for Entrepreneurship.
The course is made up of two semesters of taught classes, followed by a three-month research project based with one of our industrial partners. The majority of your classes are delivered by the Department of Physics and cover the following:
These classes are complemented by two classes delivered by the Department of Electronic & Electrical Engineering, which look at:
You'll be based with one of our industrial partners for a three-month project placement. This is your opportunity to experience how research and development operate within a commercial environment. It'll also give you a chance to form strong links with industry contacts.
The project is put forward by the company and supervised by both industrial and academic staff. Training on relevant skills and background will be received before and during the project.
Scotland has a world-leading position in optics and photonics industry.Your project will be carried out mainly in the excellent facilities of our Scottish industry partners. Projects elsewhere in the UK and with international companies may also be possible.
Advanced research facilities are also available in:
Our research is strongly supported in equipment and infrastructure. This includes a newly opened 3-storey wing in the John Anderson Building as part of a £13M investment programme in Physics. Furthermore, the IoP and FCAP have recently relocated into the University's Technology & Innovation Centre (TIC) which at £90 million TIC is Strathclyde’s single-biggest investment in research and technology collaboration capacity. This new centre will accelerate the way in which researchers in academia and industry collaborate and innovate together in a new specifically designed state-of-the-art building in the heart of Glasgow.
In semesters one and two, the course involves:
The courses include compulsory and elective classes from the Department of Electronic & Electrical Engineering.
Over the summer, you'll undertake a three-month project based on practical laboratory work in a partner company. You'll be supervised by the industrial partner and supported by an academic supervisor.
Assessment methods are different for each class and include:
Your practical project is assessed on a combination of a written report, an oral presentation, and a viva in which you're questioned on the project.
A degree in industrial photonics can set you up to work in a range of jobs in physics and positions in other industries.
Typically, it can lead you to photonic technologies in industrial corporate research and development units, production engineering and applied academic laboratories.
Employers want to know you can do the job so work experience is key.
This course has a strong focus on the relationship between academia and industry. It's a great opportunity to enhance your skills and provides a direct transition from university to the work place.
We have an excellent record of graduate employment in the Scottish, national and international optics and photonics industries.
If you're interested in practical work with impact but are also interested in a further academic qualification, you can move on to study an EngD or a CASE PhD studentship. These can lead to a doctorate within industry or in close collaboration with industry.
Our Physics graduates from photonics related courses have found employment in a number of different roles including:
Three universities and one photonics research institute in the BARCELONA area offer a comprehensive master's degree in PHOTONICS, the science and technology of LIGHT. PHOTONICS is one of the disciplines that will play a key role in the technology development of the 21st century. The Master in Photonics - PHOTONICS BCN aims at educating future researchers in this field and also promoting entrepreneurial activity in PHOTONICS amongst its students. Addressed to an international audience, the Master in Photonics is conducted in English.
The particular fields that students may be employed in once they graduate are proliferating, given the interdisciplinary nature and increasing relevance of photonics, which has been selected as one of five Key Enabling Technologies for the future of the European Union. The master’s degree in Photonics complements bachelor’s degrees in the sciences (particularly physics) and engineering (particularly engineering physics, telecommunications engineering, electrical, mechanical and electronic engineering and optics, as well as related fields such as nanophotonics and bioengineering) and provides broader and more specific training on scientific advances and interdisciplinary technologies. Career prospects may include the following:
• Taking a doctoral degree in Photonics, Optics, Physics, Optical Engineering, Nanophotonics, Biophotonics, Telecommunications, Electronics, Imaging, Quantum Information, etc.
• Participating in doctoral programmes, R&D and innovation programmes in companies, basic or applied research centers and universities.
• Joining a large company as a consultant or engineer on photonics-related topics, applications development engineer, sales specialist or laboratory consultant.
• Working as a freelance advisor or consultant on photonics-related subjects.
• Working in highly specialized technical positions for controlling services such as microscopy, X-ray diffraction, thin films, etc.
• Participating in (and promoting) spin-offs and other small technology-based companies.
• Joining the education system for high-level training in the field of photonics.
Generic competencies
Generic competencies are the skills that graduates acquire regardless of the specific course or field of study. The generic competencies established by the UPC are capacity for innovation and entrepreneurship, sustainability and social commitment, knowledge of a foreign language (preferably English), teamwork and proper use of information resources.
