• University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Reading Featured Masters Courses
Imperial College London Featured Masters Courses
University of Glasgow Featured Masters Courses
"oil" AND "gas" AND "chem…×
0 miles

Masters Degrees (Oil And Gas Chemistry)

We have 29 Masters Degrees (Oil And Gas Chemistry)

  • "oil" AND "gas" AND "chemistry" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Your programme of study. Read more

Your programme of study

Do you have an undergraduate degree in Chemistry or a substantive element within the subject and are you wondering what to study next to get into a specialised field? An oil and gas chemist is a highly skilled, highly paid professional with a vital impact on the world's energy industry production both now and in the future. You would not only look at the production side of energy exploration but you are looking at bioremediation, analysis, flow risk, natural gas and in depth analysis to ensure that energy producers supply the correct quality constantly.

You also get involved in corrosion prevention in terms of facilities and development of a new supply of chemical products to ensure improved production and remediation techniques are applied. This is a highly skilled profession with international applications across global facilities often working within interdisciplinary teams. The programme draws on expertise at Aberdeen which has been known for its energy production since the 1970s. This has allowed for both strong academic rigour and industry input to develop a consistently high standard of industry relevant vocational advanced degrees specifically for the oil and gas industry. Programmes are run from the university or online from Aberdeen where it is possible to do this. Aberdeen, Scotland is located at the heart of the European oil and gas industry and on a par with Houston, Texas in terms of knowledge and skills in the city.

The programme addresses a growing need for environmental responsibility looking at production and refining materials, energetics and environmental impact remediation in a constantly evolving oil and gas environment and within a constantly changing regulatory environment internationally.

Courses listed for the programme

Semester 1

Materials for the Oil and Gas Industry

Processes, Materials and Bioremediation for the Energy Industry

Chemistry at Interfaces and Enhanced Oil Recovery

Analytical and Instrumentation Methods

Semester 2

Flow Assurance and Oil Field Chemicals

Chemistry of Refinery and Natural Gas

Applied Analytical and Instrumental Methods

Industrial Engagement and Applications

Semester 3

Extended Research Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/206/oil-and-gas-chemistry/

Why study at Aberdeen?

  • The programme is accredited by the Royal Society of Chemistry and high commended as an exceptional programme
  • You are taught by a research intensive university with close interaction with the oil and gas industry
  • The department was ranked 1st IN Scotland for Chemistry research impact (REF 2014)
  • Your skills will enable you to perform a wide variety of industrial processes

Where you study

  • University of Aberdeen
  • 12 Months
  • Full time
  • September to January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
An oil and gas engineer is involved in nearly all stages of oil and gas field evaluation, development and production. The aim is to maximise hydrocarbon recovery at minimum cost while maintaining a strong emphasis on reducing environmental impact. Read more
An oil and gas engineer is involved in nearly all stages of oil and gas field evaluation, development and production. The aim is to maximise hydrocarbon recovery at minimum cost while maintaining a strong emphasis on reducing environmental impact. The range of employment opportunities for students who hold an MSc oil & gas Engineering is very wide. Once you have completed your MSC in Oil & Gas Engineering, you will be equipped with skills and knowledge that enable you to solve future tasks and challenges related to the development and production of oil and gas fields. There are great work opportunities within the traditional as well as the future oil industry. Possible work places include National and international oil companies, consultancy firms and service providers. A completed study also forms a good basis for a future career as a researcher.

You will receive guidance and support from staff that have specialised in the discipline of oil & gas, fire science and energy for many years. All the staff involved in this course are committed to meeting your expectations. However, in turn there are certain expectations of you, as studying at this level requires you to demonstrate that you have the mental capacity, self-motivation and commitment to achieve this award.

Teaching methods include lectures, seminars, workshops, laboratory work, project work, case studies, site visits. The mix of teaching methods is designed to motivate, challenge students considering different learning styles to maximise their potential. Personal study also forms an integral part of the course. The students will learn by a variety of methods including innovative information and communication technologies and practical case studies based on research outcomes achieved by the School staff.

INDUSTRY LINKS

The course is supported by an Industrial Liaison Group which reviews and provide input into the development of the course in order to ensure that it meets the needs of the oil and gas industry. Our Industrial partners also contribute to some teaching through guest lecturers, CPD events, and research projects. Invited lectures were done by representatives from Energy Institute, Institution of Fire Engineers, Shell, BP, GexCon, Fire and Rescue Services, Tyco, BRE, Horea Lea, Carbon Trust, Government Office for the North West and others.

