• University of Leeds Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Greenwich Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Kent Featured Masters Courses
"omics"×
0 miles

Masters Degrees (Omics)

  • "omics" ×
  • clear all
Showing 1 to 15 of 25
Order by 
This new Master’s course provides academic, laboratory and research training in the methods and strategies used to elucidate which and how potential targets identified through Omics technologies- genomics, proteomics, transcriptomics- may be relevant to human disease. Read more
This new Master’s course provides academic, laboratory and research training in the methods and strategies used to elucidate which and how potential targets identified through Omics technologies- genomics, proteomics, transcriptomics- may be relevant to human disease. Students will gain insight on target selection given a large data set, and the in vitro and in vivo techniques that could be applied to study an identified target in the context of disease. The emphasis will be on critical analysis of data and published information, and the design of experimental protocols/pipeline to answer specific scientific questions.

Programme structure

The course is organised as follows:
•October - February: 5-month taught section – 5 modules
•March - September: 7-month laboratory-based research project

Read less
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

◾Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
◾You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
◾Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
◾Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
◾The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
◾You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
◾The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
◾In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
◾You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
◾Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
◾Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
◾Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

◾Programming (Java)
◾Database Theory and Application
◾Foundations of Bioinformatics
◾Omics and Systems Approaches in Biology
◾These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
◾60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world.

Optional courses include:
◾RNA-seq and next generation transcriptomics
◾Metagenomics
◾Pathogen Polyomics
◾Using Chemical Structure Databases in Drug Discovery for Protein Targets
◾Identification of disease-causing genetic variants
◾A range of more general biology and computing biology courses are also available in semester 2.

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases. Read more

Master's specialisation in Medical Epigenomics

The only Master’s specialisation in the Netherlands covering the function of our epigenome, a key factor in regulating gene expression and in a wide range of diseases.
Our skin cells, liver cells and blood cells all contain the same genetic information. Yet these are different types of cells, each performing their own specific tasks. How is this possible? The explanation lies in the epigenome: a heritable, cell-type specific set of chromosomal modifications, which regulates gene expression. Radboud University is specialised in studying the epigenome and is the only university in the Netherlands to offer a Master’s programme in this field of research.

Health and disease

The epigenome consists of small and reversible chemical modifications of the DNA or histone proteins, such as methylation, acetylation and phosphorylation. It changes the spatial structure of DNA, resulting in gene activation or repression. These processes are crucial for our health and also play a role in many diseases, like autoimmune diseases, cancer and neurological disorders. As opposed to modifications of the genome sequence itself, epigenetic modifications are reversible. You can therefore imagine the great potential of drugs that target epigenetic enzymes, so-called epi-drugs.

Big data

In this specialisation, you’ll look at a cell as one big and complex system. You’ll study epigenetic mechanisms during development and disease from different angles. This includes studying DNA and RNA by next-generation sequencing (epigenomics) and analysing proteins by mass spectrometry (proteomics). In addition, you‘ll be trained to design computational strategies that allow the integration of these multifaceted, high-throughput data sets into one system.

Why study Medical Epigenomics at Radboud University?

- Radboud University combines various state-of-the-art technologies – such as quantitative mass spectrometry and next-generation DNA sequencing – with downstream bioinformatics analyses in one department. This is unique in Europe.
- This programme allows you to work with researchers from the Radboud Institute for Molecular Life sciences (RIMLS), one of the leading multidisciplinary research institutes within this field of study worldwide.
- We have close contacts with high-profile medically oriented groups on the Radboud campus and with international institutes (EMBL, Max-Planck, Marie Curie, Cambridge, US-based labs, etc). As a Master’s student, you can choose to perform an internship in one of these related departments.
- Radboud University coordinates BLUEPRINT, a 30 million Euro European project focusing on the epigenomics of leukaemia. Master’s students have the opportunity to participate in this project.

Career prospects

As a Master’s student of Medical Epigenomics you’re trained in using state-of-the art technology in combination with biological software tools to study complete networks in cells in an unbiased manner. For example, you’ll know how to study the effects of drugs in the human body.
When you enter the job market, you’ll have:
- A thorough background of epigenetic mechanisms in health and disease, which is highly relevant in strongly rising field of epi-drug development
- Extensive and partly hands-on experience in state-of-the-art ‘omics’ technologies: next-generation sequencing, quantitative mass spectrometry and single cell technologies;
- Extensive expertise in designing, executing and interpreting scientific experiments in data-driven research;
- The computational skills needed to analyse large ‘omics’ datasets.

