• Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University College London Featured Masters Courses
Swansea University Featured Masters Courses
"oil" AND "chemistry"×
0 miles

Masters Degrees (Oil Chemistry)

We have 44 Masters Degrees (Oil Chemistry)

  • "oil" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 44
Order by 
Your programme of study. Read more

Your programme of study

Do you have an undergraduate degree in Chemistry or a substantive element within the subject and are you wondering what to study next to get into a specialised field? An oil and gas chemist is a highly skilled, highly paid professional with a vital impact on the world's energy industry production both now and in the future. You would not only look at the production side of energy exploration but you are looking at bioremediation, analysis, flow risk, natural gas and in depth analysis to ensure that energy producers supply the correct quality constantly.

You also get involved in corrosion prevention in terms of facilities and development of a new supply of chemical products to ensure improved production and remediation techniques are applied. This is a highly skilled profession with international applications across global facilities often working within interdisciplinary teams. The programme draws on expertise at Aberdeen which has been known for its energy production since the 1970s. This has allowed for both strong academic rigour and industry input to develop a consistently high standard of industry relevant vocational advanced degrees specifically for the oil and gas industry. Programmes are run from the university or online from Aberdeen where it is possible to do this. Aberdeen, Scotland is located at the heart of the European oil and gas industry and on a par with Houston, Texas in terms of knowledge and skills in the city.

The programme addresses a growing need for environmental responsibility looking at production and refining materials, energetics and environmental impact remediation in a constantly evolving oil and gas environment and within a constantly changing regulatory environment internationally.

Courses listed for the programme

Semester 1

  • Materials for the Oil and Gas Industry
  • Processes, Materials and Bioremediation for the Energy Industry
  • Chemistry at Interfaces and Enhanced Oil Recovery
  • Analytical and Instrumentation Methods

Semester 2

  • Flow Assurance and Oil Field Chemicals
  • Chemistry of Refinery and Natural Gas
  • Applied Analytical and Instrumental Methods
  • Industrial Engagement and Applications

Semester 3

  • Extended Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is accredited by the Royal Society of Chemistry and high commended as an exceptional programme
  • You are taught by a research intensive university with close interaction with the oil and gas industry
  • The department was ranked 1st IN Scotland for Chemistry research impact (REF 2014)
  • Your skills will enable you to perform a wide variety of industrial processes

Where you study

  • University of Aberdeen
  • 12 Months
  • Full time
  • September to January start

International Student Fees 2017/2018

Find out about fees:

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

You may be interested in:



Read less
Your programme of study. Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. Read more

Your programme of study

Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. The programme at Aberdeen is accredited by the Royal Society of Chemistry. Aberdeen is noted for Nobel prizes within Chemistry which include the invention of modern chromatography (Synge 1952) and the discovery of a new element - protactinium (Soddy 1921).  Teaching at Aberdeen is informed by world class research within food security. Class sizes are kept small to enable you to have strong teaching interaction and support in your studies. You will be taught by many staff in the environment group (TESLA) and (MBC)

The programme focuses on specialised modern analytical methodology. The range of industries or institutes where these skills are asked for includes the pharmaceutical industry, environmental institutions, research institutes and also the oil & gas industry. There are many new innovations which require chemists with advanced skills to analyse and test new methods of providing health via IOT devices, smart phones and small sensors deployed throughout the body to quickly provide analysis and customised recommendations.

Courses listed for the programme

Semester 1

  • Advanced Analytical Methodologies A and B
  • Practical Exercise and Professional Skills in Analytical Chemistry

Semester 2

  • Research Techniques and Professional Skills and Problem Solving Theory and Practice
  • Research Project in Analytical Chemistry

Semester 3

  • Research Project in Analytical Chemistry

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • A Royal Society of Chemistry accredited degree programme
  • Alumni feedback and mentor students on this programme
  • Main areas are Bimolecular Chemistry (Natural products, medicinal chemistry, environmental chemistry, surface and catalysis

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

Find out more from the programme page

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

You might be interested in:



Read less
Your programme of study. This programme is delivered online to allow you to study flexibly from remote locations and anywhere in the world with internet access. Read more

Your programme of study

This programme is delivered online to allow you to study flexibly from remote locations and anywhere in the world with internet access. You can study this to fit around your lifestyle and study at University of Aberdeen in Aberdeen city, a university providing wide ranging programmes specifically for the oil and gas industry since the 1970s. You study with world renowned academics who have closely studied, consulted with and researched the oil and gas industry. 