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

OPPORTUNITIES

The range of employment opportunities for students who hold MSc Oil & Gas Engineering is very wide.

By completing Masters in Oil & Gas Engineering, you will learn skills and knowledge that enable you to solve upcoming responsibilities and challenges related to the petroleum industry. There are great work opportunities within the oil and gas industry. Possible work places include national and international oil companies, consultancy companies and oil and gas service firms.

Many of our students have progressed into either further higher study at the PhD level, or full-time employment within national and international organisations, consultancy or servicing companies.

Read less
The MSc in Oil and Gas Innovation is a collaborative programme coordinated by the University of Aberdeen and involving Heriot Watt, Robert Gordon University, Strathclyde, and St Andrews. Read more
The MSc in Oil and Gas Innovation is a collaborative programme coordinated by the University of Aberdeen and involving Heriot Watt, Robert Gordon University, Strathclyde, and St Andrews. The degree is hosted by the Department of Earth and Environmental Sciences at St Andrews. Students who apply for the course at St Andrews will take three of their modules at partner institutions.

The course is aimed at technical innovators, business developers, managers or technical staff, and engineering or science graduates interested in learning how to identify and commercialise innovation opportunities for the oil and gas industry.

Highlights

The course is run as a collaboration between five Scottish universities, providing an opportunity for you to gain from the breadth of expertise and experience across these institutions.
Students learn how to analyse problems related to the oil and gas sector and apply tools and techniques to identify opportunities for innovation.
Project work involves progressing an innovation from one technology readiness level further towards commercialisation.

Teaching format

The MSc degree requires one semester of full-time (or two semesters part-time) coursework equivalent to five compulsory modules and one optional module. The final component for the MSc is the completion of a project in oil and gas innovation.

The taught portion of the programme focuses on the innovation and commercialisation processes in the oil and gas sector and provides knowledge and understanding of a specific technical area of your choice.

Some taught modules are delivered at other university campuses or at independent work sites. Modules which are taught by partner institutions (i.e. Commercialising Innovation, Business Essentials for Innovators and Product Development) will be delivered partially via Virtual Learning Environment (VLE) and partially via face-to-face teaching. Students will need to arrange their own travel and accommodation for attending modules at partner universities.

The compulsory Oil and Gas project can be carried out at the employer’s site.

Teaching methods include lectures, seminars, small group tutorials, one-to-one discussion and independent learning. Assessment for the taught portion is based on reports, project proposals, oral presentations and written examinations.

Read less
Your programme of study. Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. Read more

Your programme of study

Chemists have always been in demand worldwide with pharmaceutical and biotechnology industries, fine chemicals, and within research laboratories across the globe. The programme at Aberdeen is accredited by the Royal Society of Chemistry. Aberdeen is noted for Nobel prizes within Chemistry which include the invention of modern chromatography (Synge 1952) and the discovery of a new element - protactinium (Soddy 1921).  Teaching at Aberdeen is informed by world class research within food security. Class sizes are kept small to enable you to have strong teaching interaction and support in your studies. You will be taught by many staff in the environment group (TESLA) https://www.abdn.ac.uk/ncs/departments/chemistry/trace-element-speciation-laboratory-111.php and (MBC) https://www.abdn.ac.uk/ncs/departments/chemistry/marine-biodiscovery-centre-112.php

The programme focuses on specialised modern analytical methodology. The range of industries or institutes where these skills are asked for includes the pharmaceutical industry, environmental institutions, research institutes and also the oil & gas industry. There are many new innovations which require chemists with advanced skills to analyse and test new methods of providing health via IOT devices, smart phones and small sensors deployed throughout the body to quickly provide analysis and customised recommendations.

Courses listed for the programme

Semester 1

Advanced Analytical Methodologies A and B

Practical Exercise and Professional Skills in Analytical Chemistry

Semester 2

Research Techniques and Professional Skills and Problem Solving Theory and Practice

Research Project in Analytical Chemistry

Semester 3

Research Project in Analytical Chemistry

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/3/analytical-chemistry/

Why study at Aberdeen?

