• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Leeds Featured Masters Courses
"offshore" AND "structure…×
0 miles

Masters Degrees (Offshore Structure)

We have 48 Masters Degrees (Offshore Structure)

  • "offshore" AND "structure" ×
  • clear all
Showing 1 to 15 of 48
Order by 
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies. Read more
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies.

An EngD is a four year research degree awarded for industrially relevant research, the degree provides a more vocationally oriented approach to obtaining a doctorate in engineering commensurate with that of a PhD.

Led by the University of Exeter at its Penryn Campus and based at the University of Edinburgh, this EngD programme is delivered through a partnership with the universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford.

The programme will allow you to receive postgraduate-level technical and transferable skills training at three leading UK universities in the renewable energy research field together with the Scottish Association for Marine Science and HRWallingford. This university and industry collaboration forms the Engineering and Physical Sciences Research Council (EPSRC), RCUK Energy programme/ETI-funded Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

Students will benefit from a vibrant learning environment and, in partnership with industry, will learn to deliver world-class industrially-focused research outcomes that will accelerate the deployment of offshore wind, wave and tidal-current technologies. This will help the UK to meet its 2020 and 2050 targets for renewable energy generating capacity, and expand and sustain a community of high-quality post-doctoral staff for the UK offshore renewable energy industry.

This programme will produce highly trained scientists and engineers, they will gain the skills, knowledge and confidence to tackle current and future offshore renewable energy challenges. This includes developing new techniques and technologies to design, build, install, operate and maintain devices in hostile environments at an affordable economic cost with minimal environmental impact.

This will reinforce and support the UK’s conjoined infrastructure, which begins in the best academic research centres with leading test facilities and extends through a unique combination of demonstration facilities, ultimately to test and deployment sites.

Programme structure

Each Research Engineer will spend approximately 25% (180 credits) of his or her time in a structured training programme.
The following are some examples of the taught modules;
Introduction to Offshore Renewable Technologies; Hydrodynamics of Offshore Renewable Energy Devices; Electromechanical & Electronic Energy Conversion Systems; Marine Renewable Resource Assessment; Economics Tools for Offshore Renewables; Physical Model Testing for Offshore Renewables; Structural Behaviour of Offshore Renewable Energy Devices; Electricity Network Interaction, Integration and Control; Moorings and Reliability and Innovation Design and Manufacturing Management.

Research project

Research Projects will comprise 540 credits, amounting to 75% of the research engineer effort on the EngD. Research Engineers will attend a total of three summer schools during their projects, and will attend the annual Company Day, and appropriate technical conferences

Research projects are proposed by renewable energy companies in wave, tidal and offshore wind energy. Projects are allocated during the first year of the programme, at the beginning of the second semester (in January). The Research Engineer will take an active role in defining his or her professional development programme in line with the needs of the research project and his or her individual aims.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. Read more
This research intensive course is tailored for talented students who already have a very strong background in geotechnical and earthquake engineering, providing a unique opportunity to conduct cutting edge research combining analytical with experimental methods in a transnational environment. The research component is emphasized by the requirement to submit not only a thesis but a journal paper as well.

Why study Geotechnical Earthquake and Offshore Engineering at Dundee?

Civil Engineering at Dundee is ranked top in Scotland for research. Students of the highest calibre are therefore attracted to Dundee, being offered a unique opportunity to engage with cutting edge research.

Students studying on our masters programmes benefit from our renowned research expertise and industry experience, and our graduates are highly sought after by employers worldwide.

What's great about Geotechnical Earthquake and Offshore Engineering?

The MSc in Geotechnical Earthquake and Offshore Engineering provides students with the necessary knowledge and skills:
- To design Civil Engineering works to resist the destructive actions applied by earthquakes
- To design offshore foundations and pipelines

Efficient aseismic design requires simultaneous consideration of both geotechnical and structural engineering. The course is unique in that it takes a holistic approach in considering the subject from both perspectives equally, emphasizing soil-structure interaction and providing advanced training for both components.

Laboratory of Soil Mechanics, National Technical University of Athens (NTUA)

Please note that all teaching is carried out in English.

Research will be conducted jointly with the Laboratory of Soil Mechanics of the National Technical University of Athens (NTUA), introducing an international dimension that combines the core strengths of the two research groups, exploiting the state of the art 150g tonne capacity geotechnical centrifuge of the University of Dundee.

The latter is equipped with a latest-technology centrifuge-mounted earthquake simulator capable of reproducing any target waveform, making the Dundee centrifuge facility only one of 3 in Europe capable of earthquake replication. A specially designed split-box for simulation of seismic faulting and its effects on structures is also available, along with a variety of Strong and Equivalent Shear Beam (ESB) Boxes, and sensors (accelerometers, LVDTs, load cells, pore pressure transducers, etc.)

Who should study this course?

This course is research intensive and tailored to students with a very strong background in geotechnical earthquake engineering.

This course is taught by staff in the School of Engineering, Physics and Mathematics.

The start date is September each year, and the course lasts until the end of October in the following year (14 months in total). Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

How you will be taught

Modules are taught via lectures, seminars, workshops, practical's and a research project.

What you will study

Students spend 50% of their time at the University of Dundee and 50% at the National Technical University of Athens (NTUA).

1st term at NTUA: September – December (4 months)

Research – 1st part: numerical and analytical methods.