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Year 1

  • Compulsory
  • Fundamentals of Petroleum Geoscience
  • Fundamentals of Safety Engineering and Risk Management Concepts
  • Well and Production Engineering
  • Flow Assurance

Year 2

  • Compulsory
  • Reservoir Engineering
  • Project Management
  • Oil and Gas Chemistry
  • Facilities Engineering

Year 3

  • Individual Project in Oil and Gas Engineering

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  •  You can study online in your own free time and pay by module
  • You can take up to six years to complete the degree if 27 months is not long enough for your personal circumstances
  • You study at University of Aberdeen a world renowned university linked to the oil and gas industry and research
  • You are taught by internationally respected researchers known to the oil and gas industry

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about fees

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
An oil and gas engineer is involved in nearly all stages of oil and gas field evaluation, development and production. The aim is to maximise hydrocarbon recovery at minimum cost while maintaining a strong emphasis on reducing environmental impact. Read more
An oil and gas engineer is involved in nearly all stages of oil and gas field evaluation, development and production. The aim is to maximise hydrocarbon recovery at minimum cost while maintaining a strong emphasis on reducing environmental impact. The range of employment opportunities for students who hold an MSc oil & gas Engineering is very wide. Once you have completed your MSC in Oil & Gas Engineering, you will be equipped with skills and knowledge that enable you to solve future tasks and challenges related to the development and production of oil and gas fields. There are great work opportunities within the traditional as well as the future oil industry. Possible work places include National and international oil companies, consultancy firms and service providers. A completed study also forms a good basis for a future career as a researcher.

You will receive guidance and support from staff that have specialised in the discipline of oil & gas, fire science and energy for many years. All the staff involved in this course are committed to meeting your expectations. However, in turn there are certain expectations of you, as studying at this level requires you to demonstrate that you have the mental capacity, self-motivation and commitment to achieve this award.

Teaching methods include lectures, seminars, workshops, laboratory work, project work, case studies, site visits. The mix of teaching methods is designed to motivate, challenge students considering different learning styles to maximise their potential. Personal study also forms an integral part of the course. The students will learn by a variety of methods including innovative information and communication technologies and practical case studies based on research outcomes achieved by the School staff.

INDUSTRY LINKS

The course is supported by an Industrial Liaison Group which reviews and provide input into the development of the course in order to ensure that it meets the needs of the oil and gas industry. Our Industrial partners also contribute to some teaching through guest lecturers, CPD events, and research projects. Invited lectures were done by representatives from Energy Institute, Institution of Fire Engineers, Shell, BP, GexCon, Fire and Rescue Services, Tyco, BRE, Horea Lea, Carbon Trust, Government Office for the North West and others.

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

OPPORTUNITIES

The range of employment opportunities for students who hold MSc Oil & Gas Engineering is very wide.

By completing Masters in Oil & Gas Engineering, you will learn skills and knowledge that enable you to solve upcoming responsibilities and challenges related to the petroleum industry. There are great work opportunities within the oil and gas industry. Possible work places include national and international oil companies, consultancy companies and oil and gas service firms.

Many of our students have progressed into either further higher study at the PhD level, or full-time employment within national and international organisations, consultancy or servicing companies.

Read less
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Read more
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Students are integrated into the research culture of the Department by joining a research group, supervised by one of our academic staff, in one of the following areas of Chemistry:

Biological:

with a focus on enzymes, nucleic acids, protein folding and misfolding, and physical techniques; with relevance to health and disease, drug discovery, sensors, nanotechnology, ageing and energy research applications.

Materials Chemistry:

including surfaces, interfaces, polymers, nanoparticles and nanoporous materials, self assembly, and biomaterials, with applications relevant to: oil recovery and separation, catalysis, photovoltaics, fuel cells and batteries, crystallization and pharmaceutical formulation, gas sorption, energy, functional materials, biocompatible materials, computer memory, and sensors.

