• University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Coventry University Featured Masters Courses
Swansea University Featured Masters Courses
"offshore" AND "structure…×
0 miles

Masters Degrees (Offshore Structures)

We have 26 Masters Degrees (Offshore Structures)

  • "offshore" AND "structures" ×
  • clear all
Showing 1 to 15 of 26
Order by 
This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures. Read more

Why this course?

This course was developed response to the demand for design engineers who can design and assess new ships and offshore structures.

This programme is designed for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines.

You'll be introduced to ultimate strength, fatigue and design concepts for structural components of ships and offshore floating systems. You'll also gain the knowledge of material behaviour together with factors influencing the dynamic behaviour of offshore installations.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/shipoffshorestructures/

You'll study

Your course is made up of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Teaching staff

You’re taught by dedicated staff with diverse expertise and research activities.

Accreditation

All of our degree programmes are and to be (2014) professionally by the Royal Institution of Naval Architects (RINA) and The Institute of Marine Engineering, Science and Technology, (IMarEST) on behalf of the UK Engineering Council.

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.

Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination.

Careers

Career destinations include:
- Naval Architect
- Marine Engineer
- Graduate Engineer
- Marine Surveyor
- Offshore Renewables Engineer
- Project Engineer

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. Read more
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. You will also study subsea systems, including marine systems to produce renewable energy.

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in offshore engineering. You also choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of hydrodynamics and/or structural strength of offshore systems. Research strengths include:
-Hydrodynamics of deepwater offshore structures
-Pipeline and subsea systems
-Structural analysis of offshore structures
-Dynamics of mooring and marine riser systems

You will also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Delivery

Seven taught modules worth 100 credits are delivered through semester one and/or two. A dissertation research project, worth 80 credits, is undertaken across the three semesters.

The course is also available with a preliminary year if you do not meet the entry criteria for the one-year MSc course.

Accreditation

Our course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. This means that you are automatically recognised as satisfying the educational requirements leading to Chartered Engineer (CEng) status.

The Royal Institution of Naval Architects is an internationally renowned professional institution whose members are involved at all levels in the design, construction, maintenance and operation of marine vessels and structures. Members of RINA are widely represented in industry, universities and colleges, and maritime organisations in over 90 countries.

IMarEST is the first Institute to bring together marine engineers, scientists and technologists into one international multi-disciplinary professional body.

Our accreditations give you an additional benchmark of quality to your degree, making you more attractive to graduate employers. It can also open the door to higher-level jobs, most of which require Chartered Engineer status.

Read less
Your programme of study. The programme is delivered on. campus. full time. and online. part time to give you flexible study options. Read more

Your programme of study

The programme is delivered on campus full time and online part time to give you flexible study options. If you want to join the growing companies operating in the subsea industry in Aberdeen or internationally or set up your own company this programme will provide you with a high level of technical training

The Master of Science in Subsea Engineering seeks to prepare highly-trained, highly-qualified, business-aware graduates that can make an immediate impact in their chosen career, and who can address the need for key skills in the subsea industry. Subsea Engineering at the University of Aberdeen has a unique relationship with the subsea industry both locally and internationally, and the programme receives contributions from local industrial organisations in terms of relevant and up-to-the minute contributions to teaching, and support in the specification of group and individual projects.

Aberdeen is the heart of the European oil and gas industry, an international hub for companies engaged in Subsea Engineering. A degree from the University of Aberdeen puts you in a unique position to develop business links alongside of learning and developing international skills within the flexible, modular programme.

Courses listed for the Campus programme

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Courses for the Online Programme

Year 1

  • Offshore Structures and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analytics

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual project

Find out more detail by visiting the programme web page

Online delivery

Why study at Aberdeen?