2nd term at Dundee : January – April (4 months)

Core and Specialist Taught modules

Core Modules

CE52002: Health, Safety & Environmental Management
Specialist Modules

CE50005: Advanced Structural Analysis of Bridges
CE50023: Offshore Geotechnics and Pipelines
CE50024: Geoenvironmental Engineering
CE50025: Soil Dynamics
3rd term at Dundee : May – July (3 months)

Research – 2nd part: experimental methods

4th term at NTUA : August – October (3 months)

Research – 3rd part: Completion of MSc Thesis and Journal paper.

The distribution of allocated time between terms 3 and 4 will be flexible, and you may spend more time in either of the universities, depending on your project.

How you will be assessed

Modules are assessed by a mixture of coursework and exam. The research project is assessed by dissertation.

Careers

There is a continuing demand for civil engineers particularly in the energy and water sectors and the skills of the civil engineer are highly portable in the multi-disciplinary engineering sectors. The latest Institution of Civil Engineers Salary Survey for the UK (2010) indicates that the average total income of its senior members is nearly £100k, while that of recent graduates is £27.5k.

We are proud of our achievements in graduate employment. The blend of science, technology and management education and training gained in a unique learning environment that is both challenging and friendly, makes our graduates attractive to employers in civil engineering and a wider range of sectors.

Graduates from Dundee have gone on to achieve high level positions in most sectors of the profession. These include consulting engineers and contractors, the offshore industry and research organisations.

Read less
Providing clinical care in remote locations has its own unique challenges and requires specialist knowledge and skills. This flexible part-time eLearning programme is aimed at health professionals working internationally in remote and offshore locations. Read more

Programme overview

Providing clinical care in remote locations has its own unique challenges and requires specialist knowledge and skills. This flexible part-time eLearning programme is aimed at health professionals working internationally in remote and offshore locations. All teaching is online, with students and faculty internationally based, and students can choose to study individual modules as CPD or towards a Certificate or Diploma award. The Diploma programme includes a residential component towards the end of the students studies.

Programme aims

The main aim of the programme is to provide health professionals working in remote, and in some instances potentially hazardous locations, the knowledge and skills to operate effectively in this environment using an evidence based approach. To this end, students taking this programme will expect to:

1) Acquire and apply theoretical knowledge underpinning effective evidence based clinical care in remote environments

2) Explain and incorporate into clinical care the effects of specific physical environments on the health and well-being of remote workers

Learning Outcomes

Visit our website to view the learning outcomes.

Programme Structure

The programme is designed to be completed in the time frames indicated below; studied part time, with exit points as follows:

Stage 1, Postgraduate Certificate in Remote and Offshore Medicine - minimum of 18 months, maximum of 3 years

Stage 2, Postgraduate Diploma in Remote and Offshore Medicine - minimum of 3 years, maximum of 5 years

For both Certificate and Diploma, Module C01 must be taken first, the remainder can be taken in any order depending on module availability.

Certificate

Certificate Level – equivalent to 60 credits
Students wishing to exit the programme at certificate level must complete 6 modules in total:

-Module 1: Health and Wellbeing of the Remote Worker
-Module 10: Evidence and Research in Remote Medicine
-Three additional modules from the compulsory list below
-One module from the optional list below

Students who initially opt to study at certificate level have the option to continue studying to Diploma level after successful completion of the 6 modules.

Diploma

Diploma Level – equivalent to 120 credits
Students wishing to exit the programme at Diploma level must complete 12 modules in total:

-Ten compulsory modules
-Two modules from the optional list below

There is a compulsory two-day student residential at the end of the taught component in Edinburgh which all students must attend to be awarded the Diploma. This is not a requirement for Certificate students.

Modules

All modules are modelled on being at Postgraduate Level, Scottish Qualification Framework level 11, equivalent to 10 credits, approximately 100 hours of student learning each (approx. 3 months). Visit our website for further details about each module https://fphc.rcsed.ac.uk/education-resources/remote-offshore-medicine/modules

Compulsory Modules:
C01 Health and Wellbeing of the Remote Worker
C02 Occupational Health in the Remote Setting
C03 Communication in the Clinical Consultation
C04 Telemedicine
C05 Dive Medicine
C06 Tropical Medicine
C07 Aeromedicine
C08 Trauma and Medical Emergencies
C09 Incident and Response Planning
C10 Evidence and Research in Remote Medicine

Optional Modules:
O01 Tactical Medicine
O02 Expedition and Wilderness Medicine
O03 Learning and Teaching
O04 Humanitarian and Disaster Medicine

Continuing Professional Development (CPD)

It is possible for students to study individual modules as standalone CPDs each worth 100 hours of study. These modules are open to everyone who has a relevant health professional qualification, but who may not yet have enough work experience in the field to meet the entry criteria for the full Certificate or Diploma. Students are taught by the ROM Tutors and study alongside our Diploma and Certificate students.

DDRC CPD

Those only wishing to study the Dive Medicine Module just to meet DDRC acceptance conditions and gain CPD for their work can join the programme four times a year. Applications can be made via DDRC: http://www.ddrc.org/physiciancourses

Entry Requirements

Normally: an undergraduate health related degree or relevant health related professional qualification and current work experience in the Remote Medical Care area. If you don't meet these criteria you are welcome to contact us to discuss your application further as all applicants are individually reviewed with regard to their previous qualifications and experience and you may be able to join the programme. You can view the Entry Criteria on our website.
Those applicants whose first language is not English must be able to demonstrate a satisfactory level of both spoken and written English. This should be equivalent to at least the level of post-secondary (high) school. If the directors have concerns about your English language capability you may be asked to provide evidence of an English Language test, for details visit our website: https://fphc.rcsed.ac.uk/education-resources/remote-offshore-medicine/modules

Fees

The payment plan options for all new students joining the programme will be to either pay the programme fees in full (this option protects from further inflationary increases) or to pay per module (module fees are subject to inflationary increases each year). CPD students pay on a per module basis.