  • A Royal Society of Chemistry accredited degree programme
  • Alumni feedback and mentor students on this programme
  • Main areas are Bimolecular Chemistry (Natural products, medicinal chemistry, environmental chemistry, surface and catalysis

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Read more
The MPhil is offered by the Department of Chemistry as a full-time period of research and introduces students to research skills and specialist knowledge. Students are integrated into the research culture of the Department by joining a research group, supervised by one of our academic staff, in one of the following areas of Chemistry:

Biological:

with a focus on enzymes, nucleic acids, protein folding and misfolding, and physical techniques; with relevance to health and disease, drug discovery, sensors, nanotechnology, ageing and energy research applications.

Materials Chemistry:

including surfaces, interfaces, polymers, nanoparticles and nanoporous materials, self assembly, and biomaterials, with applications relevant to: oil recovery and separation, catalysis, photovoltaics, fuel cells and batteries, crystallization and pharmaceutical formulation, gas sorption, energy, functional materials, biocompatible materials, computer memory, and sensors.

Physical Chemistry:

including atmospheric sciences, surfaces and interfaces, materials, and physical and chemical aspects of the behaviour of biopolymers and other soft systems.

Synthetic Chemistry:

including complex molecule synthesis, synthetic catalysis, synthetic assembly, synthetic biology and medicine, new technology for efficient synthesis, green synthesis, and preparation of new materials.

Theory, Modelling and Informatics:

including quantum dynamics, modelling soft materials, protein folding and binding, biomolecules in motion, pharmacological activity, molecular switches, redox chemistry, designing bioactive molecule and drugs, chemical biology, crystallography, and simulation of spectroscopic studies.

Potential supervisors and their area of research expertise may be found at Department of Chemistry (Research): http://www.ch.cam.ac.uk/research

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/pcchmpmch

Course detail

Educational aims of the MPhil programme:

- to give students with relevant experience at first degree level the opportunity to carry out focussed research in the discipline under close supervision; and

- to give students the opportunity to acquire or develop skills and expertise relevant to their research interests and a broader set of transferable skills.

Learning Outcomes

By the end of the programme, students will have:

- a comprehensive understanding of techniques, and a thorough knowledge of the literature, applicable to their own research;
- demonstrated originality in the application of knowledge, together with a practical understanding of how research and enquiry are used to create and interpret knowledge in their field;
- shown abilities in the critical evaluation of current research and research techniques and methodologies;
- demonstrated some self-direction and originality in tackling and solving problems, and acted autonomously in the planning and implementation of research.

Format

The MPhil involves minimal formal teaching. Students may attend the Department's programme of research seminars and other graduate courses, including the Transferable Skills programme that forms part of the PhD programme. Informal opportunities to develop research skills also exist through mentoring and other opportunities by fellow students and members of staff. However, most research training is provided within the research group structure and all students are assigned a research supervisor.

All graduate students receive termly reports written by their supervisors.

Assessment

The scheme of examination for the MPhil in Chemistry shall consist of a thesis, of not more than 15,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Physics and Chemistry, submitted for examination at the end of 11 months. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out investigations, assess and interpret the results obtained, and place the work in the wider perspectives of the subject.

Continuing

The Department offers a PhD in Chemistry course and MPhil students can apply to continue as a graduate student on this course.

MPhil students currently studying a relevant course at the University of Cambridge will need to pass their MPhil course (if examined only by thesis) or obtain a minimum merit (if there is a marked element) in order to be eligible to continue onto the PhD in Chemistry.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
APL will be permitted only under the terms of the University procedure. Successful applicants will normally be required to have an 2ii (or better) honours degree in a subject broadly related to the science, engineering or business and management branches of the oil and gas industry. Read more
APL will be permitted only under the terms of the University procedure.

Successful applicants will normally be required to have an 2ii (or better) honours degree in a subject broadly related to the science, engineering or business and management branches of the oil and gas industry.

Ideally, students should have a working knowledge of chemistry to at least Level 2 (GCSE).

English competence for international applicants should be in-line with University requirements for Masters-level taught degrees (IELTS 6.0 overall and 5.5 in all elements). Please see the English Language Requirements pages for further information.

International Students will require approval from the Academic Technology Approval Scheme (ATAS).