With this background, you can become a researcher at a:
- University or research institute;
- Pharmaceutical company, such as Synthon or Johnson & Johnson;
- Food company, like Danone or Unilever;
- Start-up company making use of -omics technology.

Apart from research into genomics and epigenomics, you could also work on topics such as miniaturising workflows, improving experimental devices, the interface between biology and informatics, medicine from a systems approach.

Or you can become a:
- Biological or medical consultant;
- Biology teacher;
- Policy coordinator, regarding genetic or medical issues;
- Patent attorney;
- Clinical research associate;

PhD positions at Radboud University

Each year, the Molecular Biology department (Prof. Henk Stunnenberg, Prof. Michiel Vermeulen) and the Molecular Developmental Biology department (Prof. Gert-Jan Veenstra) at the RIMLS offer between five and ten PhD positions. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- Systems biology
In the Medical Epigenomics specialisation you won’t zoom in on only one particular gene, protein or signalling pathway. Instead, you’ll regard the cell as one complete system. This comprehensive view allows you to, for example, model the impact of one particular epigenetic mutation on various parts and functions of the cell, or study the effects of a drug in an unbiased manner. One of the challenges of this systems biology approach is the processing and integration of large amounts of data. That’s why you’ll also be trained in computational biology. Once graduated, this will be a great advantage: you’ll be able to bridge the gap between biology, technology and informatics , and thus have a profile that is desperately needed in modern, data-driven biology.

- Multiple OMICS approaches
Studying cells in a systems biology approach means connecting processes at the level of the genome (genomics), epigenome (epigenomics), transcriptome (transcriptomics), proteome (proteomics), etc. In the Medical Epigenomics specialisation, you’ll get acquainted with all these different fields of study.

- Patient and animal samples
Numerous genetic diseases are not caused by genetic mutations, but by epigenetic mutations that influence the structure and function of chromatin. Think of:
- Autoimmune diseases, like rheumatoid arthritis and lupus
- Cancer, in the forms of leukaemia, colon cancer, prostate cancer and cervical cancer
- Neurological disorders, like Rett Syndrome, Alzheimer, Parkinson, Multiple Sclerosis, schizophrenia and autism

We investigate these diseases on a cellular level, focusing on the epigenetic mutations and the impact on various pathways in the cell. You’ll get the chance to participate in that research, and work with embryonic stem cell, patient, Xenopus or zebra fish samples.

See the website http://www.ru.nl/masters/medicalbiology/epigenomics

Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models… Read more

Research profile

Research in the Division of Genetics and Genomics aims to advance understanding of complex animal systems and the development of improved predictive models through the application of numerical and computational approaches in the analysis, interpretation, modelling and prediction of complex animal systems from the level of the DNA and other molecules, through cellular and gene networks, tissues and organs to whole organisms and interacting populations of organisms.

The biology and traits of interest include: growth and development, body composition, feed efficiency, reproductive performance, responses to infectious disease and inherited diseases.

Research encompasses basic research in bioscience and mathematical biology and strategic research to address grand challenges, e.g. food security.

Research is focussed on, but not restricted to, target species of agricultural importance including cattle, pigs, poultry, sheep; farmed fish such as salmon; and companion animals. The availability of genome sequences and the associated genomics toolkits enable genetics research in these species.

Expertise includes genetics (molecular, quantitative), physiology (neuroendocrinology, immunology), ‘omics (genomics, functional genomics) with particular strengths in mathematical biology (quantitative genetics, epidemiology, bioinformatics, modelling).

The Division has 18 Group Leaders and 4 career track fellows who supervise over 30 postgraduate students.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute. Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. The Roslin Institute also has a local PG committee and will provide advice and support to students when requested. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

In 2011 The Roslin Institute moved to a new state-of-the-art building on the University of Edinburgh's veterinary campus at Easter Bush. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

The University's genomics facility Edinburgh Genomics is closely associated with the Division of Genetics and Genomics and provides access to the latest genomics technologies, including next-generation sequencing, SNP genotyping and microarray platforms (genomics.ed.ac.uk).

In addition to the Edinburgh Compute and Data Facility’s high performance computing resources, The Roslin Institute has two compute farms, including one with 256 GB of RAM, which enable the analysis of complex ‘omics data sets.