  • Aberdeen is a recognised hub and centre of excellence in Subsea, as Europe's energy capital and 'World Energy City'
  • The programme is accredited by the Institute of Marine Engineering, Science and Technology (MarEST) and Institution of Mechnical Engineers (IMechE). the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), The
  • Institute of Highway Engineers (IHE) and Chartered Institution of Highways and Transportation (CIHT)
  • We are able to draw upon knowledge and industry experience within the subsea sector on our doorstep to challenge you
  • The programme is very employable with graduates moving to CEO level

Where you study

  • University of Aberdeen
  • Full Time
  • September start

There is also an online delivery of this programme

  • Online
  • 5 Months 27, 30 Months
  • Part Time
  • September and January start

International Student Fees 2017/2018

Find out about fees for campus delivery:

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Find out about online fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen for Campus Study

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 

Online delivery

Other engineering disciplines you may be interested in:



Read less
This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/offshorefloatingsystems/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- towing/wave tank exclusively for teaching purposes
- marine engine laboratory
- hydrogen fuel cell laboratory
- cutting-edge computer facilities
- industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. Read more
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. The research component is emphasized by the requirement to submit not only a thesis but a journal paper as well.

Why study Geotechnical Earthquake and Offshore Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. Students of the highest calibre are therefore attracted to Dundee, being offered a unique opportunity to engage with cutting edge research.

Students studying on our masters programmes benefit from our renowned research expertise and industry experience, and our graduates are highly sought after by employers worldwide.

What's great about Geotechnical Earthquake and Offshore Engineering?

The MSc in Geotechnical Earthquake and Offshore Engineering provides students with the necessary knowledge and skills:
- To design Civil Engineering works to resist the destructive actions applied by earthquakes
- To design offshore foundations and pipelines

Efficient aseismic design requires simultaneous consideration of both geotechnical and structural engineering. The course is unique in that it takes a holistic approach in considering the subject from both perspectives equally, emphasizing soil-structure interaction and providing advanced training for both components.

Laboratory of Soil Mechanics, National Technical University of Athens (NTUA)

Please note that all teaching is carried out in English.

Research will be conducted jointly with the Laboratory of Soil Mechanics of the National Technical University of Athens (NTUA), introducing an international dimension that combines the core strengths of the two research groups, exploiting the state of the art 150g tonne capacity geotechnical centrifuge of the University of Dundee.

The latter is equipped with a latest-technology centrifuge-mounted earthquake simulator capable of reproducing any target waveform, making the Dundee centrifuge facility only one of 3 in Europe capable of earthquake replication. A specially designed split-box for simulation of seismic faulting and its effects on structures is also available, along with a variety of Strong and Equivalent Shear Beam (ESB) Boxes, and sensors (accelerometers, LVDTs, load cells, pore pressure transducers, etc.)

Who should study this course?

This course is research intensive and tailored to students with a very strong background in geotechnical earthquake engineering.

This course is taught by staff in the School of Engineering, Physics and Mathematics.

The start date is September each year, and the course lasts until the end of October in the following year (14 months in total). Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

How you will be taught

Modules are taught via lectures, seminars, workshops, practical's and a research project.

What you will study

Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

1st term at NTUA: September – December (4 months)

Research – 1st part: numerical and analytical methods.

2nd term at Dundee : January – April (4 months)

Core and Specialist Taught modules

Core Modules

CE52002: Health, Safety & Environmental Management
Specialist Modules

CE50005: Advanced Structural Analysis of Bridges
CE50023: Offshore Geotechnics and Pipelines
CE50024: Geoenvironmental Engineering
CE50025: Soil Dynamics
3rd term at Dundee : May – July (3 months)

Research – 2nd part: experimental methods

4th term at NTUA : August – October (3 months)

Research – 3rd part: Completion of MSc Thesis and Journal paper.

The distribution of allocated time between terms 3 and 4 will be flexible, and you may spend more time in either of the universities, depending on your project.