Its aim is to help stop the spread of knowledge and skills that could be used in the proliferation of weapons of mass destruction (WMD) and their means of delivery.

The ATAS is specifically designed to ensure that those applying for postgraduate study in certain sensitive subjects do not acquire knowledge that could potentially be used in WMD courses.

Please see link for further info:

http://www.fco.gov.uk/en/about-us/what-we-do/services-we-deliver/atas/atas-what/

Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles.

Core modules
-Drill Engineering and Well Completion
-Hydrocarbon Production Engineering
-Material Balance and Recovery Mechanisms
-Petroleum Chemistry
-Petroleum Economics and Simulation
-Petroleum Reservoir Engineering
-Practical Health and Safety Skills
-Research and Study Skills

MSc candidates
-Research Project

Modules offered may vary.

Teaching

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery.

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs.

Facilities include:
Enhanced oil recovery and core analysis laboratory
The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification.

Petrophysics laboratory
The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory
The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory
The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists.

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation, and it is therefore expected that recruitment will continue, especially for those with motivation and the appropriate qualifications.

Read less
Your programme of study. This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. Read more

Your programme of study

This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. You can study this programme from anywhere in the world and it offers the same academic rigour you would expect if you were studying on campus at University of Aberdeen but you can fit it around a busy life, work, other responsibilities and much more.

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers

Courses listed for the programme

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1076/petroleum-engineering/

Why study at Aberdeen?

  • The programme is fully flexible to allow you to study wherever you are online
  • You will acquire skills and knowledge from a programme closely linked to industry needs
  • You study with a university situated in the heart of the European and world Energy Industry, many companies are located here
  • You study with two highly regarded departments in Geology and Engineering and at University of Aberdeen which is very well known in the oil and gas industry globally
  • You can pay by module and take the degree over a longer period up to six years

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about fee on the programme page:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1076/petroleum-engineering/

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

You may be also interested in the campus delivery of this programme:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/222/petroleum-engineering/

Related Postgraduate Degrees

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/210/oil-and-gas-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/283/reservoir-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/935/safety-and-reliability-engineering/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/288/safety-and-reliability-engineering-for-oil-and-gas/

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/317/subsea-engineering/



Read less
This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry. Read more

This programme will provide you with the advanced knowledge and skills to pursue a successful career in the oil and gas industry.

You’ll study modules covering core topics related to the downstream activities of the industry including drilling and production technology, oilfield chemistry and corrosion, and chemical reaction processes. You’ll also have the option to take modules in topics such as separation processes, process optimisation and control, and multi-scale modelling and simulation.

Practical work supports your lectures and seminars, as you split your time between the lab and the classroom. You’ll also undertake a major research project investigating a specific topic in petroleum production engineering, which could relate to your own interests or career intentions. Taught by experts in our world-class facilities, you’ll gain the knowledge and skills to thrive in a challenging and exciting industry.You’ll benefit from the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical and process engineering. We have facilities for characterising particulate systems for a wide range of technological materials, as well as facilities for fuel characterisation, environmental monitoring and pollution control. In our Energy Building, you’ll find an engine testing fuel evaluation and transport emissions suite and other characterisation equipment.

Accreditation

We are seeking accreditation from the Energy Institute.

Course content

Most of the course revolves around core modules, giving you a range of knowledge relating to different aspects of downstream petroleum production processes. These will include chemical reaction processes, drilling and production technologies and oilfield chemistry and corrosion.

You’ll look at the principles of process performance analysis, refining theory, enhanced oil recovery, chemicals used in corrosion control and strategies for new or mature assets. On top of this, you’ll take an optional module that allows you to develop your knowledge in an area that suits your own interests.

In the summer months you’ll undertake a research project, which will demonstrate the skills you’ve gained and may even be linked to your future career plans.

Want to find out more about your modules?