Read less
Designed to prepare you to interact with the world’s most advanced biological and clinical datasets - this programme will prepare you for careers, or further graduate work, in the omics-enabled biosciences. Read more
Designed to prepare you to interact with the world’s most advanced biological and clinical datasets - this programme will prepare you for careers, or further graduate work, in the omics-enabled biosciences.

The future of biology is bioinformatics – computational analysis procedures that leverage state-of-the-art statistics and machine learning to gain insight into systems of exquisite complexity. We have entered an era of unprecedented expansion in the biological sciences, and our data now grows exponentially faster than Moore’s law.

The biological sciences have been transformed by the advent of omics. Enabled by revolutionary advances in molecular sequencing and mass spectrometry, it is now possible to sequence a genome in six hours, simultaneously assess the expression level of every gene in a genome, quantify the abundance of proteins and metabolites, and determine the epigenetic and regulatory landscape of individual cells. Hypotheses are generated through the integrative analysis of enormous datasets, and tested in high-throughput with third-generation genome-engineering technologies, including CRISPR.

Biology is now driven by data.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. Read more
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. This is not only of fundamental interest (i.e., understanding the mechanism of action) but it also relates to an increased need for a mechanistic component in chemical risk assessment and development of high throughput screens for chemical toxicity.

The MRes in Molecular Mechanistic Toxicology is a one-year full-time programme that provides students with a research-orientated training in a lively, highly interactive teaching and research environment.

Programme content

The programme is coordinated by the School of Biosciences, which is recognised internationally as a major centre for both teaching and research in Toxicology. Molecular Toxicology is a major component of the School of Biosciences research activities along with interactions with other departments including Chemistry and the Medical School.

Specific areas of active research include:

- Mechanisms of cell toxicity
- Development of novel DNA binding chemicals
- Cellular proliferation and differentiation
- Environmental genomics and metabolomics
- Molecular biomarkers of genotoxicity, oxidative stress and cellular responses
- Role of environmental and genetic factors in disease
- Learning and teaching

Two five-week taught modules are held in Semester 1 in conjunction with the taught MSc in Toxicology programme. Training in generic and laboratory research skills is also an important element of the programme. The programme also includes a six-month research project, which provides students with an opportunity for further advanced research training and hands-on experience of molecular and cellular biology techniques embedded in a research laboratory. Research projects can take place either in academic or industrial institutions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Read more
Do you want to focus your scientific career on one of the fastest moving sectors of science? The UK has hundreds of biotech companies and is a leader in innovating specialist products from living organisms. Biotech applications are enhancing food production, treating medical conditions, and having a significant impact on the global future.

Given the common expectation for job candidates to have some form of postgraduate qualification, this Masters course offers a route to careers in biotechnology as well as the broader life sciences industry. If your first degree included the study of genetics and molecular biology, and a research module, you’re well-placed to join us.

This course can also be started in January (full time 21 months) - for more information please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/biotechnology-dtfbty6/

Learn From The Best

The quality of teaching in life sciences at Northumbria has been recognised by strong performance in student-led awards, Further evidence of academic excellence is the number of invitations to members of our team to join the editorial boards of scientific journals.

Our teaching team maintains close links with biotech companies and research labs, including via on-going roles as consultants, which helps ensure an up-to-date understanding of the latest technical and commercial developments. Several academics are involved in biotech ventures that make use of the University’s facilities: Nzomics Biocatalysis develops enzyme alternatives to chemical processes, and Nu-omics offers DNA sequencing services.

Teaching And Assessment

We aim for interactive teaching sessions and you will engage in discussions, problem-solving exercises and other activities. Teaching can start in the lab or classroom and then you make the material your own by exploring and applying it. Technology Enhanced Learning makes this easier; each module has an electronic blackboard site with relevant information including electronic reading lists and access to websites, videos and other study materials that are available anytime, anywhere.

You will undertake assignments within small groups and we provide training in communication skills relevant for scientific communication. The course aims to foster your ability to work at a professional standard both individually and as part of a team.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0704 - Industrial Biotechnology (Core, 20 Credits)
AP0705 - Current Topics in Biotechnology (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

The technical facilities at Northumbria University are excellent. We are fully equipped for molecular biology manipulations and imaging – techniques include RT-PCR to show whether or not a specific gene is being expressed in a given sample. We also have pilot scale bioreactors so that we can scale up experiments and processes.