How you will be assessed

Modules are assessed by a mixture of coursework and exam. The research project is assessed by dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
Summary. This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to design and conduct structural and hydrodynamic analyses for offshore engineering of fixed and floating structures. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates who wish to design and conduct structural and hydrodynamic analyses for offshore engineering of fixed and floating structures. It will provide students with an understanding of maritime robotics for oceanography, offshore exploitation, and disaster response. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Marine Law and Management; Finite Element Analysis in Solid Mechanics; Marine Safety and Environmental Engineering; Offshore Engineering and Analysis; Marine Structures in Fluids; Maritime Robotics

Optional modules: Applications of Computational Fluid Dynamics; Thermofluid Engineering for Low Carbon Energy; Advances in Ship Resistance and Propulsion; Design Search and Optimisation; Marine Hydrodynamics; Marine Structures; Renewable Energy from Environmental Flows; Ship Manoeuvring and Control

View our website for more information.



Read less
A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Read more

A general advanced mechanical engineering course particularly relevant to the energy and transport sectors, including mechanical engineering design and assessment. Students will learn project management, design, computer-aided engineering, operation and optimisation of machinery, structural mechanics and integrity.

Who is it for?

Advanced Mechanical Engineering at Cranfield is unique in that it offers you a broad range of mechanical engineering projects with the added component of a management flavour. This provides the opportunity for you to enhance your mechanical engineering skill with a view to developing your career in the management of large engineering projects.

In addition to management, communication, team work and research skills, you will attain at least the following learning outcomes from this degree course:

  • Demonstrate knowledge, fundamental understanding and critical awareness of advanced mechanical engineering techniques necessary for solutions in the transport and energy sectors
  • Demonstrate systematic knowledge across appropriate advanced technologies and management issues to provide solutions for international industries and/or research organisations
  • Demonstrate the ability to acquire, critically assess the relative merits, and effectively use appropriate information from a variety of sources.

Why this course?

The MSc in Advanced Mechanical Engineering is differentiated from other courses available primarily by its industrial context through the strong links we have with national and international industry. We build our industrial links through research and consultancy, which allows us to provide practical and current examples to help illustrate learning throughout the course.

This course is also available on a part-time basis for individuals who wish to study whilst remaining in full-time employment. This enables students from all over the world to complete this qualification whilst balancing work/life commitments. We are very well located for visiting part-time students from all over the world, and offer a range of library and support facilities to support your studies. This MSc programme benefits from a wide range of cultural backgrounds which significantly enhances the learning experience for both staff and students.

Informed by Industry

This degree is particularly industrially focused; although the course does not at present have an industrial advisory board, the course staff are heavily involved in industrially funded and oriented research and development.

The Head of Department, for example, sits on the IMechE Offshore Engineering committee, two BSI committees, the Engineering Integrity Society and is Chairman of the International Ship and Offshore Structures Congress Offshore, Renewable Energy Committee. Course content is reviewed annually by the course team and project/group work is by and large related to the Department's industrially funded research.

Accreditation

This MSc degree is accredited by the Institution of Mechanical Engineers (IMechE)

Course details

The taught programme for the Advanced Mechanical Engineering masters is generally delivered from October until March and is comprised of eight compulsory taught modules. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The group project undertaken between October and April enables you to put the skills and knowledge developed during the course modules into practice in an applied context while gaining transferable skills in project management, teamwork and independent research. You will put in to practice analytical and numerical skills developed in the compulsory modules.

The aim of the group project is to provide you with direct experience of applying knowledge to an industrially relevant problem that requires a team-based multidisciplinary solution. You will develop a fundamental range of skills required to work in a team including team member roles and responsibilities, project management, delivering technical presentations and exploiting the variety of expertise of each individual member. Each group will be given an industrially relevant assignment to perform. Industry involvement is an integral component for the group project, to give you first-hand experience at working within real life challenging situations. 

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner. All groups submit a written report and deliver a presentation to the industry partner.

Individual project

The aim of the individual research project is to provide you with direct experience in undertaking a research/development project in a relevant industrial or research area. You will make a formal presentation of your findings to a panel of academics and industry experts and submit a research thesis.