The fees for 2017 academic year are as follows:
Diploma Pre-Paid - £6,499
Certificate Pre-Paid - £3,250
Per module 2017 - £544

New students must select their payment plan at the outset and may not subsequently switch between plans.

Applications

There are two intakes per year, in March and September. Applications are made via our secure online applications site. Details of the applications process and deadlines can be found on our website https://fphc.rcsed.ac.uk/education-resources/remote-offshore-medicine

Accreditation

The College is an ELCAS Approved Learning Provider in the MoD Enhanced Learning Credit (ELC) Scheme. This means that service men and women in the armed forces can apply for funding towards the cost of the Certificate or Diploma level study. For details visit: http://www.enhancedlearningcredits.com
The RCSEd DipROM Programme has also been accredited by the ACRRM (Australian College of Rural and Remote Medicine) for the 2014 - 2016 triennium. The Programme has been awarded 30 Core Points on the ACRRM PDP points framework. Full details available at: http://www.acrrm.org.au

Read less
This Masters in Geospatial & Mapping Sciences focuses on understanding the theory and practice of geospatial data collection, land and hydrographic surveying, data and information quality, applications of survey information, and research and development in the field of geomatics. Read more
This Masters in Geospatial & Mapping Sciences focuses on understanding the theory and practice of geospatial data collection, land and hydrographic surveying, data and information quality, applications of survey information, and research and development in the field of geomatics. It is strongly endorsed by industry, accredited by the RICS and has an excellent employment record.

Why this programme

◾This programme meets the academic requirements for membership of relevant professional bodies and is accredited by the Royal Institute of Chartered Surveyors (RICS) and the Chartered Institution of Civil Engineering Surveyors.
◾If you are seeking a career in geomatics: land and engineering surveying; hydrographic surveying; land registration/cadastre and LIS; photogrammetric and remote sensing engineering; management of geospatial information; this programme is for you.
◾The School of Geographical and Earth Sciences is proud to announce that it is ranked 28th in the world (QS World Rankings 2016).
◾The School is consistently ranked amongst the top 10 in the UK and top 5 in Scotland, recently achieving 2nd in Scotland and 9th in the UK (Guardian University Guide 2017).
◾The MSc in Geospatial and Mapping Sciences is an industry-sponsored programme and has been developed in close collaboration with industry to meet global demand for professionals in this field.
◾You will benefit from access to the latest surveying equipment and software, including RTK GPS and terrestrial laser scanners.
◾Textbooks for semester 1 courses are included in fees; and you will attend a week long practical surveying course (included in fees).

Programme structure

Semester 1 – 60 credits
◾Fundamentals of Geomatics GEOG5008 (20 credits)
◾Principles and Practice of Land Surveying GEOG5017 (20 credits)
◾Principles of GIS GEOG5019 (10 credits)
◾Topographic Mapping and Landscape Monitoring GEOG5025 (10 credits)

Semester 2 – 60 credits
◾Applied Land Surveying GEOG5099 (10 credits)
◾Engineering Surveying GEOG5007 (10 credits)
◾Geodesy & GNSS GEOG5012 (10 credits)
◾Hydrographic Survey GEOG5014 (10 credits)
◾Research & Professional Issues in Geomatics GEOG5021(10 credits)

One of:
◾Applied Hydrographic Surveying GEOG5098 (10 credits)
◾Geospatial Data Infrastructures and Land Administration GEOG5013 (10 credits)

Summer – 60 credits
◾MSc Project GEOG5085P (60 credits)

Career prospects

Career opportunities include land surveyor, engineering surveyor, hydrographic surveyor, GIS specialist, environmental consulting. There is currently a very high demand for surveyors, especially in hydrographic survey, in support of offshore oil and renewable energy engineering and maintenance. Several of the key employers visit us each year to recruit students. In addition to the offshore energy industry, land surveyors are in demand in many parts of the world to support mining operations, major civil engineering projects and to provide surveying services for Land Registration. A strong background in data capture, datums and co-ordinate systems, and data processing can also be of value in the GIS and environmental management sectors.

Graduates of this programme have gone on to positions such as:
Offshore Surveyor at NCS Survey
Hydrographic Surveyor at Subsea 7
Offshore Surveyor at Subsea 7
Analyst at Morgan Stanley
Offshore Surveyor at UTEC
Offshore Surveyor at iSurvey Offshore Ltd
Research Scientist Associate at a university
Fellow at European Organisation for Nuclear Research
Offshore Surveyor at Marine Offshore Designer
Hydrographic Surveyor at UTEC
Assistant Land Surveyor at UTEC Star net
Trainee Surveyor at Fugro
Hydrographic Surveyor at Harkand Andrews Survey
Offshore Supporter at Subsea 7
Offshore Surveyor at Fugro
Offshore Hydrographic Surveyor at UTEC
Graduate Supervisor at AECOM
GIS Technician at Farazamin Company Tehran
Graduate Surveyor at Met Geo Environmental Ltd.

Read less
Your programme of study. This is an online delivery of the on campus degree which you can take flexibly part time whilst you work anywhere in the world. Read more

Your programme of study

This is an online delivery of the on campus degree which you can take flexibly part time whilst you work anywhere in the world. The degree comes from Aberdeen University and city in the heart of the European oil and gas industry where the university provides postgraduate degrees worldwide to international students in the oil and gas industry.

