• University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Imperial College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Bath Spa University Featured Masters Courses
"offshore" AND "wind"×
0 miles

Masters Degrees (Offshore Wind)

We have 13 Masters Degrees (Offshore Wind)

  • "offshore" AND "wind" ×
  • clear all
Showing 1 to 13 of 13
Order by 
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies. Read more
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies.

An EngD is a four year research degree awarded for industrially relevant research, the degree provides a more vocationally oriented approach to obtaining a doctorate in engineering commensurate with that of a PhD.

Led by the University of Exeter at its Penryn Campus and based at the University of Edinburgh, this EngD programme is delivered through a partnership with the universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford.

The programme will allow you to receive postgraduate-level technical and transferable skills training at three leading UK universities in the renewable energy research field together with the Scottish Association for Marine Science and HRWallingford. This university and industry collaboration forms the Engineering and Physical Sciences Research Council (EPSRC), RCUK Energy programme/ETI-funded Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

Students will benefit from a vibrant learning environment and, in partnership with industry, will learn to deliver world-class industrially-focused research outcomes that will accelerate the deployment of offshore wind, wave and tidal-current technologies. This will help the UK to meet its 2020 and 2050 targets for renewable energy generating capacity, and expand and sustain a community of high-quality post-doctoral staff for the UK offshore renewable energy industry.

This programme will produce highly trained scientists and engineers, they will gain the skills, knowledge and confidence to tackle current and future offshore renewable energy challenges. This includes developing new techniques and technologies to design, build, install, operate and maintain devices in hostile environments at an affordable economic cost with minimal environmental impact.

This will reinforce and support the UK’s conjoined infrastructure, which begins in the best academic research centres with leading test facilities and extends through a unique combination of demonstration facilities, ultimately to test and deployment sites.

Programme structure

Each Research Engineer will spend approximately 25% (180 credits) of his or her time in a structured training programme.
The following are some examples of the taught modules;
Introduction to Offshore Renewable Technologies; Hydrodynamics of Offshore Renewable Energy Devices; Electromechanical & Electronic Energy Conversion Systems; Marine Renewable Resource Assessment; Economics Tools for Offshore Renewables; Physical Model Testing for Offshore Renewables; Structural Behaviour of Offshore Renewable Energy Devices; Electricity Network Interaction, Integration and Control; Moorings and Reliability and Innovation Design and Manufacturing Management.

Research project

Research Projects will comprise 540 credits, amounting to 75% of the research engineer effort on the EngD. Research Engineers will attend a total of three summer schools during their projects, and will attend the annual Company Day, and appropriate technical conferences

Research projects are proposed by renewable energy companies in wave, tidal and offshore wind energy. Projects are allocated during the first year of the programme, at the beginning of the second semester (in January). The Research Engineer will take an active role in defining his or her professional development programme in line with the needs of the research project and his or her individual aims.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
This multidisciplinary programme is designed to equip graduates with the knowledge and skills required to take up the exciting job opportunities arising from the recent adoption of marine spatial planning and related developments in marine conservation and the maritime industries. Read more
This multidisciplinary programme is designed to equip graduates with the knowledge and skills required to take up the exciting job opportunities arising from the recent adoption of marine spatial planning and related developments in marine conservation and the maritime industries.

Marine spatial planning is now developing as a key component of marine management. It aims to deliver a more organised sharing of sea space between demands as diverse as nature conservation, tourism, ports and shipping, renewable energy, fishing, aquaculture and mineral extraction. It seeks to integrate social, economic and environmental uses of the coast and sea.

Marine planning is being taken up by coastal nations around the world, including Australia, China, the United States of America, South Africa and several European nations, such as Germany, Portugal, the Netherlands, Poland, Norway, Sweden and the United Kingdom. Some nations, such as the UK, now have statutory provisions for planning their coastal and marine waters and bodies and procedures for preparing marine plans and implementing them. All European Union coastal states are now required to introduce marine planning, following a Directive passed in 2014.