The individual research project component takes place from March to August.

For part-time students it is common that their research thesis is undertaken in collaboration with their place of work and supported by academic supervision.

Assessment

Taught modules 40% Group Project 20% Individual Research Project 40%

Funding

To help students in finding and securing appropriate funding we have created a funding finder where you can search for suitable sources of funding by filtering the results to suit your needs. Visit the funding finder.

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment. The MSc in Advanced Mechanical Engineering takes you onto a challenging career in industry, government or research. The course reflects the strengths and reputation of Cranfield particularly in the energy, transport and management sectors.



Read less
Your programme of study. Ageing infrastructure from the golden days of the oil and gas and energy industry is now being identified for decommissioning. Read more

Your programme of study

Ageing infrastructure from the golden days of the oil and gas and energy industry is now being identified for decommissioning. Some of it is in the North Sea but many other countries are increasingly realising that they need to decommission properly and effectively due to environmental regulation. Building a platform has provided a rapid and continuous learning process since the start of the energy industry but learning how to decommission a platform has now started a rapid learning experience about best practise methods across the supply chain and facilities available to deal with entire platforms and their various facilities are now an important concern.

The degree will cover all aspects of decommissioning process including engineering, legal, environmental regulation, business and project management risks and challenges across the oil and gas industry, You study the important aspects of offshore subsea systems, well plugging, offshore installations, project evaluating and economics, environment impact assessment process an regulation, and a group project in comparative assessment. You also look at process shutdown and disposal.  This is a highly complex area due to the level of environmental contaminants and different types of facilities to take down.

There are many oil and gas companies now decommissioning with the Brent Delta platform being a highly publicised example. You may be interested in reading about decommissioning from the Department of Business Energy and Industrial Strategy which gives you more information about the process, the companies involved and some examples of environmental statements and other useful information https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-installations-and-pipelines

There is also a Decommissioning MSc delivered online by University of Aberdeen listed below:

Courses listed in the programme

SEMSTER 1

  • Offshore Structures and Subsea Systems
  • Well Plugging and Abandonment
  • Law and Decommissioning Regulatory Aspects
  • Petroleum Economics and Project Evaluation

SEMESTER 2

  • Group Projects in Comparative Assessment
  • Marine Environmental Impact Assessment
  • Process Shut Down, Structural Decommissioning and Disposal

Optional x 2

1 course from the option below:

  • Decommissioning of Offshore Installations: Commercial Aspects
  • Engineering Risk and Reliability Analysis*
  • Applied Marine Ecology and Ecosystem Management

*Suitable only for students with Engineering, Maths or Physics

SEMESTER 3

  • Project

Find out more from the Decommissioning web page

Why study at Aberdeen?

  • This programme is one of the first programmes in decommissioning oil rigs, platforms and structures
  • Aberdeen is the European energy hub where many academics have worked in the industry
  • Many of the decommissioning activities take place and are planned in Aberdeen
  • You gain from wide ranging oil and gas knowledge at the university spanning the entire life cycle

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start
  • There is also an online delivery listed at the bottom

International Student Fees for 2017/ 2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about https://abdn.ac.uk/study/student-life" target="_blank">living in Aberdeen and living costs

You may also be interested in the online Decommissioning MSc

Other engineering disciplines you may be interested in:



Read less
Your programme of study. Subsea Engineering is one of the most challenging areas within the energy industry due to the locations involved in minerals extraction. Read more

Your programme of study

Subsea Engineering is one of the most challenging areas within the energy industry due to the locations involved in minerals extraction. It is a vital part of the oil and gas industry and though it is technically challenging there is a lot of new technology coming online to improve supply and monitoring in the ocean.