Ageing infrastructure from the golden days of the oil and gas and energy industry is now being identified for decommissioning. Some of it is in the North Sea but many other countries are increasingly realising that they need to decommission properly and effectively due to environmental regulation. Building a platform has provided a rapid and continuous learning process since the start of the energy industry but learning how to decommission a platform has now started a rapid learning experience about best practise methods across the supply chain and facilities available to deal with entire platforms and their various facilities are now an important concern.

The degree will cover all aspects of decommissioning process including engineering, legal, environmental regulation, business and project management risks and challenges across the oil and gas industry, You study the important aspects of offshore subsea systems, well plugging, offshore installations, project evaluating and economics, environment impact assessment process an regulation, and a group project in comparative assessment. You also look at process shutdown and disposal. This is a highly complex area due to the level of environmental contaminants and different types of facilities to take down.

There are many oil and gas companies now decommissioning in the North sea with the Brent Delta platform being a highly publicised example. You may be interested in reading about decommissioning from the Department of Business Energy and Industrial Strategy which gives you more information about the process, the companies involved and some examples of environmental statements and other useful information https://www.gov.uk/guidance/oil-and-gas-decommissioning-of-offshore-installations-and-pipelines

Courses listed for the programme 

Year 1

Compulsory

Offshore Structure and Subsea Systems

Decommissioning of Offshore Installations: Regulatory Aspects

Marine Environmental Impact Assessment

Process Shut Down, Structural Decommissioning and Disposal

Year 2

Well Plugging and Abandonment

Petroleum Economics and Project Evaluation

Group Project in Comparative Assessment

Optional

Choose 1 from the following:

Decommissioning of Offshore Installations: Commercial Aspects

Engineering Risk and Reliability Analysis*

Applied Marine Ecology and Ecosystem Management

*suitable for students with engineering, math or physics background

Find out more detail by visiting the programme web page

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1014/msc-decommissioning/

Why study at Aberdeen?

  • You can study this degree anywhere you have an internet connection from University of Aberdeen. Aberdeen city is the European centre for the oil and gas industry and provides degrees and postgraduate degrees across energy industry functions
  • You learn from world class academics known in the oil and gas industry and within research collaborations
  • The programme gives you a massive suite of energy related modules to help  you within decommissioning and wider areas of work in the energy industry

Where you study

  • Online
  • 27 Months Part Time
  • September or January start

International Student Fees 2017/2018

 Find out about fees:

https://www.abdn.ac.uk/study/international/tuition-fees-and-living-costs-287.php

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

https://www.abdn.ac.uk/study/postgraduate-taught/finance-funding-1599.php

https://www.abdn.ac.uk/funding/

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen:

https://abdn.ac.uk/study/student-life

Living costs

https://www.abdn.ac.uk/study/international/finance.php

You may be interested in the on campus Decommissioning MSc delivered at University of Aberdeen:

https://www.abdn.ac.uk/study/postgraduate-taught/degree-programmes/1015/decommissioning/



Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Read more
Measuring, describing and depicting the seabed is crucial to the maintenance and development of ports, safe navigation, offshore renewables and the continuing search for hydrocarbons. Yet there is an international shortage of hydrographic surveyors. Seize this opportunity to gain a thorough knowledge of the science and technology of hydrography, experiencing the latest methods and equipment involved in exploring and managing the seabed whilst preparing for a career in this growth area.

Key features

-Graduate from a course that crosses different disciplines and is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Civil Engineering Surveyors (CICES).
-Study with the ocean right on your doorstep in our waterfront city. Benefit from the practical research opportunities and links to international marine businesses this brings, as well as access to the University’s specialist Marine Institute.
-Study aboard the University’s own survey vessel the Falcon Spirit, and develop hands-on experience in current survey techniques and different methods of data collection and analysis.
-Prepare yourself on a commercially focused programme that’s been developed in response to industry requirements and an expressed commercial need. Progress to a career in hydrographic research and development, port and offshore/ nearshore surveying or environmental support.
-Equip yourself with the latest knowledge relating to hydrography in the fields of marine geophysics, oceanography, land survey techniques, geodesy, bathymetric surveying, tides, acoustic theory and marine resource management. Learn to use equipment including GNSS, SBES, MBES, ADCP and sidescan sonar.
-Engage in debates around the wider aspects of hydrography and the implications for data capture, data management, processing and information systems.
-Attend lectures and receive support from our specialist staff, as well as access to a series of industrial speakers and demonstrations of the latest technologies.
-Gain the knowledge and skills you need to design, develop and implement a final research project at postgraduate level.
-Benefit from our good relationship with industry – a number of companies visit each year. There is excellent recruitment from the programme to the marine sector with global opportunities and the potential to travel in conjunction with your employment.

Course details

Period 1 — an intensive 15 week programme of classroom learning and field activities prepare you for the technical aspects of surveying and the research required in master’s study. 70 per cent lectures/seminars and 30 per cent practical, either within the laboratory or afloat. Assessment is continual or by coursework.

Period 2 — includes specialisms in advanced studies with a combination of the digital mapping and survey project management modules, designed to prepare students for practical roles and management decisions when completing hydrographic tasks on behalf of future employers. Modules are selected based on industrial expectations and potential career requirements. 80 per cent lectures/seminars, 20 per cent practical. Assessment is 50/50 coursework and formal examination for core modules, continuous for the one optional module.

Period 3 — undertake a self-managed final dissertation, supervised by an assigned academic. May comprise a desk study, laboratory experimentation, field observations, data acquisitions and processing.