So there is a growing demand for professionals who understand marine science and management on the one hand, and spatial planning, as has long been practised on land, on the other. This postgraduate programme bridges the gap between these two disciplines, and equips students with the knowledge and skills needed to embark on a career within marine management.
This programme leads to the award of a Master of Science degree. It is a full-time, one-year course, though it is also possible to study part-time over two years, combining studies with other responsibilities. This is the first programme of its kind to be accredited by the Royal Town Planning Institute as a specialist Masters course. Gaining the degree is a step towards professional membership of the Institute.

Here is a selection of the topics recently chosen by the MSc students for their dissertations:
• Implementation of Marine Spatial Planning in Portugal
• Global food security: finding space for aquaculture
• Stakeholder Participation in Marine Planning in the UK
• Success factors for offshore wind energy
• China’s system of Marine Functional Zoning
• Assessing the value of sand dune systems in the North West of England
• Stakeholder involvement in the Irish Sea Conservation Zone project
• Reducing the impact of offshore wind farms on seabirds
• Mitigating the impacts of tidal barrages

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Research profile. The Institute for Energy Systems (IES) helps shape tomorrow's difficult energy decisions in decarbonising society. Read more

Research profile

The Institute for Energy Systems (IES) helps shape tomorrow's difficult energy decisions in decarbonising society. It continues a long line of world leading innovation by Edinburgh researchers, including the 1970s 'Duck' wave energy converter, invented by Stephen Salter - now Emeritus Professor of Engineering Design.

Our research covers all aspects of the low carbon energy chain: resource modelling, impact of climate change, wind, wave, tidal & solar energy, electrical power conversion, energy storage, carbon capture, biofuels and delivery into the electrical network. In addition, we have established a low carbon vehicle group developing more efficient internal combustion engines. IES is also involved in two doctoral training centres: the Industrial Centre for Offshore Renewable Energy (IDCORE) as a lead partner and the Centre for Doctoral Training in Wind and Marine, led by Strathclyde University.

Training and support

Students are strongly encouraged and trained to present their research at conferences and in journal papers during the course of their PhD.

Students are also encouraged to attend transferable skills courses provided by the University and to participate in external courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

PhD candidates pursue their research projects under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will be linked to two academic supervisors, and one industrial supervisor if the project is industrially sponsored.

Facilities

IES has excellent experimental facilities for both marine and electrical power. The Institute hosts the unique FloWave Ocean Energy Research Facility, which is the world’s most sophisticated large marine energy test laboratory.



Read less
Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. Read more

Subsea engineering plays a vital role in the exploitation of oil and gas resources. The subsea engineering industry help to specify the curriculum so we meet their requirements. The course is designed for you as an experienced or recently graduated engineer who wants to develop your subsea knowledge.

Your teaching modules operate in short 'intensive schools' with time after the module to complete the assignments, where applicable. They include:

-Input from industry experts

-Site visits

-Industry-based projects

-Teaching from other disciplines

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in subsea engineering. The degree is taught using a mix of the academic staff from the School of Marine Science and Technology as well as visiting lecturers and experts from industry.

You will undertake a research project leading to a dissertation. This may be a critical review and/or computational or experimental project using the University's world leading testing facilities. The research project is supported by an academic supervisor and may be conducted with an industrial partner which, where appropriate, may be your employer.

Delivery

Ten taught modules worth 120 credits are delivered in blocks through semester one and/or two. A dissertation or research project, worth 60 credits, is undertaken across the three semesters.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Facilities

You have access to dedicated facilities including:

  • a student common room
  • a computer laboratory
  • the Henri Kummerman Marine Resource Centre

You also have access to a set of excellent testing facilities:



Read less
Summary. This academically challenging programme introduces engineering, science and mathematics graduates to incumbent and modern energy technologies for sustainable power generation. Read more

Summary

This academically challenging programme introduces engineering, science and mathematics graduates to incumbent and modern energy technologies for sustainable power generation. You will learn to design and assess the performance of fuel cells and photovoltaic systems, wind power and hybrid propulsion systems.