You are taught by industry informed academics from two main energy hubs internationally in Global Subsea Engineering. At Aberdeen you have the combined expertise of academics who have closely followed the oil and gas since growth in the 1970s at Aberdeen from which they have been informed by industry in the city. In Perth Australia you are taught by another major university at Curtin who also work closely with their energy hub both in the Pacific and Asian regions. This partnership gives you the best teaching and future opportunities possible within the Subsea sector in your respective region. You are awarded with a degree from both institutions giving you strength in the global employment market and the level of knowledge you will carry with you.

You learn in depth skills, application and theory within subsea environments to ensure sufficient knowledge about control, risk management and maintenance, flow assurance, reliability and integrity. You can begin the programme with Curtin by taking Semester 1 and the Project module in Perth and Semester 2 in Aberdeen as an alternative. Graduates from the programme have gone on to successful careers as CEO and MD within existing business and new business and as specialists in Subsea Engineering,. 

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1070/global-subsea-engineering/

Courses listed for the programme

Semester 1 (University of Aberdeen)

  • Subsea Construction, Inspection and Maintenance
  • Subsea Control
  • Subsea Integrity
  • Offshore Structures and Subsea Systems

Semester 2 (Curtin University)

  • Phase Behaviour and Flow Assurance
  • Umbilical's and Risers
  • Safety, Reliability and Integrity Management
  • Flow and Pipelines

Research Project (University of Aberdeen)

Why Study at Aberdeen?

  • You spend a semester studying at Curtin University in Perth, Western Australia and graduate with a degree from both universities
  • Aberdeen is recognised as a global Centre of Excellence for Subsea. It is a founding member of the Global Subsea Universities Alliance
  • Aberdeen is a major global hub of the energy industry and Aberdeen is recognised as a global centre of excellence in Subsea development and operations

Where you study

  • University of Aberdeen
  • 12 Months
  • Full Time
  • September start

International Student Fees 2017/2018

Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:

 



Read less
Your programme of study. A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. Read more

Your programme of study

A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. University of Aberdeen has gained an industry reputation in the energy industry which is located in the City due to extensive research and collaboration since the industry grew in the 1970s. This level of research and work within industry who also advise on many of the vocational/academic programmes at the University ensures a level of rigour which will carry you as a professional right throughout your career.

You combine technical knowledge with understanding of systems, types of risks, challenges in very hard to reach areas, integrity, inspection, maintenance, controls, flow assurance, reliability and mechanics of various structures and facilities. The industry continuously changes as more technology comes on board to support integrity and reliability issues, but the basics remain the same in requiring solid engineering skills, knowledge, analysis and problem solving ability.

Careers in this area can include: Analysis Engineer, Marine Contractor, Subsea Field Engineer, Subsea Installation Engineer, and similar positions in the energy industry. There are also other industries which involve Subsea Engineering and knowledge. You gain plenty of accreditations of professional standing as follows:

  • Institution of Structural Engineers
  • Institute of Mechanical Engineers
  • The Institute of Marine Engineering, Science and Technology
  • Institution of Civil Engineers
  • Institute of Highway Engineers
  • Chartered Institution of Highways and Transportation
  • Energy Institute

University of Aberdeen offers this programme on campus and online to allow some level of flexibility in studying from different locations. The University is highly regarded in the energy industry and offers programmes which are tailored to operations, facilities and professional management of the oil and gas industry. There are world renowned experts who teach on specific programmes at the University such as Energy Economics, MBA, Energy Law, Engineering, Geology and other subject areas such as strategic planning and risk management.

You can study both on campus or online.

Courses listed for the programme

Subsea Engineering (Campus)

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Campus programme

Subsea Engineering (Online)

Year 1

  • Offshore Structural and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analysis

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Online programme

Why study at Aberdeen?