Physical Chemistry:

including atmospheric sciences, surfaces and interfaces, materials, and physical and chemical aspects of the behaviour of biopolymers and other soft systems.

Synthetic Chemistry:

including complex molecule synthesis, synthetic catalysis, synthetic assembly, synthetic biology and medicine, new technology for efficient synthesis, green synthesis, and preparation of new materials.

Theory, Modelling and Informatics:

including quantum dynamics, modelling soft materials, protein folding and binding, biomolecules in motion, pharmacological activity, molecular switches, redox chemistry, designing bioactive molecule and drugs, chemical biology, crystallography, and simulation of spectroscopic studies.

Potential supervisors and their area of research expertise may be found at Department of Chemistry (Research): http://www.ch.cam.ac.uk/research

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcchmpmch

Course detail

Educational aims of the MPhil programme:

- to give students with relevant experience at first degree level the opportunity to carry out focussed research in the discipline under close supervision; and

- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests and a broader set of transferable skills.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The MPhil involves minimal formal teaching. Students may attend the Department's programme of research seminars and other graduate courses, including the Transferable Skills programme that forms part of the PhD programme. Informal opportunities to develop research skills also exist through mentoring and other opportunities by fellow students and members of staff. However, most research training is provided within the research group structure and all students are assigned a research supervisor.

All graduate students receive termly reports written by their supervisors.

Assessment

The scheme of examination for the MPhil in Chemistry shall consist of a thesis, of not more than 15,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Physics and Chemistry, submitted for examination at the end of 11 months. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out investigations, assess and interpret the results obtained, and place the work in the wider perspectives of the subject.

Continuing

The Department offers a PhD in Chemistry course and MPhil students can apply to continue as a graduate student on this course.

MPhil students currently studying a relevant course at the University of Cambridge will need to pass their MPhil course (if examined only by thesis) or obtain a minimum merit (if there is a marked element) in order to be eligible to continue onto the PhD in Chemistry.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Your programme of study. If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. Read more

Your programme of study

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Semester 1

  • Reservoir Engineering
  • Fundamental Safety Engineering and Risk Management Concepts
  • Fundamentals of Petroleum Geoscience

Semester 2

  • Oil and Gas Chemistry
  • Facilities Engineering
  • Project Management
  • Flow Assurance

Semester 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme allows you to explore a wide range of career options due to its breadth and depth
  • You learn technological skills, health and safety plus risk management, planning and communication
  • The programme is fully accredited by IMechE and Energy Institute both industry recognised
  • You are uniquely situated in Aberdeen city, Scotland, home of the European energy industry

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
Why choose this course?. The Oil and Gas industry is a fast-growing sector which is going through a period of unprecedented change, and thousands of new jobs are likely to be created over the next few years. Read more

Why choose this course?

The Oil and Gas industry is a fast-growing sector which is going through a period of unprecedented change, and thousands of new jobs are likely to be created over the next few years. Our MSc degree is designed for those interested or already engaged in a career in the industry.

The MSc will help you develop a comprehensive understanding of the Oil and Gas industry, making you aware of recent developments as well as limitations and problems with the techniques in current practice.

The extractive industries are a complex business environment, and the degree aims to help you develop your understanding to improve business and management practice.

International Students will require approval from the Academic Technology Approval Scheme (ATAS).

Its aim is to help stop the spread of knowledge and skills that could be used in the proliferation of weapons of mass destruction (WMD) and their means of delivery.

The ATAS is specifically designed to ensure that those applying for postgraduate study in certain sensitive subjects do not acquire knowledge that could potentially be used in WMD courses.

Please see link for further info:

http://www.fco.gov.uk/en/about-us/what-we-do/services-we-deliver/atas/atas-what/

What happens on the course?

The course will provide you with both research and practice-based comprehension of the major areas of Oil and Gas Management. Particular subjects studied include such areas as:

  • International Commercial Awareness
  • The Future of the Oil and Gas Industry
  • Petroleum Chemistry and Refining
  • Strategic and Project Managment

Lectures are underpinned by tutorial groups, seminars, workshops and research projects to help you focus and develop practical skills, as well as research skills and problem-solving abilities.