Core modules
-MAR513 Research Skills and Methods
-MAR520 Hydrography
-MAR521 Acoustic and Oceanographic Surveying
-MAR524 MSc Dissertation
-MAR522 Survey Project Management
-MAR523 Digital Mapping

Optional modules
-MAR517 Coastal Erosion and Protection
-MAR529 Marine Planning
-MAR530 Managing Marine Ecosystems
-MAR507 Economics of the Marine Environment
-MAR518 Remote Sensing and GIS

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. Read more

Programme Background

The MSc/Diploma in Structural and Foundation Engineering is designed for graduates and practising engineers who wish to improve their knowledge of structural and foundation engineering. The structure and content of the programme has been carefully designed following liaison with a wide range of employers in the sector.

The staff members who deliver the programme have wide ranging expertise in specialist subjects which include reinforced concrete technology, dynamic and impact testing of materials, offshore engineering, structural safety, soil-structure interaction and numerical modelling.

The research activities of the programme involve combinations of experimental, numerical and theoretical work. The School has excellent practical facilities for static, dynamic, and impact testing and it has access to advanced computer and networking facilities that include a state-of-the-art parallel processing computer.

Professional Recognition

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.

Programme Content

The curriculum covers the specialist technical and computational skills necessary for today’s construction industry and therefore offers excellent preparation for employment across an industry that includes consulting and contracting engineers, public authorities and local government. In addition, the programme also provides a suitable springboard for graduates seeking a career in a research lead environment.

Both MSc and Diploma students undertake the eight taught courses listed below. MSc students also complete a Masters dissertation.

Semester 1:
Indeterminate Structures
Stability and Dynamics
Ground Engineering
FEA & Stress Analysis A

Semester 2:
Safety, Risk and Reliability
Earthquake Engineering
Foundation Engineering
FEA & Stress Analysis B

Dissertation

MSc students are also required to submit a research dissertation, the research topic normally aligns with the research interests of the staff in the School but can be tailored to suit the interests of the student or student’s employer. Distance learning and part time students are encouraged to suggest project topics based on their own work experience.

At the discretion of the Programme Leader, MSc students may choose to nominate a research project which enables them to investigate a problem they have encountered in their workplace or elsewhere. The research project can be undertaken in conjunction with a suitable industrial partner on campus or in industry if the industrial partner has the facilities to provide adequate supervision.

Mode of Study

The programme may be studied on a part-time basis and will therefore appeal to practising engineers. It is also delivered via distance learning which enables students from all around the globe to study without the need to interrupt their career and travel to Scotland. Examinations may be organised in each student’s country of residence to avoid unnecessary travel costs.

Read less
The Masters in Geomatics & Management is aimed at graduates in geomatics (surveying and mapping). It will enhance your career progression in the field of geomatics, and provide you with the necessary skill set to succeed in managerial positions. Read more
The Masters in Geomatics & Management is aimed at graduates in geomatics (surveying and mapping). It will enhance your career progression in the field of geomatics, and provide you with the necessary skill set to succeed in managerial positions. The combination of geomatics with management offered by this programme has been strongly endorsed by industry.

Why this programme

◾The School of Geographical and Earth Sciences is proud to announce that it is ranked 28th in the world (QS World Rankings 2016).
◾You will be jointly taught by staff from the School of Geographical and Earth Sciences and the Adam Smith Business School and will benefit from their resources and expertise and from an industry-focused curriculum informed by experts in the field.
◾The School is consistently ranked amongst the top 10 in the UK and top 5 in Scotland, recently achieving 2nd in Scotland and 9th in the UK (Guardian University Guide 2017).
◾If you have a geomatics background, but with little management experience and you are looking to broaden your knowledge of management while also furthering your knowledge of geomatics, this programme is designed for you.
◾The programme is split into two semesters and a summer session. One semester will be based in the Business School and is aimed at developing knowledge and skills of management principles and techniques. An applied approach is adopted, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.
◾The semester in Geomatics allows you to focus on land and hydrographic surveying, or GIS and cartography. Your programme will be customised depending on your background and interests.
◾While taking advanced courses in Geomatics you will have benefit from access to the latest surveying equipment, including GPS and Terrestrial Laser Scanning, and industry standard processing software, GIS and graphic packages as part of this programme.
◾You will attend either a week long survey field course or the three-day GIS Research UK conference as part of the programme (included in fees).
◾This programme has a September and January intake*.

*For suitably qualified candidates

Programme structure

Semester 1 – 60 credits in Management
◾Contemporary issues in human resource management MGT5210 (10 credits)
◾Managing creativity and innovation MGT5213 (10 credits)
◾Managing strategic change MGT5216 (10 credits)
◾Marketing management MGT5219 (10 credits)
◾Operations management MGT5222 (10 credits)
◾Project management MGT225 (10 credits)

Semester 2 – 60 credits in Geomatics
◾Research & Professional Issues in Geomatics GEOG5021(10 credits)

50 credits from:
◾Applied GIS GEOG5012 (10 credits)
◾Applied Hydrographic Surveying GEOG5098 (10 credits)
◾Applied Land Surveying GEOG5099 (10 credits)
◾Directed Studies in Geomatics GEOG5006 (10 credits)
◾Engineering Surveying GEOG5007 (10 credits)
◾Geodesy & GNSS GEOG5012 (10 credits)
◾Geospatial Data Infrastructures and Land Administration GEOG5013 (10 credits)
◾Geovisualisation & Map Use GEOG5026 (10 credits)
◾Hydrographic Survey GEOG5014 (10 credits)
◾Internet & Mobile GIS GEOG5015 (10 credits)
◾Remote Sensing of the Environment GEOG5056 (10 credits)

Career prospects

Career opportunities exist in both the private and public sectors and there are lots of possibilities for those with Surveying and Mapping skills. Positions include GIS specialist, ranging from support in large corporations (banking, insurance, retail), environmental consultancies, local authorities, utility companies, or mapping specialist with software house or geoinformation data provider. There is currently a very high demand for surveyors, especially in hydrographic survey, in support of offshore oil and renewable energy engineering and maintenance. In addition to the offshore energy industry, land surveyors are in demand in many parts of the world to support mining operations, major civil engineering projects and to provide surveying services for Land Registration.