  • Aberdeen is recognised as a Global Centre of Excellence for Subsea development and operations. The programme is fully accredited professionally and overseen by an Industry Advisory Board
  • You learn from the industry and the university in the 'World Energy City' of Aberdeen getting the chance to visit industry relevant events, networking opportunities and events on campus

Where you study

International Student Fees 2017/2018

  • Scotland/EU £5500
  • Other UK £5500
  • International £20 000

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Find out more about https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php" target="_blank">fees

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php

Other engineering disciplines you may be interested in:



Read less
The Naval Architecture MSc is designed to provide the necessary knowledge and skills in naval architecture theory, analysis and design procedures, as applied to naval and merchant ships, so that students may be easily integrated into industrial ship design teams. Read more
The Naval Architecture MSc is designed to provide the necessary knowledge and skills in naval architecture theory, analysis and design procedures, as applied to naval and merchant ships, so that students may be easily integrated into industrial ship design teams.

Degree information

Students study ship dynamics, ship hydrodynamics, ship structures, the use of computers in advanced engineering analysis, and work in multidisciplinary teams with marine engineers (from the sister Marine Engineering MSc) on a comprehensive and unique ship design exercise. Research skills are honed through project work undertaken in the specialist fields of hydrodynamics, ship dynamics, structures and design.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (90 credits), a ship design exercise (45 credits) and a research project (45 credits). There are no optional modules for this programme.

Core modules
-Ship Dynamics
-Ship Structures (including subsea structures)
-Ship Hydrodynamics

Dissertation/report
All students complete a ship design group exercise, and undertake an independent research project which explores an aspect of ship design or performance analysis in depth.

Teaching and learning
The programme is delivered through lectures, tutorials, individual and group projects, seminars and coursework assignments, which include advanced computational analysis. Assessment is through written, oral and viva voce examinations and assessed coursework (including the evaluation of technical reports, problem solving exercises, project reports, computational and modelling skills, and oral presentations).

Careers

The Naval Architecture MSc has been accredited, for a period of five years from the 2012 student cohort, by the Institute of Marine Engineering, Science & Technology (IMarEST) as meeting the further learning requirements, in full, for registration as a Chartered Engineer. There is currently a global shortage of well-qualified naval architects and consequently the job prospects are very good.

Top career destinations for this degree:
-Naval Architecture Engineer, French Navy
-Unknown, Canadian Navy
-Graduate Naval Architect, QinetiQ
-Offshore Asset Engineer, Saipem
-Graduate Engineer, Ministry of Defence (MoD)

Employability
UCL Naval Architecture MSc students are highly employable. The programme is designed to embed higher learning through academic study, individual research and a multidisciplinary ship design exercise. It is delivered by leading researchers from across UCL in collaboration with the Ministry of Defence. Students benefit from the close association with both the defence and commercial marine sectors with many lectures delivered by industry and, in some cases, world-leading experts. Networking is further enhanced during the design reviews and final VIP presentations where industry experts provide external challenge, advice and guidance to students while also taking the opportunity to talent-spot.

Why study this degree at UCL?

This MSc has several unique features. Direction and a significant portion of the teaching is carried out by staff seconded from the UK Ministry of Defence with recent experience of leading ship design teams.

The Naval Architecture MSc has been accredited, for a period of five years from the 2012 student cohort, by the Institute of Marine Engineering, Science & Technology (IMarEST) and the Royal Institution of Naval Architects (RINA) as meeting the further learning requirements, in full, for registration as a Chartered Engineer.

The large majority of students of this MSc continue directly to employment in the industry.

Read less
The MSc in Civil Engineering builds on our renowned research expertise and industrial experience in current aspects of Civil Engineering. Read more
The MSc in Civil Engineering builds on our renowned research expertise and industrial experience in current aspects of Civil Engineering. It is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

Why study Civil Engineering at Dundee?

Dundee is a pre-eminent centre for Civil Engineering with internationally-renowned research groups in concrete technology, fluid mechanics, geotechnical engineering, lightweight and deployable structures, and construction management.

Professional Accreditation: ICE/IStructE
This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. Visit the Joint Board of Moderators homepage for further information.

What's so good about Civil Engineering at Dundee?