Why Wolverhampton?

This degree is a multidisciplinary award, drawing resources from across the University and bringing in expertise from the sciences, engineering, technology and law.

You will receive tuition from both academics and a range of experienced industrial practitioners.

Career Path

This MSc will qualify you to apply for a variety of management careers in oil refineries or the selling and distribution of natural gas and crude oil products. You could also look at postgraduate research at academic institutions worldwide.

What skills will you gain?

You will gain understanding of both your specialist subject area, as well as the wider organisational and industry framework. The specialist skills gained will help you operate in the Oil and Gas industry, solving complex problems and making decisions. You will be able to conduct research, either individually or collaboratively, being able to recognise and address ethical dilemmas and corporate social responsibility issues.

Springfield Campus

Our new Springfield site is a £100 million project to turn a 12 acre, Grade II listed former brewery, into an architecture and built environment super-campus.

https://www.wlv.ac.uk/about-us/developing-our-campus/springfield-campus/

Join us on Social Media

Faculty of Science and Engineering on Facebook

https://www.facebook.com/wlvsae/

Faculty of Science and Engineering on Twitter

https://twitter.com/WLVsci_eng



Read less
The MSc in Oil and Gas Innovation is a collaborative programme coordinated by the University of Aberdeen and involving Heriot Watt, Robert Gordon University, Strathclyde, and St Andrews. Read more

The MSc in Oil and Gas Innovation is a collaborative programme coordinated by the University of Aberdeen and involving Heriot Watt, Robert Gordon University, Strathclyde, and St Andrews. The degree is hosted by the School of Earth and Environmental Sciences at St Andrews. Students who apply for the course at St Andrews will take three of their modules at partner institutions.

The course is aimed at technical innovators, business developers, managers or technical staff, and engineering or science graduates interested in learning how to identify and commercialise innovation opportunities for the oil and gas industry.

Highlights

  • The course is run as a collaboration between five Scottish universities, providing an opportunity for you to gain from the breadth of expertise and experience across these institutions.
  • Students learn how to analyse problems related to the oil and gas sector and apply tools and techniques to identity opportunities for innovation.
  • Project work involves progressing an innovation from one technology readiness level further towards commercialisation.

Teaching format

The MSc degree requires one semester of full-time (or two semesters part-time) coursework equivalent to five compulsory modules and one optional module. The final component for the MSc is the completion of a project in oil and gas innovation.

The taught portion of the programme focuses on the innovation and commercialisation processes in the oil and gas sector and provides knowledge and understanding of a specific technical area of your choice.

Some taught modules are delivered at other university campuses or at independent work sites. Modules which are taught by partner institutions (i.e. Commercialising Innovation, Business Essentials for Innovators and Product Development) will be delivered partially via Virtual Learning Environment (VLE) and partially via face-to-face teaching. Students will need to arrange their own travel and accommodation for attending modules at partner universities.

The compulsory Oil and Gas project can be carried out at the employer’s site.

Teaching methods include lectures, seminars, small group tutorials, one-to-one discussion and independent learning. Assessment for the taught portion is based on reports, project proposals, oral presentations and written examinations.

Further particulars regarding curriculum development.

Modules

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry.



Read less
IT Tralee is currently seeking to recruit ahigh calibre and suitably qualified science graduate to undertake this Master by Research programme in the Department of Biological and Pharmaceutical Sciences at IT Tralee. Read more

IT Tralee is currently seeking to recruit ahigh calibre and suitably qualified science graduate to undertake this Master by Research programme in the Department of Biological and Pharmaceutical Sciences at IT Tralee. Graduates holding a relevant Level 8 Honours Degree (second class honours or higher) are invited to submit an application. The successful applicants will be awarded a stipend of €700 per month for a maximum period of 18 months and the Institute will waive full fees for this funding period. Postgraduate students are expected to complete their studies full-time at the Institute.