Specific competencies
The Master PICS program provides a comprehensive program of courses covering theoretical, experimental and engineering aspects of photonics, micro/nano technologies, time-frequency metrology, information theory and complex systems. It is delivered by the University of Bourgogne Franche-Comté (UBFC) in the city of Besançon. It is designed to cover a selection of topics at the interface of physics and engineering sciences, closely integrated with domains of research excellence developed in the Region of Bourgogne Franche-Comté (BFC). The master’s program also provides complementary courses in disciplinary and interdisciplinary knowledge, as well as broad digital, societal, cultural, environmental, and entrepreneurial skills. It is open to students with undergraduate physics degrees, and it aims to provide complementary courses to prepare students for careers in either industry or for future PhD level studies. The PICS masters is strongly supported by the FEMTO-ST Institute and the ICB Laboratory, research institutions with major international reputations in Physical Sciences and Engineering. The PICS Master’s program has received a national label as a Master’s of Excellence for Engineering and Research, entitled CMI (“Cursus master en Ingénierie”) which is delivered by the CMI-FIGURE network which consists of 28 universities in France.
Photonics and nanotechnologies are one of the 6 Key Enabling Technologies identified by the European Commission as sources of innovation and competitiveness for the future. They are technological sectors that feed competitive and fast-growing markets (environment, health, automotive, safety, etc.) and there is a strong need for qualified graduates to support developing European Industry. When compared to other French Masters programs in similar fields, the particular novelty of the Masters PICS is that it focuses on teaching multi-disciplinary skills on both the practical and fundamental level in a very wide range of topics: photonics, micro and nano-optics, quantum optics, micro-nanotechnologies, instrumentation, time-frequency metrology, micro-oscillators, micro- and nano-acoustics, bio-photonics, and complex systems.
The FEMTO-ST and ICB Institutes are the underlying UBFC laboratories that support the master PICS program. The FEMTO-ST Institute in Besançon (http://www.femto-st.fr/en/), with more than 750 staff, is one of the largest laboratories in France in Engineering Sciences, having high international visibility in photonics, nanotechnology and time frequency technology. The ICB Institute in Dijon (icb.ubourgogne.fr/en/), with a staff of 300 people, is also an underlying UBFC laboratory of the PICS master’s. The PICS master’s program is based on the internationally highly recognized research activities of all these laboratories in photonics, micro & nanotechnologies, time-frequency and complex systems, with teaching and supervision being performed by renowned and highly qualified researchers (professors, assistant professors, or full-time CNRS researchers).
The courses, taught in English (see Teaching section), are divided between lectures, exercises/tutorials, practical labs and project activities. Students will be immersed in the labs from their 1st year of study, closely connected with the research groups via lab projects that will run throughout semester 1 to 3. Individual supervision will be provided to all students, combining a personal project advisor and a mentor.
A one-semester research internship in semester 4 can be carried out at FEMTO-ST, ICB, or a local or national industry partner. Students also have the possibility to obtain significant international experience by carrying out Master’s Internships (5-6 months) abroad at internationally-renowned universities having strong research collaborations with FEMTO-ST and ICB. The proposed PICS Master’s program is also based on strong interactions with high-tech industrial partners both at the local and international levels.
The PICS master’s program takes place over 2 academic years divided into 4 semesters. Each semester corresponds to an accreditation of 30 ECTS, which leads to a total at the end of 120 ECTS. The program has an extensive international flavor, with all courses taught in English, except two modules of 3 ECTS in semesters 1 and 3 that will introduce French culture and language for foreign students, and organized in close connection with another master’s programs. We offer the opportunity to obtain French language certification (B2 at minimum). The teaching staff are highly qualified researchers with international recognition and all teaching staff are fluent in English, with many at native or near-native level.
Photonics and micro/nano technologies are very dynamic industrial sectors in Europe and hold the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs.
The master program offers intensive educational activities based on high level research activities in these domains. It focuses on fundamental & applied research mainly targeting careers in industry (R&D engineer) or for future PhD level studies either in academic institution or industry.
Students eligible to the master PICS program must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism, electronic and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.
Besançon is a historical town with a strong university community, and is consistently voted as having an excellent quality of life. It is home to a UNESCO-World Heritage listed citadel and fortifications, and is well known for its proximity to an excellent range of outdoor pursuits including hiking, mountain-biking, skiing and rock-climbing.
Many scholarships will be awarded each year to high quality foreign students.
The course explores the versatile field of optical technologies which supports many aspects of modern society. Optical technologies are expected to be a key enabling technology of the 21st century.
The course is based on the strong record of optical technologies across research divisions in the department of physics and the collaborating institutions:
You can choose classes relevant to your career interests from a wide range of topics including:
You’ll put the knowledge gained in the taught components to use in a cutting-edge research project.
The course gives you the opportunity of exploring and mastering a large range of optical technologies. It enables you to put devices in the context of an optical system and/or application.
It’s suitable for those with a science or engineering background wanting to gain a vocational degree or to obtain a solid foundation for an optics-related PhD programme.
It’s also appropriate for those who’ve worked in industry and want to consolidate their future career by further academic studies.