All our MSc programmes are accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Civil Engineering at Dundee is ranked top in Scotland for research. You will have the opportunity to engage with leading edge research at Dundee, meaning we attract students of the highest calibre and our graduates are highly sought after by employers worldwide. Students studying on our masters programmes benefit from our renowned research expertise and industry experience.

Who should study this course?

This course is designed both for people pursuing a higher degree soon or immediately after obtaining their first degree, and for those with considerable work experience.

The start date is September each year, and lasts for 12 months.

How you will be taught

Modules are taught via lectures and tutorials.

What you will study

The programme lasts a full year and contains three main elements: Core Modules (22%)These provide skills generic to engineering and research:

Research Methods and Diploma Project
Health, Safety & Environmental Engineering
Specialist Modules (45%) These provide in-depth and advanced knowledge, and build upon our recognised expertise in Civil Engineering. Students take any four specialist modules that are available that year, subject to approval of the programme director and timetabling constraints. Examples of current modules include:

Advanced Structural Analysis
Earthquake Engineering & Concrete Assessment
Innovative Structures
Design for Durability Assessment and Repair
Construction Systems I and II
Sustainable Use and Environmental Impact Assessment
Offshore Geotechnical Engineering
Advanced Soil Mechanics and Geo-Environmental Engineering
Soil Dynamics and Earthquake Engineering
Project and Enterprise Management
Research Project (33%)

This gives you the opportunity to benefit from, and contribute to our research. At the end of the project students submit a dissertation based on their research.

How you will be assessed

The course is assessed by coursework, examination and dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries. Read more

About the course

There is still a shortage of qualified engineering specialists in the oil and gas sector, with skilled professionals enjoying competitive salaries.

This programme trains specialist engineers in oilfield structural design, fabrication and installation. It is aimed both at engineering and physical science graduates who are interested in working in the oil and gas industry and practising professionals who wish to specialise in the design, analysis and construction of oil and gas installations.

Aims

With high demand for qualified oil and gas engineers, graduates enter a global job market and can expect exciting career prospects - a trend that looks likely to continue for years to come.

As the industry now seeks the rapid drilling and commissioning of new wells to meet energy demands, along with major investment in heavy oils and shale oil and gas, skilled engineers who can rapidly design and commission oilfield installations will be the backbone for growth in this industry. It is precisely this type of engineer that Brunel’s programme will develop.

A distinguishing feature of the course is its ambition to instil systems thinking, by treating structures and their operating environment holistically as a system – helping graduates develop the skills to address a wide range of complex engineering problems rapidly.

Course Content

The programme duration will be 12 months for full-time study, or 24 months for part-time.

The taught part of the programme will take place during the Autumn and Spring terms over 24 weeks. Students will be encouraged to start planning their dissertation at the beginning of the programme. During the Summer term, students will be expected to focus their effort on their dissertation project, researching the dissertation topic full-time. Part-time students will be allowed an extended period to execute their dissertation project in line with the overall programme duration. However, they will be expected to devote an equivalent of at least one day per week on their dissertation project.

This programme has been developed with extensive consultation with the industry. It will be delivered by Brunel staff members and by industrial specialists. The programme structure is shown below and comprises two parts:

Core modules: The taught part of the course (Part 1) worth 120 credits. This includes a set of compulsory modules that provides fundamentals of structural and process engineering, and focuses on providing an understanding of how to design oil and gas structures such as pipelines, offshore and onshore to withstand internal loading induced by complex internal flows of oil and gas and also external loads such as waves and wind. Throughout fundamental mathematical, computational, experimental, testing and inspection techniques as well as codes of practice are taken into account. Civil engineering and construction aspects are also taught.

Dissertation: Your dissertation project forms Part 2 of the programme and is worth 60 credits.