For cell biology and immunology, we have two multi-user laboratories. Technologies include assays for measuring immune responses at the single-cell level, and for monitoring the functioning of cells in real time. Further capabilities include biomarker analysis, flow cytometry, chemical imaging and fluorescence microscopy. For genomics, proteomics and metabolomics, our capabilities include genomic sequencing, mass spectrometry, 2D protein electrophoresis and nanoflow liquid chromatography.

All our equipment is supported up by highly skilled technical staff who will help you make the best use of all the facilities that are available.

Research-Rich Learning

In fast-moving fields like biotechnology, it’s particularly important for teaching to take account of the latest research. Many of our staff are conducting research in areas such as molecular biology, bio-informatics, gene expression and micro-biology of extreme environments. They bring all this experience and expertise into their teaching.

As a student, you will be heavily engaged in analysing recent insights from the scientific literature. You will undertake a major individual project in molecular and cellular science that will encompass all aspects of a scientific study. These include evaluation of relevant literature, design and set-up of experiments, collection and processing of data, analysis of results, preparation of a report and presentation of findings in a seminar.

Give Your Career An Edge

Many recruiters in the biotech industry expect candidates to have studied at postgraduate level so our Masters qualification will help you get through the door of the interview room. Once there, your major project and other assignments will help ensure there is plenty to catch their attention. Employers are looking for the ability to solve problems, think critically, work with others and function independently – which are exactly the attributes that our course develops to a higher level.

During your time at Northumbria, we encourage you to participate in the activities organised by the Career Development Service. We also encourage you to apply for associate membership of the Royal Society of Biology, with full membership becoming possible once you have at least three years’ postgraduate experience in study or work.

Your Future

The biotech industry has made huge progress in the last few decades and the years ahead promise to be even more transformational. With an MSc Biotechnology, you will be ready to contribute to the changes ahead through a rigorous scientific approach and your grasp of the fundamental knowledge, insights and skills that underlie modern biotechnology.

Scientific research is at the heart of the course and you will strengthen pivotal skills that will enhance your employability in any research-rich environment. By developing the practices, standards and principles relevant to becoming a bioscience professional, you will also prepare yourself for success in other sectors of the life sciences industry and beyond.

Read less
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?. Read more
Want to be at the forefront of scientific research into microbes and their role in developing new medicines, tackling diseases and improving the environment?

Northumbria is the only UK university to offer Microbiology as an individual discipline, giving you the opportunity to develop specialist knowledge and break new ground as a scientist.

Gain hands-on, immersive experience, in high tech facilities, working alongside leading academics. Advance your expertise in clinical and environmental microbiology, studying how viral and bacterial diseases work and how you can use microbes to create new medicines.

You’ll cover microbial taxonomy, bioinformatics and molecular biology, using bacteria and viruses to develop new technologies and substances through data analysis and genome sequencing.

With opportunities to develop your theoretical knowledge, advance your own research, and increase your profile through articles and publications, this course equips you for further PhD study or for a career in microbiology.

This course is also available part time - for more information, please view the web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/microbiology-dtpmgy6/

Learn From The Best

Specialising in a wide range of research areas, from developing enzymes for pharmaceutical, chemical and food industries, to life in extreme environments, your academic team reflect the varied, multi-disciplinary nature of microbiological science.

Tutors are active researchers in their chosen specialisms and share their knowledge through teaching, scientific conferences and publications. Many have established relationships with professional microbiology organisations and lead policy and practice within the profession.

Combining industry experience and research expertise, you’ll benefit from their knowledge and real-life insights as you develop your skills and understanding.

Teaching And Assessment

You’ll enhance your knowledge of this broad subject matter through in-depth, research focused and real-life learning.

You’ll gain skills in applying tools, techniques and methods related to molecular biology, microbial culture and classification and in functional analysis of microbial and viral genomes.

With an emphasis on individual learning and problem solving using the latest research, as part of the course, you’ll undertake a research project based on a currently relevant question. This will allow you to develop your particular specialism or interest and focus your study on practical research.

You’ll be assessed on your ability to apply your subject knowledge to real-world challenges in the form of assessment tasks as well as being measured in key laboratory skills.