Biography of Principle Supervisor

Mr Quille received his Degree in Chemistry of Pharmaceutical Compounds from University College Cork in 2007. He has since completed an M.Sc in Biotechnology in the Shannon ABC laboratories at IT Tralee on a project entitled: The preparation of an alginate with a hydrophobic moiety that retains its biocompatibility and immunosuppressive properties while remaining suitable for cellular encapsulation. He has previously worked in Astellas as a Process Technician and in Shannon ABC as a Biochemical Technician. He currently holds the role of Research Scientist with Shannon ABC. Previous projects include developing a commercial focus to the use of bioassays in the assessment of different components of seaweed and the impact of seasonality. He has worked on the FP7 funded project NatuCrop where he oversaw extensive tomato growth room, glasshouse and field trials. Results of his work have been presented at a number of conferences all over Europe and in Brazil. He is currently working on a Horizon 2020 project. 

Research Project Abstract

Crop productivity relies heavily on nitrogen fertilisation which in itself requires huge amounts of energy to produce. Also excess applications of nitrogen to the land is detrimental to the environment therefore increasing plant nitrogen use efficiency (NUE) is essential in the promotion of sustainable agriculture. The use of seaweed and seaweed extracts in agriculture is well documented. The most popular and well researched type of seaweed extract commercially available is an Ascophyllum Nodosum extract (ANE). Ascophyllum is a brown seaweed that is native to the waters of Ireland as it grows best in the North Atlantic basin. Seaweed extracts have been described to enhance seed germination and establishment, improve plant growth, yield, flower set and fruit production, increase resistance to biotic and abiotic stresses, and improve postharvest shelf life. Previously a seaweed extract when combined with a fertiliser regime increased the productivity and oil content and accelerated maturation (colour and firmness) of the olive fruits from olive trees. Oil-Seed Rape (OSR; Brassica napus) is a member of the Brassicaceae family that is grown for its oil content. It requires extensive nitrogen fertilisation, however it has a poor N-harvest index meaning a lot of nitrogen is lost in the straw rather than transported to the pod. The aim or our study is to apply 4 commercially available ANE’s to winter and spring crops of OSR (different varieties) in a controlled growth room and glasshouse and finally in a field setting under different fertiliser regimes. Treatments will be assessed by comparing fresh weight, dry weight, and seed/oil yield and oil quality. Plant tissue will also be saved in order to assess other parameters such as flavonol accumulation, nitrate reductase, gene expression (NRT2) and photosynthetic parameters.

Research Context (Technical Merit & Impact)

600,000 Ha of OSR is planted in the UK and Ireland alone every year, recommended input of nitrogen is 200 kg (0.2 tonnes) per Ha meaning 120,000 tonnes of nitrogen every year. As OSR only has an N-harvest index of 0.6, representing 48,000 tonnes lost, which is a massive financial loss as well as potentially environmentally detrimental. In determining the effect of ANE’s on NUE current research focuses on the outcome, i.e. is yield increased, rather than investigate the method by which the yield has increased. This research is aimed a filling some void of knowledge here by linking phenotypic differences to biochemical and genetic data of treated plants in order to assign a potential mode of action.

Research Methodology

While ANE’s have been shown to increase nitrogen assimilation, extensive growth trials, especially in economically important crops (such as OSR) which investigate their role in affecting NUE are scarce and are only seemingly becoming popular in recent years. However considering the increased price of nitrogen, the additional interest in biostimulants (ANE’s in particular), the need to feed a growing population and coupled to the environmental damage of excess nitrogen this can be considered a ‘hot topic’. Plant (glasshouse and field setting) trials will be conducted and analysed for phenotypic data (photosynthetic measurements, yield). Materials from these plant trials must then be harvested, extracted and saved for biochemical and genetic determination. Lab-based techniques employed include protein extraction, western blotting and spectrophotometry, RT-PCR and HPLC. This 3 pronged approach from assessing phenotype to the biochemical level and finally to the gene level will provide evidence on mode of action of the ANE’s potential impact on NUE in OSR.



Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more

Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students. 

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills

MSc candidates

  • Research Project

Modules offered may vary.

Teaching

How you learn

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery. 

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs. 