Modules

Compulsory modules: Introduction to Energy Technologies, Environment and Sustainability; Fuel Cells and Photovoltaic Systems 1 and 2; Nuclear Energy Technology; Renewable Energy from Environmental Flows; Sustainable Energy Systems, Resources and Usage; MSc Research Project

Optional modules: Two from: Cryogenics and Superconductivity; Thermofluid Engineering for Low Carbon Energy; Offshore Engineering and Analysis; Waste Resource Management; Bioenergy; Energy Performance Assessment of Buildings; Advanced Electrical Systems

Visit our website for further information.



Read less
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Read more
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Begin your voyage to being a part of this vital transformation by studying on the UK’s first MSc Marine Renewable Energy programme. Building on our international reputation for marine research and teaching along with regional and national initiatives, this distinctive degree focuses on the growing marine renewable energy sector.

Key features

-Be at the forefront of the emerging field of marine renewable energy at a time when such expertise is increasingly sought after.
-Develop knowledge and confidence in the critical areas which will help you to be an integral part of the effort to develop and promote marine renewable energy.
-Benefit from our research team’s expertise – our staff achieved ratings of ‘world leading’ and ‘internationally excellent’ in the UK Government’s most recent Research Excellence Framework (REF 2014).
-Take advantage of Plymouth University’s active role in the Southwest Marine Energy Park and the Offshore Renewables Development Programme to stay abreast of the latest developments and make contacts with key players in the field.
-Gain experience in the use of world leading facilities such as the COAST Lab test tanks and the Falcon Spirit research vessel as part of your taught programme and your research.
-Learn in an environment which benefits from PRIMaRE investment in new staff expertise and facilities.
-Benefit from a programme fully-integrated with the £42 million wave hub project, the world's largest wave energy test site, off north Cornwall.
-Live and study in ‘Britain’s Ocean City’, with easy access to businesses and the natural environment involved in your area of study this is an ideal location to study marine renewables.
-Take the opportunity to study abroad in the research project phase and be supported by one Plymouth University supervisor and one supervisor overseas.

Course details

The taught modules in the first period are compulsory and are designed to provide you with a broad background on marine renewable as well as a solid basis for the option modules in period two. You’ll undertake three modules in period one that provide a background in marine renewable energy: introduction to marine renewable energy, economics, law and policy for marine renewable energy, research skills and research methods. In period two you can choose three options from a choice of five: assessment of coastal resources and impacts, marine planning, economics of the marine environment, mechanics of marine renewable energy structures, and wave and current modelling for marine renewable energy. During period three you’ll undertake a research project and dissertation. Due to the extensive staff research expertise there is a wide range of potential projects spanning marine science, engineering and socio-economics. You may also carry out projects with external organisations that have interests in marine renewable energy.

Core modules
-MAR513 Research Skills and Methods
-MAR526 Introduction to Marine Renewable Energy
-MAR527 Economics, Law and Policy for Marine Renewable Energy
-MAR524 MSc Dissertation

Optional modules
-MAR529 Marine Planning
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR507 Economics of the Marine Environment
-MAR512 Assessment of Coastal Resources and Impacts

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries. Read more

About the course

There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries.

This programme trains specialist engineers in oilfield structural design, fabrication and installation. It is aimed both at engineering and physical science graduates who are interested in working in the oil and gas industry and practising professionals who wish to specialise in the design, analysis and construction of oil and gas installations.

Aims

With high demand for qualified oil and gas engineers, graduates enter a global job market and can expect exciting career prospects - a trend that looks likely to continue for years to come.