Module Overview
AP0700 - Graduate Science Research Methods (Core, 20 Credits)
AP0701 - Molecular Biology (Core, 20 Credits)
AP0702 - Bioinformatics (Core, 20 Credits)
AP0703 - Subject Exploration (Core, 20 Credits)
AP0706 - Microbes and Disease (Core, 20 Credits)
AP0707 - Microbial Diversity (Core, 20 Credits)
AP0708 - Applied Sciences Research Project (Core, 60 Credits)

Learning Environment

You’ll get hands-on experience in our large, modern well-equipped laboratories with audio-visual facilities that help you observe, learn and question techniques and ideas.

High-tech wet and dry labs which are fully equipped for molecular biology manipulations are available to help you work on your own research projects.

While some modules are conventionally taught, you’ll benefit from a mixture of learning experiences including lectures, small group seminars and laboratory sessions, adding a practical edge to your theoretical understanding.

Research-Rich Learning

The internationally recognised and well-established group, led by Professor Iain Sutcliffe, apply scientific approaches to aspects of healthcare and extend understanding of diseases.

Research areas include:
-Bacterial cell envelope architecture and biosynthesis
-Control of parasitic arthropods
-Microbial diagnostics (in collaboration with Applied Chemistry)
-Microbial enzymes as biocatalysts (through our Nzomics Innovation Unit, in collaboration with Applied Chemistry)
-Molecular ecology and microbial community analysis in human health (COPD, cystic fibrosis and necrotising enterocolitis)
-Molecular ecology and microbial community analysis in the environment (Lake Suigetsu, Japan; Polar environments) and in agricultural management
-Genomics and proteomics of prokaryotes
-Novel antimicrobials (in collaboration with Applied Chemistry)
-Systematics and taxonomy of bacteria
-Virulence determinants in pathogenic streptococci

Microbiological and virological based techniques to study; virus-host interactions and phage genomics (through our Nu-omics). Research is funded by companies, charities and research council grants.

Give Your Career An Edge

This course has been designed to help you develop specific knowledge and practical skills in Microbiology based on work-related learning. Teaching and assessment throughout the course is based on problem solving linked to a practical approach to current research.

You’ll have opportunities for work-based learning and to be an ambassador for STEM activities, gaining valuable professional experience and applying your knowledge in real-world situations.

Your research project provides a chance to showcase your interests and ability to define, formulate and test a hypothesis through careful experimental design, method development, data capture and analysis and communicating your findings.

You’ll be able to demonstrate transferable skills valued by employers including critical thinking, working as part of a group, data mining and record keeping, alongside problem solving, independent learning, and communication with both technical and non-technical audiences.

Your Future

The MSc Microbiology course will support and inspire you to high achievement in employment or further education and research in your chosen specialism.

Building on your theoretical knowledge with practical and laboratory skills you’ll show that you can tackle complex problems with confidence, skill and maturity as you develop key strengths in critical thinking and expressing opinions based on evidence.

The practices and procedures of Microbiology and Virology, together with logical thinking, attention to detail and a questioning mind will equip you with skills suitable for a range of careers in human health and disease, environmental studies and industrial or biotechnical industries.

Read less
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry. Read more
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry.

Practical skills will include sessions on fermentation, molecular biology, immunology, cell biology and protein chemistry, and you will go on to complete a major, supervised laboratory or computer-based research project.

Transferable skills gained via this programme will include written and oral presentation skills, statistics, and the ability to plan and write a grant application or a business plan. Subject-specific skills will include key techniques used in molecular biotechnology, specialist knowledge in theoretical and practical aspects of the subject, including: process engineering, molecular biology, functional genomics, 'omics' technologies, protein expression systems and antibody engineering. Practical skills will include fermentation, molecular biology, immunology, cell biology and protein chemistry.

Careers

While many graduates will go on to employment in biotechnology companies, you will also be employable in other life sciences industries or able to go on to further study and research.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Applied Analytical Science (LCMS) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

World demand for mass spectrometry and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought after. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence. The MSc in Applied Analytical Science (LCMS) includes fundamentals of MS and chromatography with key industrial topics covering ‘-omics’, pharmaceutical, environmental and forensic analysis, data handling, professional management and good laboratory practice (GLP). The unique combination of industry participation and content on the Applied Analytical Science (LCMS) programme provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Professional Accreditation

We are pleased to announce that the Royal Society of Chemistry (RSC) has accredited the “MSc in Applied Analytical Science (LCMS)” for satisfying the academic requirements of the award of CHARTERED CHEMIST (CChem) from 2015 and awarded to qualifying students. Accreditation of Postgraduate schemes have only recently been undertaken by the RSC and our scheme is one of the first to achieve accreditation.