Graduates of this programme have gone on to positions such as:
◾Assistant Surveyor General at Dept of Surveys, Ministry of Lands and Housing, Malawi
◾Regional Surveyor General at Dept of Surveys, Ministry of Lands and Housing, Malawi
◾Surveyor at Rudan Engineering Ltd, Ghana
◾Surveyor at KACST, Saudi Arabia
◾Surveyor at Environmental Sciences Group Pelorus Surveys
◾Senior Surveyor at North Ayrshire Council
◾Surveyor at Line Surveys Transmission Consultancy

Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
By studying this programme you will engineer a better future. Accredited by the Institution of Mechanical Engineers (IMechE), our Mechanical Engineering degree can help you gain chartered status, as well as equipping you with a range of skills. Read more
By studying this programme you will engineer a better future. Accredited by the Institution of Mechanical Engineers (IMechE), our Mechanical Engineering degree can help you gain chartered status, as well as equipping you with a range of skills.

What's covered in the course?

Advance your knowledge and understanding, develop your critical thinking and prepare to work across a range of organisations with our MSc Mechanical Engineering course.

You will engage in independent study and systematic enquiry at an advanced level, developing new skills and becoming capable of undertaking mechanical engineering tasks using the latest technologies.You'll also work on industry-standard complex analytical tools such as Matlab/Simulink, CATIA, Ansys and ADAMS Mechanisms. You will work collaboratively with tutors, practitioners, theorists and designers, equipping you with everything you need to launch your career.

In the UK, companies such as Jaguar Land Rover, BMW and Honda require a constant supply of highly-skilled engineers with the kind of fully-rounded experience which our course will give you.

In addition to further academic research opportunities, career prospects are expected to keep pace with the rapid advances in computer aided methods and intelligent technologies, hence, there is expected to be continuing demand for competent, versatile postgraduates who can design and implement innovative solutions for industry.

Why choose us?

-Our accreditation from the Institution of Mechanical Engineers (IMechE) keeps our course fresh and relevant, as well as providing us with key industry contacts and insight. It also means the course satisfies academic requirements towards, and allows graduates to apply for, Chartered Engineer status (CEng).
-Our well-equipped laboratories enhance your educational experience, providing a bridge between theoretical learning and hands-on teaching to prepare you for a career in industry.
-You will gain the interpersonal skills necessary to liaise and work in teams, structuring your work and meeting the varying demands of the workplace.
-You will be able to apply real-life problem-based learning to industry and commerce, while also learning new technologies and techniques to solve global engineering problems.

Institution of Mechanical Engineers

The course is accredited by IMechE, ensuring our content remains fresh, relevant and replete with key industry information.

Course in depth

You will acquire knowledge and understanding of the subject through formal lectures, tutor-led seminars and practical activities, as well as a range of independent learning activities. The course structure emphasises guided, self-directed and student-centred learning with a progressively increasing independence of approach, thought and process.

Lectures will introduce themes, theories and concepts, which are further explored in seminars. You will benefit from technology-enhanced learning, where appropriate, through online resources, discussion forums and other activities. You will consult advanced textbooks, together with professional material and journal articles, in order to ensure that you develop a critical understanding of work at the forefront of your discipline.

A range of assessment methods are employed with associated assessment criteria. Knowledge and skills are assessed, formatively and summatively, by a number of methods such as coursework, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts, and project work.

Modules
-Research Methods 20 credits
-Advanced Systems Engineering 20 credits
-Thermofluids 20 credits
-Advanced Dynamics 20 credits
-Control Engineering 20 credits
-Advanced Materials and Manufacture 20 credits
-Master’s Project 60 credits

Employment opportunities

There are many challenging and rewarding career opportunities for practitioners able to operate at a senior level in the mechanical, automotive, aeronautical and offshore engineering industries. Never has the need been greater for highly skilled, innovative engineers.

Read less
IN BRIEF. The full Masters degree is accredited by the RICS, the CIOB and the APM. Flexible study options and intakes to allow students the opportunity to work and study at the same time. Read more

IN BRIEF:

  • The full Masters degree is accredited by the RICS, the CIOB and the APM
  • Flexible study options and intakes to allow students the opportunity to work and study at the same time
  • Aims to meet the needs of individuals managing change in a fast moving business and project environment
  • Part-time study option
  • International students can apply

COURSE SUMMARY

An effective project manager recognises the significance of processes, technology and people to the success of construction projects. They effectively lead, organise and plan projects, analysing corporate practice and implementing highly effective strategies for change.

This course will equip you with the knowledge and expertise needed to plan, organise, secure and manage resources to bring about the successful completion of projects to client’s expectations and satisfaction. Course content covered on this programme meets the needs of individuals and corporations  managing  change in a fast moving business and project environment, and the need for integration in projects and leadership in performance improvement is emphasised throughout this course. Additionally, you will be taught to recognise the significance of processes, technology and people to the success  of  projects in the design, property and construction industries.