As the industry now seeks the rapid drilling and commissioning of new wells to meet energy demands, along with major investment in heavy oils and shale oil and gas, skilled engineers who can rapidly design and commission oilfield installations will be the backbone for growth in this industry. It is precisely this type of engineer that Brunel’s programme will develop.

A distinguishing feature of the course is its ambition to instil systems thinking, by treating structures and their operating environment holistically as a system – helping graduates develop the skills to address a wide range of complex engineering problems rapidly.

Course Content

The programme duration will be 12 months for full-time study, or 24 months for part-time.

The taught part of the programme will take place during the Autumn and Spring terms over 24 weeks. Students will be encouraged to start planning their dissertation at the beginning of the programme. During the Summer term, students will be expected to focus their effort on their dissertation project, researching the dissertation topic full-time. Part-time students will be allowed an extended period to execute their dissertation project in line with the overall programme duration. However, they will be expected to devote an equivalent of at least one day per week on their dissertation project.

This programme has been developed with extensive consultation with the industry. It will be delivered by Brunel staff members and by industrial specialists. The programme structure is shown below and comprises two parts:

Core modules: The taught part of the course (Part 1) worth 120 credits. This includes a set of compulsory modules that provides fundamentals of structural and process engineering, and focuses on providing an understanding of how to design oil and gas structures such as pipelines, offshore and onshore to withstand internal loading induced by complex internal flows of oil and gas and also external loads such as waves and wind. Throughout fundamental mathematical, computational, experimental, testing and inspection techniques as well as codes of practice are taken into account. Civil engineering and construction aspects are also taught.

Dissertation: Your dissertation project forms Part 2 of the programme and is worth 60 credits.

Full-time (12 months) MSc and PGDip modules include:

Petroleum Production Fundamentals
Applied Engineering Mathematics
Structural Materials
Structural Integrity and FEA
Multiphase Flow Fundamentals and Flow Assurance
Dynamics of Petroleum Structures
Design and Construction of Installations
Reliability Engineering and Risk Management

Term Three (MSc Only):

Dissertation
Students will conduct a major piece of research (c. 30,000 words) in an area of oil and gas engineering.

Delivery will take place in block mode teaching with each module requiring a week-long teaching schedule. Laboratory sessions will take place at specialist facilities in the week following the module delivery and will last for up to three days each.

Part-time (24 months) MSc and PGDip:

In the part-time mode, four taught modules are taken each year with the completion of the dissertation following in term three of the second year.

Full-time and part-time (12 and 24 months) PGCert:

Students must take the Design and Construction Installations and Petroleum Production Fundamentals modules and select any other two modules.

Work Placements

Brunel has a purpose built award-winning Professional Development Centre with over 30 staff, including specialist industry consultants. The Placement service includes CV writing, one-to-one guidance and mock interviews. Brunel was named ‘Best University Placement Service’ at the Rate My Placement Awards in 2012.

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practicals, self-study and individual research reports. Supporting material is available online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work.
In addition, guest speakers from industries will provide a valuable insight into the real world of the oil and gas sector.

Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in the College's research institutes.

Assessment

Each module is assessed either by formal examination, written assignments and laboratories or a combination of these. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in December and May.

Special Features

Students will be able to access laboratory facilities at the recently formed NSIRC site which are extensive, modern and well equipped.

Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

The College is research intensive as our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including leading oil and gas companies, construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

We have excellent links with business and industry in the UK and overseas. This means:
Brunel degrees are designed to meet the needs of industry and the market-place;
The latest developments in the commercial world feed into your course;
You have greater opportunity at the dissertation stage of conducting a dissertation in industry;
We have more contacts to help you find a job when you graduate.

Accreditation

This course has been designed and developed in close consultation with industry and the Oil and Gas Engineering MSc is accredited by the Institute of Materials, Minerals and Mining (IOM3). We are seeking accreditation with the following professional bodies:

Institution of Mechanical Engineers
Society of Petroleum Engineers
Institution of Chemical Engineers

Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X