Key Features

Course content for the Applied Analytical Science (LCMS) programme is designed for the needs of industry: Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development plus industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment: MSc students can experience more in-depth and ‘hands-on’ learning than most current analytical MSc programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible dissertation.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies, presentations, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

Modules on the Applied Analytical Science (LCMS) programme typically include:

• Mass spectrometry – basics and fundamentals
• Separation science and sample handling
• Data analysis and method development
• Professional management and laboratory practice
• Proteomics
• Pharmaceutical
• Environmental and forensic analysis
• Medical and life sciences
• Metabolomics, lipidomics and bioactive lipids
• Data analysis and method development
• Dissertation: MS experimental project

Read less
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. Read more
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. The programme offers training in a broad range of topics including; environmental biotechnology, synthetic biology, plant engineering, stem cell therapies and vaccine development.

Why this programme

◾Ranked world top 100 for Biological Sciences
◾If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
◾You will gain a sound understanding of the nature of business based on bioscience knowledge and research, their opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
◾We have exciting scholarship opportunities.
◾You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
◾You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
◾The course involves extensive interaction with industry, through site visits, guest lectures and an "Industrial Networking Symposium" where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
◾This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
◾The flexible independent research project provides valuable training for students wishing to proceed to a Ph.D. or into an industrial career; this may also be completed as a business based project.
◾Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
◾Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

The programme is made up of five teaching modules and a dissertation project. Each module explores different aspects of Biotechnology. The dissertation allows you to specialise the degree through a chosen field of research. You will undertake this project with the support and guidance of your chosen academic expert.

The aims of the course are:
◾To enable students to study a wide range of biotechnology topics in depth;
◾Allow students to benefit from leading-edge research-led teaching;
◾To enhance students' conceptual, analytical and generic skills and to apply them to biotechnology problems;
◾To prepare students for leading positions in the biotechnology industry or entry into PhD programmes.

Core and optional courses

◾Molecular Research Skills
◾Industrial and Environmental Microbiology
◾Bioscience Commercialisation
◾Recombinant Protein Expression
◾Omics Technologies
◾Synthetic Biology
◾Bioimaging for Researchers
◾Plant Biotechnology
◾Biotechnology Research Project

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.

Read less
The MSc in Applied Biosciences and Biotechnology aims to. To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research. Read more
The MSc in Applied Biosciences and Biotechnology aims to:

• To equip graduates to pursue careers in bioscience and biotechnology either in industry or academic research.
• Produce graduates with an in-depth understanding of the core principles and methodologies underlying current biotechnological research.
• To enable students to develop the transferable qualities and skills required for employment or research in the biosciences sector.
• Produce bioscience graduates with training in relevant business and entrepreneurial skills.
• Provide a training in laboratory and research skills.
• Meet the global need for graduates who can successfully contribute to the rapidly developing industrial biotechnology sector.

The biotechnology sector has grown rapidly in recent years and there are increasing career opportunities worldwide for experienced graduates who have been trained in advanced molecular bioscience, systems biology and ‘omics’ technologies, together with exposure to entrepreneurship and innovation. Demand for these skills is predicted to increase sharply over the next decade due to investment in the “green economy”, notably in the areas of bioenergy and industrial biotechnology. Moreover glycoprotein biopharmaceuticals comprise an increasing proportion of new drugs and their development, manufacture and quality control demands interdisciplinary skills in applied biosciences and biotechnology which can only be gained via advanced training at postgraduate level.

Degree structure
The course is comprised of three parts: a taught component, a tutored dissertation, which includes a mini-conference, and a research component. The taught component in weeks 1-30 will include lectures, seminars, computer practicals and tutorials. Computer based practicals will be held throughout weeks 1-14. The dissertation will be carried out in weeks 31-35. A full time laboratory based research project will be carried out from week 36 to 52.