Petroleum Experts Ltd has donated to Teesside University a network system and 10 educational licences for the IPM suite (Integrated Production Modelling software) which includes Prosper, Gap, Mbal, Pvtp, Reveal and Resolve. This £1.3m system and software is used by our students to design complete field models including the reservoir tanks, all the wells and the surface gathering system.

Petroleum laboratory facilities

Enhanced oil recovery and core analysis laboratory

The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification. 

Petrophysics laboratory

The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory

The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory

The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 



Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

  • Process Risk Identification and Management
  • Upstream Oil and Gas Processing
  • Loss of Containment
  • Computational Fluid Dynamics

Semester 2

  • Applied Risk Analysis and Management
  • Process, Plant, Equipment and Operations
  • Process Design, Layout and Materials
  • Human Factors Engineering

Semester 3

  • Process Safety Individual Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Other engineering disciplines you may be interested in:



Read less
Your programme of study. This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. Read more

Your programme of study

This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. You can study this programme from anywhere in the world and it offers the same academic rigour you would expect if you were studying on campus at University of Aberdeen but you can fit it around a busy life, work, other responsibilities and much more.

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers

Courses listed for the programme

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is fully flexible to allow you to study wherever you are online
  • You will acquire skills and knowledge from a programme closely linked to industry needs
  • You study with a university situated in the heart of the European and world Energy Industry, many companies are located here
  • You study with two highly regarded departments in Geology and Engineering and at University of Aberdeen which is very well known in the oil and gas industry globally
  • You can pay by module and take the degree over a longer period up to six years

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

You may be also interested in the campus delivery of this programme

Related Postgraduate Degrees

Other engineering disciplines you may be interested in:



Read less
Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Read more

Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Petroleum reservoir engineering, well drilling, petroleum chemistry and economics of the oil and gas sector are just some of the topics covered.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Petroleum Engineering – one year full time
  • MSc Petroleum Engineering – two years part time
  • MSc Petroleum Engineering (with Advanced Practice) two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Petroleum Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

The programme of lectures and project work encompasses a range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems.

Professional accreditation

Our one-year MSc Petroleum Engineering course is accredited by the Energy Institute under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC. 

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification. The earning potential of chartered petroleum engineers can exceed £100,000 a year.

The two-year MSc Petroleum Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title. 

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase industrial networking opportunities for students.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

You select your master’s research project from titles suggested by either industry or our academic staff but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Employability

This course provides specialist education tailored to the upstream and downstream petroleum industry. The relevance of this education, combined with our careful selection of candidates, has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation. As a result, it is expected that recruitment will continue, especially if you have the motivation and appropriate qualifications.



Read less
This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine. Read more

This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine.

The programme is designed for students looking to develop the skills and knowledge that will open up opportunities in the many companies developing sensor and image based solutions.

Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and can be enhanced when multiple sensing functions are combined into arrays to enable imaging.

Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smartphones and cars to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring.

Programme structure

This programme is run over 12 months. The first semester of taught courses is run at the University of Glasgow and the second at the University of Edinburgh. The taught courses are followed by a research project, carried out at either university, leading to the production of your masters thesis.

Semester 1

Semester 1 is delivered at the University of Glasgow.

  • Sensing and Imaging
  • Imaging and Detectors
  • Detection and Analysis of Ionising Radiation
  • Circuits and Systems
  • Optional course in physics or engineering

Semester 2

Semester 2 is delivered at the University of Edinburgh.

Two compulsory courses:

  • Applications of Sensor and Imaging Systems
  • Research Project Preparation

Two to four (depending on course weighting) optional courses in engineering and/or chemistry:

  • Biophysical Chemistry
  • Physical Techniques in Action
  • BioSensors and Instrumentation
  • Lab-on-Chip Technologies
  • Microfabrication Techniques
  • Electronic Product Design and Manufacture
  • Technology & Innovation Management

Career opportunities

Sensor and imaging systems (SIS) underpin a vast range of societal, research and industrial needs. Sensing is essential for advances in capability across all fields of physics, engineering and chemistry and is enhanced when individual sensing units are configured in arrays to enable imaging and when multiple sensing functions are integrated into a single smart system.



Read less
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries. Read more
Take your skills in chemistry further with a course that prepares you with the cutting-edge knowledge required for a career in the manufacturing or product development industries.