The course consists of two semesters of taught classes followed by a three- month research project.
This course is run by the Department of Physics. The department’s facilities include:
Our teaching is based on lectures, tutorials, workshops, laboratory experiments, and research projects.
The assessment includes written examinations, coursework, presentations and a talk, oral examination and report presenting and defending the research project.
The course gives you a thorough basis for a successful job in the photonics, optical and life sciences industries. It provides the basis to excel in more interesting and challenging posts.
The course can also be an entry route into an optics-related PhD programme.
Over the years, many of Strathclyde’s optics and photonics graduates have found successful employment at the large variety of local laser and optics companies as well as with national and international corporations.
The Unit of Electro-Optical and Photonics Engineering (EOPE) was established in 2000 with the vision that the 21st century will depend as much on photonics as the 20th century depended on electronics. It is dedicated to research and education in electro-optical and photonics engineering and is currently the only department in Israel authorized to grant graduate degrees (M.Sc.and Ph.D.) in electro-optical engineering. The Unit’s multidisciplinary research places it at the vanguard of the optics and photonics community, both nationally and internationally. Cutting-edge research is conducted in the areas of remote sensing; atmospheric optics; fiber-optic biosensors; nano-plasmonics; integrated nano-photonics; super-resolution microscopy; image processing; computer vision; display systems; 3D imaging and display; computational optical sensing and imaging; compressive imagin; biomedical optics; liquid crystal devices for sensing and imaging; hyperspectral imaging; THz and MMW imaging; optical glass/fibers; opto-electronic devices; photovoltaics, and more.
The aim of the M.Sc. Program in Electro-Optical Engineering (EOE) is to provide the students with research expertise and advanced knowledge in electro-optical and photonics engineering. M.Sc. students carry out thesis research supervised by EOPE faculty or relevant faculty members from other departments. Students graduating with a M.Sc. degree are equipped to assume senior research and development positions in industry, and may continue towards Ph.D. studies. M.Sc. studies in EOE at BGU can be extended into a combined Ph.D. track, such that the M.Sc. thesis exam serves also as the Ph.D. candidacy exam. The M.Sc. degree is typically completed within 2 academic years (4 semesters). Fields of specialization in the M.Sc. Program include: imaging systems and image processing; optoelectronic devices; bio-medical optics; quantum and non-linear optics; nanophotonics and integrated nanophotonics; optical communications; plasmonics; and metamaterials.
Due to the multidisciplinary nature of EOPE, students with diverse backgrounds in science and engineering are accepted to our program. The study program is tailored individually for those candidates with insufficient background in EOPE. Applicants to the M.Sc. Program should hold a B.Sc. degree from an accredited institution in related science and engineering fields (e.g., electrical engineering, materials engineering, mechanical engineering, chemical engineering, physics, etc.) at a minimum GPA of 80/100. A TOEFL score of 85/120 or equivalent score in an internationally recognized English proficiency exam is required. The English proficiency requirement is waived for applicants who received their B.Sc. degree in a program taught in English. GRE is recommended but not required. Additionally, prior to applying to the M.Sc. Program, the applicant is expected to contact a potential advisor among the EOPE faculty.
The research leading to the M.Sc. thesis is conducted throughout the two years of studies. The student is expected to publish and present the research results in leading international journals and conferences. The thesis is evaluated through a written report and an oral examination.
Please visit our online application site at: https://apps4cloud.bgu.ac.il/engrg/
Applications are accepted on a rolling basis. Please check website for the scholarships application deadline.
The Unit of Electro-Optical Engineering at BGU: http://in.bgu.ac.il/en/engn/electrop/Pages/About.aspx
Director of graduate studies: Prof. Adrian Stern, email: [email protected]
BGU International - http://www.bgu.ac.il/international
The European MSc. in Photonics is an English-taught multidisciplinary programme of two years (120 ECTS) which leads to a joint degree from Ghent University and Vrije Universiteit Brussel.
The first year you can develop your skills in laser engineering, optical communication, optical materials, microphotonics and optical sensors. The first semester is devoted to the fundamental basics of photonics, while the second focuses on engineering skills and photonics applications. As this master is organised by two leading universities in Belgium, you have the possibility to follow courses entirely at VUB or to choose specific courses at UGent.
The second year opens the international gateway. Enrich your experience by choosing one of the international exchange tracks to follow courses, take up an internship or do a master thesis at an international partner.
Core and advanced photonics courses:
The first year will be devoted mainly to a programme of core photonics courses with essentially the same content at all institutes, complemented by a number of advanced photonics courses as well as several courses in related disciplines and transferable skill courses.
Move to another location:
In the second year you will move to another location where you will continue to take advanced photonics, multidisciplinary and transferable skill courses and where you will carry out your master thesis (30 ECTS) in a photonics sub-field of their choice. In addition to the regular courses, all students will attend a two-week summer school at the end of the first and second year of the programme.