Full-time (12 months) MSc and PGDip modules include:

Petroleum Production Fundamentals
Applied Engineering Mathematics
Structural Materials
Structural Integrity and FEA
Multiphase Flow Fundamentals and Flow Assurance
Dynamics of Petroleum Structures
Design and Construction of Installations
Reliability Engineering and Risk Management

Term Three (MSc Only):

Dissertation
Students will conduct a major piece of research (c. 30,000 words) in an area of oil and gas engineering.

Delivery will take place in block mode teaching with each module requiring a week-long teaching schedule. Laboratory sessions will take place at specialist facilities in the week following the module delivery and will last for up to three days each.

Part-time (24 months) MSc and PGDip:

In the part-time mode, four taught modules are taken each year with the completion of the dissertation following in term three of the second year.

Full-time and part-time (12 and 24 months) PGCert:

Students must take the Design and Construction Installations and Petroleum Production Fundamentals modules and select any other two modules.

Work Placements

Brunel has a purpose built award-winning Professional Development Centre with over 30 staff, including specialist industry consultants. The Placement service includes CV writing, one-to-one guidance and mock interviews. Brunel was named ‘Best University Placement Service’ at the Rate My Placement Awards in 2012.

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practicals, self-study and individual research reports. Supporting material is available online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work.
In addition, guest speakers from industries will provide a valuable insight into the real world of the oil and gas sector.

Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in the College's research institutes.

Assessment

Each module is assessed either by formal examination, written assignments and laboratories or a combination of these. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in December and May.

Special Features

Students will be able to access laboratory facilities at the recently formed NSIRC site which are extensive, modern and well equipped.

Although we recruit a large number of highly qualified students to our undergraduate, postgraduate and research degrees each year, we don’t forget that you are an individual. From the beginning of your time here, you are allocated a personal tutor who will guide you through academic and pastoral issues.

The College is research intensive as our academics are actively involved in cutting-edge research. Much of this research is undertaken with collaborators outside the University, including leading oil and gas companies, construction companies, water utilities, and other leading industrial firms. We work with universities in China, Poland, Egypt, Turkey, Italy, Denmark and Japan. This research is fed directly into our courses, providing a challenging investigative culture and ensuring that you are exposed to up-to-date and relevant material throughout your time at Brunel.

We have excellent links with business and industry in the UK and overseas. This means:
Brunel degrees are designed to meet the needs of industry and the market-place;
The latest developments in the commercial world feed into your course;
You have greater opportunity at the dissertation stage of conducting a dissertation in industry;
We have more contacts to help you find a job when you graduate.

Accreditation

This course has been designed and developed in close consultation with industry and the Oil and Gas Engineering MSc is accredited by the Institute of Materials, Minerals and Mining (IOM3). We are seeking accreditation with the following professional bodies:

Institution of Mechanical Engineers
Society of Petroleum Engineers
Institution of Chemical Engineers

Read less
Summary. This MSc programme is suitable for engineering, mathematics, and physical sciences graduates. It covers the core subjects of naval architecture, and provides an in-depth knowledge of the design and analysis of marine craft and structures, within the marine environment. Read more

Summary

This MSc programme is suitable for engineering, mathematics, and physical sciences graduates. It covers the core subjects of naval architecture, and provides an in-depth knowledge of the design and analysis of marine craft and structures, within the marine environment. No prior specialised knowledge of the discipline is required and an introductory module called Fundamentals of Ship Science is provided in the programme.

Modules

Compulsory modules: Fundamentals of Ship Science; MSc Research Project; Advances in Ship Resistance and Propulsion; Marine Safety and Environmental Engineering; Marine Structures in Fluids; Marine Law and Management

Optional modules: Finite Element Analysis in Solid Mechanics; Yacht and High Performance Craft; Applications of Computational Fluid Dynamics; Numerical Methods; Ship Manoeuvring and Control; Marine Hydrodynamics; Marine Structures; Design Search and Optimisation; Failure of Materials and Components; Renewable Energy from Environmental Flows; Offshore Engineering and Analysis

Visit our website for more information.



Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less

Show 10 15 30 per page



Cookie Policy    X