Formulation is a vital activity central to manufacturing in a wide range of industries. The course encompasses polymer and colloid science, building understanding of the physical and chemical interactions between multiple components in complex formulations, leading to a competitive advantage in product development and quality control.

You'll learn the trade secrets behind successful formulation,dealing with issues such as product stability, controlling flocculation, rheology and compatibility issues with multi-component systems. Whichever industry sector you're interested in working within, you'll develop the skills to deign formulations for a wealth of scenarios, for example food, cosmetics, pharmaceuticals and more.

Key Course Features

-You will develop skills to design formulations for a wealth of industrial scenarios - from food, cosmetics and personal care, pharmaceuticals, paper production, inks and coatings, oil drilling and mining to name just a few.
-In your research project you will interface with specialists from manufacturing industries and undertake a programme of experiments designed to develop the skills you want to learn.
-On this course you will learn the trade secrets behind successful formulation - dealing with issues such as product stability (stabilising emulsions and dispersions), controlling flocculation, rheology (flow properties, mouthfeel, gelation), and overcoming compatibility issues with multi component systems. You'll be introduced to modelling, new trends in processing and high throughput formulation.

What Will You Study?

The course comprises 6 x 20 credit modules of taught content and a 60 credit Research Project. The taught element is delivered by a varied programme including lectures, seminars, and practical classes and may be studied on a full time or part time basis to suit you.

There is a strong emphasis on development of hands-on practical skills using a wide variety of advanced instrumentation.

TAUGHT MODULES
-Advanced Materials Science
-Chemistry & Technology of Water Soluble Polymers
-Formulation Science
-Research Methods
-Structure and Function of Industrial Biopolymers

The lectures and workshops are designed to train you in understanding interactions between polymer, solvent, and surfactant molecules with particles and surfaces. You will:
-Review the range of formulation types found in various industrial sectors, and their components.
-Master analytical techniques used to optimise product formulation, including measurement of molar mass distribution using gel permeation chromatography with multi angle laser light scattering (GPC-MALLS) and particle sizing techniques such as digital imaging and laser diffraction (to measure aggregates, flocs and emulsion droplets)
-Discover Green Chemistry and eco-formulation- exploring a whole range of biopolymers extracted from natural resources….including antimicrobial polymers from shellfish waste, gelling agents from seaweed, and oligosaccharides from locally grown grasses.
-Learn about man-made polymers and importantly, chemically modified biopolymers.
-Measure the viscosity and rheology of liquid formulations and see how this can be interpreted to yield structural information on thickened systems and gels, and particulate systems including fillers, additives and dispersants.

A module in Research Methods provides training in all aspects of undertaking research, from project management, through data analysis and statistics to communicating your results and writing your dissertation to ensure you are well quipped to undertake your project.

RESEARCH PROJECT
The course culminates in an industry-focused Research Project. For full-time students this may be partly or wholly undertaken within a local manufacturing company. For part-time students the project provider may be your current employer. The Research Project gives you the opportunity to undertake a piece of novel research, and will often be based around solving a formulation problem for the project provider. It allows you to put into practice the knowledge and skills gained in the taught elements of the course.

Because of the individual nature of the research projects, no two projects are the same. Below are some of the titles of previous research projects undertaken by previous masters students in our department:
-Aspects of Adhesive Bonding of Low Energy Polymers
-The Effects of Surfactants on the Rheological Properties of Hydrophobically Modified Cellulose
-Extensional Rheometry and Dynamic Light Scattering of Telechelic Associating Polymer Solutions
-Simple chemical syntheses of polymer/silver nanocomposites
-Phase Separation of Gum Arabic and Hyaluronan in Aqueous Solution
-Shear and extensional Rheology of Electron Beam (EB) Curable Paint

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

Assessment of the taught modules is intended to allow the learner to demonstrate skills that cover the entire breadth of the programme aims – knowledge and understanding, key practical skills, intellectual skills in planning experiments/interpreting data and communication of information in writing and verbally.

The research project is examined by a final dissertation.

Read less

Show 10 15 30 per page



Cookie Policy    X