As this course is accredited by the Royal Institution of Chartered Surveyors (RICS), the Chartered Institute of Building (CIOB) and the Association for Project Management (APM), you will be educated to the highest industry standards.

COURSE DETAILS

This course emphasises the need for integration in projects and leadership in performance improvement. You will develop an understanding of project and process management, and recognise the significance of process, technology and people to the success of projects in the design, property and construction industries.

Learn how to:

  • Organise and plan construction projects and manage project information
  • Critically examine existing practice through implementing process measurement and evaluate alternative strategies for process improvement
  • Analyse corporate problems and design and implement strategies for change
  • Lead and work effectively with project teams, and communicate effectively in a variety of forms

COURSE STRUCTURE

This course can be studied full-time on campus or part-time via distance learning. Admission onto the course is in September or January.

The Masters award consists of four taught modules followed by a dissertation. The PgDip requires the completion of the four taught modules. For the award of PgCert the completion of two specified taught modules is required. All modules are delivered over a 15 week period and are assessed mostly through coursework, there are no exams.

TEACHING

On-campus study comprises lectures, tutorials and project work.

Lectures introduce the core knowledge for each module. Tutorials provide a forum for discussion and debate with personalised instruction from tutors, and the project work is your chance to employ research and other techniques to develop solutions to prescribed tasks.

If you’re studying via distance learning, you’ll enjoy access to an internet-based learning environment backed up by intensive tutor support. Weekly online tutorials are led by tutors with student interaction. Our online repository of learning material enables you to undertake self-directed study at your own convenience. Learning is driven by real-world problems with application to your workplace and job role.

ASSESSMENT

You will be assessed through written coursework (100%) and continuous informal assessment by your tutors

Certain modules for full-time students have a small amount of assessment through presentations.

CONTACT HOURS

Full-time: Approximately two days per week 

Distance Learning: Two to three hours online contact time with up to five hours personal study time per week.

CAREER PROSPECTS

Learning on this courses emphasises the need for integration in projects and leadership in performance improvement, with a focus on enabling you to develop a deep understanding of project and process management. You will recognise the significance of process, technology and people to the success of projects in the design, property and construction industries, and will leave with the knowledge to plan construction projects and manage project information and lead and work effectively with project teams, as well as the skills to analyse corporate problems, alternative strategies, and to implement these changes.

The construction industry has witnessed a marked change over the last few years, increasingly moving away from the traditional approach to project management in construction to a more integrated approach, fusing together the design and construction elements where once they would be viewed as separate management disciplines. Therefore a graduate entering the construction management arena must be well equipped to cope with the demands of the construction industry and its expectations of project management. The School of the Built Environment has an exceptionally high graduate employment rate for Project Management in Construction, with graduates employed in a number of related fields including the built environment, civil engineering, heavy engineering, offshore and petrochemical industries.

LINKS WITH INDUSTRY

The full Masters award is fully accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institute of Building (CIOB), allowing exemption from their academic entry requirements.

Guest lecturers from industry with expertise in relevant areas are invited to give lectures throughout the duration of the course. Site visits are organised each year in co-operation with local construction companies - these give full-time students the opportunity to visualise what is learnt and apply it to a real-world context.

FURTHER STUDY

The School of the Built Environment has an exciting and vibrant research community engaged in advanced research in the built environment, please see www.salford.ac.uk/research/best and http://www.salford.ac.uk/research/uprise for more information.



Read less
The MSc/LLM Oil and Gas Law degree focuses on the main legal issues within today's oil and gas industry. Our LLM Oil and Gas Law degree is suitable for those with legal qualifications or with considerable experience in the oil and gas industry. Read more
The MSc/LLM Oil and Gas Law degree focuses on the main legal issues within today's oil and gas industry.

Our LLM Oil and Gas Law degree is suitable for those with legal qualifications or with considerable experience in the oil and gas industry.

The course provides the opportunity to critically assess and examine key legal issues in the oil and gas sector, both in the UK and leading areas. On successful completion of the course you will be in a position to understand and deal with some of the main energy legal issues. You will also gain key employability, enterprise and transferable skills.

It can also be studied by the flexible distance learning allowing busy professionals to study at their own pace.

See the website http://www.rgu.ac.uk/law/study-options/distance-and-flexible-learning/oil-and-gas-law-full-time

Course detail

The module structure on the course is designed to allow the basic legal concepts to be covered in depth before building on this knowledge by moving onto specific oil and gas law content.

Stage 1

• Energy Law and Policy
• Oil & Gas Taxation: Fiscal Law & Policy
• Oil and Gas Law
• Environmental Aspects of Oil and Gas Law
• Maritime Law (option for Full Time course only)

Stage 2

• Oil and Gas Contract Law
• Renewable Energy Issues
• Oil and Gas Management
• Dispute Resolution in Oil and Gas Contracting
• Legal Aspects of Mergers & Acquisitions

Stage 3

• Dissertation

Award: MSc/LLM Oil and Gas Law

Dissertation

In Stage 3, you will present a written research proposal for submission. This will normally form the basis for the Masters level dissertation. You will work independently but under tutorial supervision, to undertake the research and prepare the dissertation.

Format

One of the unique online study features of this course is its flexibility, so that you can learn at your own pace and at times to suit you. Study options are:

•Online distance learning, full-time fast track mode. This is suitable for those not engaged in full-time employment OR for professionals who are willing to reduce their working commitment to part-time while studying for the degree.