Take a look at the Petroleum Production Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits
  • Chemical Reaction Processes 15 credits
  • Fuel Processing 15 credits
  • Advanced Drilling and Production Technology 15 credits
  • Drilling and Production Technology 30 credits
  • Unconventional Oil and Gas Reservoirs 15 credits

Optional modules

  • Separation Processes 30 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Rock Mechanics 15 credits
  • Petroleum Reservoir Engineering 15 credits

For more information on typical modules, read Petroleum Production Engineering MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Examples of project topics would include:

  • Enhancement of mechanical strength and corrosion inhibition in oil pipelines
  • Reducing oil pipeline scaling using nano-particle seeding agents
  • Monitoring pipeline flows using electrical resistance tomography (ERT)
  • The application of nano-technology in enhancing oil recovery
  • Application of polymer-based nano-particles in absorbing and controlling oil spillages
  • Tribo-electrostatic beneficiation of oil shale using a powder dispersal system

A proportion of research projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

The programme’s main focus is on downstream petroleum industry activities such as drilling, production, refining and distribution.

With an MSc degree in Petroleum Production Engineering you could expect to pursue a successful career in the oil and gas industries in a wide range of areas as diverse as field engineering, production drilling engineering, pipeline and transportation logistics, refinery operations and management, refinery control and optimisation, and sales and marketing.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Your programme of study. Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. Read more

Your programme of study

Ever since the start of the oil and gas industry in the North Sea there safety has been a constant learning process within the industry to improve safety in all areas. It often informs other industries in terms of best practise knowledge which can provide useful learning to other industries.The knowledge gained in the North Sea has also been transferred to other sites globally to ensure risks are minimised when extracting energy. There are numerous risks associated with energy extraction such as the environment in which operators work in, failure in facilities and machinery, human factors which need process and safety factors designing in, and a very large ignition source. The energy industry can be one of the most hazardous industries to work in but due to the risks involved it can often provide a highly safe environment to work in due to the amount of measures in place to protect everything on site and that is where the discipline of Process Safety can ensure a very high level of safety in which to extract minerals.

If you want to become qualified in Process Safety Engineering and are from a Chemical Engineering background, or a Petroleum or Mechanical Engineering background but with good chemical/chemistry knowledge and you are interested in safety and process in this industry the programme will develop advanced skills in assessing risk, processes and analysis to continuously improve safety in the industry. The programme is offered in Aberdeen city in the heart of the oil and gas industry within Europe and often worldwide and it is informed by close links and support from the industry to ensure it is robust and relevant. Aberdeen has offered advanced knowledge and learning in this area since the inception of the oil and gas industry which cover the entire physical and business supply chain.

Courses listed for the programme

Semester 1

Process Risk Identification and Management

Upstream Oil and Gas Processing

Loss of Containment

Computational Fluid Dynamics

Semester 2

Applied Risk Analysis and Management

Process, Plant, Equipment and Operations

Process Design, Layout and Materials

Human Factors Engineering

Semester 3

Process Safety Individual Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/249/process-safety/

Why study at Aberdeen?

  • You can study this programme full time or part time to fit around your life
  • The programme offers one of the few opportunities to study this area of oil and gas production with direct links to industry
  • You study in the oil and gas capital of Europe and often the world in Aberdeen City
  • Graduates move into senior industry roles globally

Where you study

  • University of Aberdeen
  • Full Time and Part Time
  • 12 Months or 24 Months
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. Read more

Your programme of study

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Semester 1

Reservoir Engineering

Fundamental Safety Engineering and Risk Management Concepts

Fundamentals of Petroleum Geoscience

Semester 2

Oil and Gas Chemistry

Facilities Engineering

Project Management

Flow Assurance

Semester 3

Project

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/210/oil-and-gas-engineering/

Why study at Aberdeen?

  • The programme allows you to explore a wide range of career options due to its breadth and depth
  • You learn technological skills, health and safety plus risk management, planning and communication
  • The programme is fully accredited by IMechE and Energy Institute both industry recognised
  • You are uniquely situated in Aberdeen city, Scotland, home of the European energy industry

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September or January start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php



Read less
Your programme of study. This programme is delivered online to allow you to study flexibly from remote locations and anywhere in the world with internet access. Read more

Your programme of study

This programme is delivered online to allow you to study flexibly from remote locations and anywhere in the world with internet access. You can study this to fit around your lifestyle and study at University of Aberdeen in Aberdeen city, a university providing wide ranging programmes specifically for the oil and gas industry since the 1970s. You study with world renowned academics who have closely studied, consulted with and researched the oil and gas industry. 