The second year contains a mandatory external mobility component. You can spend one semester or do your master thesis abroad. Alternatively, you can do both thesis and courses abroad during two semesters, or do a 12-week industrial internship in the photonics industry or a research institute. You choose one of the four mobility tracks, allowing you to define the extent of your stay abroad. It allows you to benefit from the enriching expertise of our partner universities.
The European MSc. in Photonics has all the right ingredints to prepare you for a bright future. The valuable internships with industry and research institutes abroad enhance your employability significantly.
As consultant, engineer or researcher you might find yourself in the driver seat working domains as life sciences, biotechnology, telecommunications, sustainable energy, agrifood or Industry 4.0.
The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.
This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.
The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.
Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.
Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.
Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.
The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.
The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.
Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.
Many scholarships will be awarded each year to high quality foreign students.
During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).
For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin ([email protected]) and visit the webpage (http://www.ubfc.fr/formationen/).
Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).
The Integrated Photonic and Electronic Systems MRes, taught at the University of Cambridge and at the UCL Centre for Doctoral Training in Integrated Photonic and Electronic Systems, aims to train students to PhD level in the skills needed to produce new integrated photonic systems for applications ranging from information display to ultra-fast communications and industrial materials processing.
The programme offers a wide range of specialised modules, including electronics and biotechnology. Students gain a foundation training in the scientific basis of photonics and systems, and develop a good understanding of the industry. They are able to design an individual bespoke programme to reflect their prior experience and future interests.
Students undertake modules to the value of 180 credits.
Students take two compulsory research projects (90 credits), one transferable skills module (15 credits), three optional modules (45 credits) and two elective modules (30 credits).
Optional modules
Students choose three optional modules from the following:
Elective modules
Students choose a further two elective modules from the list below:
Dissertation/report
All students undertake two research projects. An independent research project (45 credits) and an industry-focused project (45 credits).
Teaching and learning
The programme is delivered through a combination of lectures, tutorials, projects, seminars, and laboratory work. Student performance is assessed through unseen written examination and coursework (written assignments and design work).
Further information on modules and degree structure is available on the department website: Integrated Photonic and Electronic Systems MRes
Dramatic progress has been made in the past few years in the field of photonic technologies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of information, sensing, display, and personal healthcare systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of companies outside the conventional photonics arena, who will in turn require those skilled in photonic systems to have a much greater degree of interdisciplinary training, and indeed be expert in certain fields outside photonics.
Employability
Our students are highly employable and have the opportunity to gain industry experience during their MRes year in large aerospace companies like Qioptiq, medical equipment companies such as Hitachi; and technology and communications companies such as Toshiba through industry placements. Several smaller spin-out companies from both UCL and Cambridge also offer projects. The CDT organises industry day events which provide an excellent opportunity to network with senior technologists and managers interested in recruiting photonics engineers. One recent graduate is now working as a fiber laser development engineer; another is a patent attorney.
The University of Cambridge and UCL have recently established an exciting Centre for Doctoral Training (CDT) in Integrated Photonic and Electronic Systems, leveraging their current strong collaborations in research and innovation.
The CDT provides doctoral training using expertise drawn from a range of disciplines, and collaborates closely with a wide range of UK industries, using innovative teaching and learning techniques.
The centre aims to create graduates with the skills and confidence able to drive future technology research, development and exploitation, as photonics becomes fully embedded in electronics-based systems applications ranging from communications to sensing, industrial manufacture and biomedicine.
The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.
The following REF score was awarded to the department: Electronic & Electrical Engineering
97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)
Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.
This is a vocational course in applied physics for anyone with a background in the physical sciences or engineering.
You can choose classes relevant to your career interests from a wide range of topics including:
On the programme you'll acquire:
You‘ll put the knowledge gained in the taught classes to use on a research project. You can design the project to fit in with your interests and career plans.
The course gives you the opportunity to explore and master a wide range of applied physics skills. It teaches you transferable, problem-solving and numeracy skills that are widely sought after across the commercial sector.
You’ll have two semesters of taught classes made up of compulsory and optional modules. This is followed by a three-month research project.
This course is run by our Department of Physics. The department’s facilities include:
Our teaching is based on lectures, tutorials, workshops, laboratory experiments and research projects.
The final assessment will be based on your performance in examinations, coursework, a research project and, if required, in an oral exam.
What kind of jobs do Strathclyde Physics graduates get?
To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
Success story: Iain Neil
Iain Neil graduated from Strathclyde in Applied Physics in 1977 and is an optical consultant, specialising in the design of zoom lenses for the film industry. He has received a record 12 Scientific and Technical Academy Awards, the most for any living person.