Weeks 1-15: Induction week followed by courses in Biochemistry, Molecular Cell Biology, Bioinformatics, Systems Biology and Statistics which introduce students to the fundamental concepts of modern biology, including cell biology, genomics, proteomics, experimental techniques and data handling. Assessment will be through a written examination in week 15.
Weeks 16-30: All students attend two modules comprising advanced lectures in applied bioscience and biotechnology encompassing: industrial biotechnology, glycol-technology, structural biology, cellular damage, repair and ageing, genes and genomics, infection and immunity, stem cells and regenerative medicine, neurobiology in health and disease, integrative systems biology and synthetic biology. Additional seminars and workshops will introduce students to innovation and entrepreneurship. All students will attend weekly seminars from invited external speakers from industry and the public sector. Assessment will be through two written examinations in week 30.
Weeks 31-35: Students will undertake a full-time tutored dissertation followed by a mini-conference.
Weeks 36-52: Students will undertake full-time individual projects in the research laboratories of the Department of Life Sciences.

Please see course webpage on the Imperial website for further information: http://www.imperial.ac.uk/life-sciences/postgraduate/masters-courses/msc-in-applied-biosciences-and-biotechnology/

Read less
This programme focuses on applied aspects of advanced and emerging analytical technologies to address current issues in food safety, nutrition and food supply. Read more

Research Strategies

This programme focuses on applied aspects of advanced and emerging analytical technologies to address current issues in food safety, nutrition and food supply. It covers the entire food chain from farm to fork and places a strong emphasis on the link between improved food safety and nutrition and improved public health.

Research Strengths

•Advanced and emerging technology platforms (biosensors and omics)

•Animal food and feed safety

•Animal health and disease diagnostics

•Food and nutrition metabolomics

•Food and nutrition quality measurements

•Food chemistry

•Food safety detection methodology

•Food traceability and authenticity

•Immunodiagnostics for food contaminant and toxin detection

•Natural compounds and their health applications

•Novel and functional foods

•Therapeutic biomolecules

Special Features

•Students will be based in modern, world-class laboratory facilities equipped with state-of-the-art, highly advanced analytical instruments.

•Students will gain excellent practical experience of advanced and emerging analytical techniques for food safety analysis and monitoring.

•The School has a wide range of strong, international links with governments, academia and industry.

Read less
Lead academics 2016. Dr Janine Kirby and Professor Winston Hide. This course draws on expertise from three University faculties – Medicine, Dentistry and Health, Science and Social Sciences – and the Sheffield Genetics Diagnostic Service (Sheffield Children’s Hospital NHS Foundation Trust). Read more

About the course

Lead academics 2016: Dr Janine Kirby and Professor Winston Hide

This course draws on expertise from three University faculties – Medicine, Dentistry and Health, Science and Social Sciences – and the Sheffield Genetics Diagnostic Service (Sheffield Children’s Hospital NHS Foundation Trust). It’s aimed at professionals and students from health care and science backgrounds. The syllabus, as outlined by Health Education England (HEE), covers the scope and application of genomics in medicine and biomedical research as well as the ethical, social and legal issues relating to this field.

The course is taught by academics, scientists and clinicians. Techniques range from lectures and tutorials to laboratory workshops and online learning packages. You’ll get first-hand experience of hypothesis-driven research by carrying our your own project in Genomic Medicine.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

An Introduction to Human Genetics and Genomics; Omics Techniques and Application to Genomic Medicine; Genomics of Common and Rare Inherited Diseases; Molecular Pathology of Cancer; Pharmacogenomics and Stratified Health Care; Application of Genomics in Infectious Disease; Bioinformatics and Interpretation in Genomics; Ethical, Legal and Social Issues in Applied Genomics.

Examples of optional modules

Option one: Research Project.

Option two: Literature Review; Workplace-Based Genomic Medicine; Professional and Research Skills.

Teaching and assessment

The MSc Genomic Medicine offers a wide range of delivery methods for providing theoretical knowledge, from lectures, laboratory sessions and tutorials to computer-based analysis workshops as well as the opportunity to gain input from internationally renowned experts in their fields. The inclusion of problem-based learning is embedded within the course and features in combinations of online and in person interpretive class formats. Tutorials, seminars and individual meetings with staff provide opportunities for discussion and feedback. Each of the departments delivering the programme fosters an environment that provides many opportunities for individual and group learning. However, the primary responsibility for learning lies with the student, who must be organised and self-motivated to make the most of the programme.

PG Diploma and PG Certificate options available as entry options both full time and part time

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X