If you are interested in working in the oil and gas industry and you have a science or engineering background you might want to consider Oil and Gas Engineering at Master's degree level. This qualification takes you across the full life cycle of production and it contains quite a few employable elements and modules in themselves giving you a wide variety of skills and knowledge to take with you into employment. You will often work with other specialists on offshore drilling platforms and facilities recording information on drilling, researching the most productive areas, ensuring maintenance and health and safety and a constant flow from a well. You also oversee some of the decommissioning aspects to redundant equipment on site.

This is a highly skilled job with a lot of responsibility associated to it, and you receive excellent input from University of Aberdeen which has been teaching oil and gas related subjects since the inception of the oil and gas industry in Aberdeen since the 1970s. Aberdeen is known the world over for energy production out of Aberdeen city and academics have worked with industry to ensure that knowledge is relevant now and in the future. You study use of technology and management of energy innovation projects.

Courses listed for the programme

Year 1

Compulsory

Fundamentals of Petroleum Geoscience

Fundamentals of Safety Engineering and Risk Management Concepts

Well and Production Engineering

Flow Assurance

Year 2

Compulsory

Reservoir Engineering

Project Management

Oil and Gas Chemistry

Facilities Engineering

Year 3

Individual Project in Oil and Gas Engineering

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1074/oil-and-gas-engineering/

Why study at Aberdeen?

  •  You can study online in your own free time and pay by module
  • You can take up to six years to complete the degree if 27 months is not long enough for your personal circumstances
  • You study at University of Aberdeen a world renowned university linked to the oil and gas industry and research
  • You are taught by internationally respected researchers known to the oil and gas industry

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

 Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php

You may also be interested in the campus delivery of Oil and Gas Engineering:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/210/oil-and-gas-engineering/



Read less
One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. Read more

One of the fundamental challenges associated with hydrocarbon production is ensuring the integrity of the assets used to extract and transport process fluids, particularly from effects such as internal corrosion. As a result, the demand for qualified corrosion engineers with specific expertise in oilfield operations continues to grow.

This course is appropriate for professional engineers in industry who are seeking to expand their expertise, as well as graduate engineers or physical scientists looking to gain specialist knowledge relevant to the oil and gas sector.

The course develops your skills in measuring, predicting and managing corrosion as well as assessing asset integrity. Optional modules allow you to focus on topics relevant to your interests and career plans.

Taught by academic staff at the forefront of their fields, the course enables you to develop a range of skills and a solid knowledge base from which to launch an exciting career within the oil and gas industry.

You’ll learn in a stimulating research environment supported by world-class specialist facilities which support the individual project element of the programme. These include access to equipment such as high temperature/high pressure autoclaves, quartz crystal microbalance, erosion-corrosion rigs/flow loops, rotating cylinder electrodes/bubble cells, visualisation cells and potentiostats with AC/DC capabilities.

The projects are also supported by access to our corrosion lab’s own advanced surface analysis suite, containing optical microscopes, mini-sims, IR/UV spectroscopy techniques, atomic force microscopes and a nano-indenter.

Accreditation

This course is accredited by the Institute of Mechanical Engineers (IMechE) under licence from the UK regulator, the Engineering Council.

Course content

Core modules in each semester provide you with a thorough understanding of key aspects of oilfield corrosion engineering. You’ll study topics which cover aspects such as material selection, chemical inhibition, surface engineering technologies, the principles of physical metallurgy, electrochemistry and corrosion management strategies for new or mature assets.

You’ll also select from optional modules that allow you to focus on specific topic areas such as tribology and its impact on mechanism design or engineering computation. Modules are also available through Leeds University Business School covering aspects of operations management, to prepare you for a range of roles in industry.

Throughout the programme you’ll complete your Professional Project – an independent piece of research on a topic within mechanical engineering that allows you to demonstrate your knowledge and skills. In the two taught semesters you’ll review the literature around a specific topic (chosen from an extensive list provided) and plan the project, before completing the design, analysis, computation, experimentation and writing up in the summer months.

Want to find out more information about your modules?