•Part-time distance learning mode for those wishing to study and continue working full-time.

•Full-time on campus.

The course is taught at Aberdeen Business school full-time on campus and online by distance learning or can be studied part-time (for online distance learning ONLY).

Online students will study through the university's virtual learning environment (VLE) CampusMoodle. Campus Moodle has a number of functions, ranging from a repository for lecture support material to video clips of guest speakers, and discussion forums. The discussion forum groups will be a key part of the course, actively engaging you with the course materials, the course personnel and your fellow students.

Full-time Study

In full time mode, you will learn through a combination of lectures, seminars and workshop sessions. These comprise of a mix of group study, discussion, simulation and presentations of findings by teams and individuals. You will work as an individual and also as part of a team on case studies, team activities, presentations and discussions.

Access to our virtual learning environment, CampusMoodle, is also provided giving you access from home to learning materials (including videos, e-books and journals).

Distance Learning

Our supported distance learning mode of delivery allows you to study online from any location and is designed to fit in around your work commitments. You will be taught and supported by experienced industry professionals who will recreate the same challenging interactive format of the on-campus courses for those studying at a distance.

Our virtual learning environment, CampusMoodle offers students flexibility of where and when they can study, offering full and open access to tutors and other class members. Students have the benefit of being part of a group of learners with the invaluable opportunity to participate in active, group-related learning within a supportive online community setting. The online campus provides students with lectures and course materials and it also includes:
•Virtual tutorials
•Live chat
•Discussion forums - student and tutor led
•Up-to-date web technology for delivery methods
•User friendly material
•Access to our online library

As online learners, students are part of a 'virtual cohort' and the communication and interaction amongst members of the cohort is a significant aspect of the learning process.

Placements and accreditation

The course has professional accreditation from the Energy Institute. This accreditation is recognition of the high level of quality training and academic expertise provided by on this course.

Careers

There is an increasing need for knowledge of the legal technicalities that affect the oil industry today. This LLM/Masters Oil and Gas Law course will enhance your ability, professional standing and employability within the oil and gas industry. Masters level qualifications are highly regarded in any professional or academic sector and is key to career advancement, the oil and gas industry is no exception. In addition, there are good prospects for further academic research in the oil and gas law field.

Graduates from law courses at Aberdeen Business School have a record of excellent employment prospects. Many are employed worldwide in all sectors – industrial, governmental, technical, administrative, operational or self-employed in companies such as Agip Oil, Halliburton, Amec, Marathon, Schlumberger, Shell, Stolt Offshore, Total and Weatherford.

How to apply

To find out how to apply, use the following link: http://www.rgu.ac.uk/applyonline

Funding

For information on funding, including loans, scholarships and Disabled Students Allowance (DSA) please click the following link: http://www.rgu.ac.uk/future-students/finance-and-scholarships/financial-support/uk-students/postgraduate-students/postgraduate-students/

Read less
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Read more
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Begin your voyage to being a part of this vital transformation by studying on the UK’s first MSc Marine Renewable Energy programme. Building on our international reputation for marine research and teaching along with regional and national initiatives, this distinctive degree focuses on the growing marine renewable energy sector.

Key features

-Be at the forefront of the emerging field of marine renewable energy at a time when such expertise is increasingly sought after.
-Develop knowledge and confidence in the critical areas which will help you to be an integral part of the effort to develop and promote marine renewable energy.
-Benefit from our research team’s expertise – our staff achieved ratings of ‘world leading’ and ‘internationally excellent’ in the UK Government’s most recent Research Excellence Framework (REF 2014).
-Take advantage of Plymouth University’s active role in the Southwest Marine Energy Park and the Offshore Renewables Development Programme to stay abreast of the latest developments and make contacts with key players in the field.
-Gain experience in the use of world leading facilities such as the COAST Lab test tanks and the Falcon Spirit research vessel as part of your taught programme and your research.
-Learn in an environment which benefits from PRIMaRE investment in new staff expertise and facilities.
-Benefit from a programme fully-integrated with the £42 million wave hub project, the world's largest wave energy test site, off north Cornwall.
-Live and study in ‘Britain’s Ocean City’, with easy access to businesses and the natural environment involved in your area of study this is an ideal location to study marine renewables.
-Take the opportunity to study abroad in the research project phase and be supported by one Plymouth University supervisor and one supervisor overseas.

Course details

The taught modules in the first period are compulsory and are designed to provide you with a broad background on marine renewable as well as a solid basis for the option modules in period two. You’ll undertake three modules in period one that provide a background in marine renewable energy: introduction to marine renewable energy, economics, law and policy for marine renewable energy, research skills and research methods. In period two you can choose three options from a choice of five: assessment of coastal resources and impacts, marine planning, economics of the marine environment, mechanics of marine renewable energy structures, and wave and current modelling for marine renewable energy. During period three you’ll undertake a research project and dissertation. Due to the extensive staff research expertise there is a wide range of potential projects spanning marine science, engineering and socio-economics. You may also carry out projects with external organisations that have interests in marine renewable energy.

Core modules
-MAR513 Research Skills and Methods
-MAR526 Introduction to Marine Renewable Energy
-MAR527 Economics, Law and Policy for Marine Renewable Energy
-MAR524 MSc Dissertation

Optional modules
-MAR529 Marine Planning
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR507 Economics of the Marine Environment
-MAR512 Assessment of Coastal Resources and Impacts

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less

Show 10 15 30 per page



Cookie Policy    X