Take a look at the Oilfield Corrosion Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Metals and Alloys 15 credits
  • Materials Selection and Failure Analysis 15 credits
  • Oilfield Chemistry and Corrosion 15 credits
  • Advanced Oilfield Corrosion 15 credits
  • Surface Engineering 15 credits
  • Professional Project 75 credits

Optional modules

  • Materials Structures and Characterisation 15 credits
  • Risk Perception and Communication 15 credits
  • Effective Decision Making 15 credits
  • Managing for Innovation 15 credits
  • Engineering Computational Methods 15 credits
  • Introduction to Tribology 15 credits
  • Computational Fluid Dynamics Analysis 15 credits

For more information on typical modules, read Oilfield Corrosion Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, poster sessions, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

Recent projects for MSc Oilfield Corrosion Engineering students have included:

  • Corrosion of wellbore materials under high temperature and pressure
  • Nanotechnology applications in oil and gas for advanced corrosion protection
  • Evaluation of green inhibitors
  • Understanding galvanic corrosion of welds in high shear conditions
  • Application of acoustic emission as a tool for predicting erosion severity
  • Development and testing of a novel, custom cell to understand top of line corrosion

Career opportunities

With this qualification, excellent career options are open to you to practise as a professional corrosion engineer and play a major role in ensuring the safe and efficient recovery of natural resources.

Graduates have gone on for a range of companies such as BP, Petronas, Wood Group Kenny and EM&I.

You’ll also be well prepared to continue with research in this field, either within industry or at PhD level within academia.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UKs leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Fuel Technology at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Fuel Technology at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Key Features of MSc in Fuel Technology

Providing a sustainable, affordable and secure energy future through the discovery and implementation of new technology is a key challenge for the 21st Century. With more people requiring energy, effective solutions need to come from a wide range of sources. For the near term, various fuels will be the key to energy globally; presently oil and gas with an increasing reliance on hydrogen and biofuels.

The Energy Safety Research Institute (ESRI) is a leading centre of excellence for the development of advanced technologies in energy resources.

The Centre benefits from world-leading expertise in the area of a wide range of energy technologies and fuel technology.

The Energy Safety Research Institute (ESRI) research areas, broadly speaking, fit into one of three categories:

- Hydrocarbon: Oil and gas production and processing; downstream issues relating to efficient fuel refining; additives and fuel composition/performance chemistry.

- Hydrogen: technologies for the efficient generation of hydrogen from wasted energy generation; photocatalysis for hydrogen generation; hydrogen as an energy vector.

- CO2: technologies for the efficient removal of carbon dioxide from fuel feedstocks; use of carbon dioxide as a fuel source.

- Biofuel: methods for developing the process streams enabling integration of biofuel production with the chemistry industry supply chain.

The MSc by Research Fuel Technology has a wide range of subject choices including:

Catalyst design

Process characterisation

Refining

Process optimisation

Pilot scale studies

MSc by Reasearch in Fuel Technology typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Find out more about the facilities at the Energy Safety Research Institute (ESRI) at Swansea University on our website.

Links with Industry

One of the major strengths of the College of Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine. Read more

This industry-focused programme - run jointly by the universities of Edinburgh and Glasgow - focuses on the principles, methods, techniques and technologies that underpin a vast range of needs in applications spanning from research to industry to medicine.

The programme is designed for students looking to develop the skills and knowledge that will open up opportunities in the many companies developing sensor and image based solutions.

Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and can be enhanced when multiple sensing functions are combined into arrays to enable imaging.

Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smartphones and cars to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring.

Programme structure

This programme is run over 12 months. The first semester of taught courses is run at the University of Glasgow and the second at the University of Edinburgh. The taught courses are followed by a research project, carried out at either university, leading to the production of your masters thesis.

Semester 1

Semester 1 is delivered at the University of Glasgow.

  • Sensing and Imaging
  • Imaging and Detectors
  • Detection and Analysis of Ionising Radiation
  • Circuits and Systems
  • Optional course in physics or engineering

Semester 2

Semester 2 is delivered at the University of Edinburgh.

Two compulsory courses:

  • Applications of Sensor and Imaging Systems
  • Research Project Preparation

Two optional courses in engineering and/or chemistry:

  • Biophysical Chemistry
  • Biosensors and Instrumentation
  • Lab-on-Chip Technologies
  • Biomedical Imaging Techniques
  • Microfabrication Techniques

Career opportunities

Sensor and imaging systems (SIS) underpin a vast range of societal, research and industrial needs. Sensing is essential for advances in capability across all fields of physics, engineering and chemistry and is enhanced when individual sensing units are configured in arrays to enable imaging and when multiple sensing functions are integrated into a single smart system.



Read less

Show 10 15 30 per page



Cookie Policy    X