• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Kent Featured Masters Courses
University of Leeds Featured Masters Courses
University of Leeds Featured Masters Courses
University College London Featured Masters Courses
"offshore" AND "renewable…×
0 miles

Masters Degrees (Offshore Renewable Energy)

  • "offshore" AND "renewable" AND "energy" ×
  • clear all
Showing 1 to 15 of 24
Order by 
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies. Read more
This internationally-leading joint EngD with IDCORE aims to meet the UK’s ambitious deployment targets for offshore renewable energy technologies.

An EngD is a four year research degree awarded for industrially relevant research, the degree provides a more vocationally oriented approach to obtaining a doctorate in engineering commensurate with that of a PhD.

Led by the University of Exeter at its Penryn Campus and based at the University of Edinburgh, this EngD programme is delivered through a partnership with the universities of Edinburgh, Strathclyde and Exeter together with the Scottish Association for Marine Science and HR-Wallingford.

The programme will allow you to receive postgraduate-level technical and transferable skills training at three leading UK universities in the renewable energy research field together with the Scottish Association for Marine Science and HRWallingford. This university and industry collaboration forms the Engineering and Physical Sciences Research Council (EPSRC), RCUK Energy programme/ETI-funded Industrial Doctorate Centre in Offshore Renewable Energy (IDCORE).

Students will benefit from a vibrant learning environment and, in partnership with industry, will learn to deliver world-class industrially-focused research outcomes that will accelerate the deployment of offshore wind, wave and tidal-current technologies. This will help the UK to meet its 2020 and 2050 targets for renewable energy generating capacity, and expand and sustain a community of high-quality post-doctoral staff for the UK offshore renewable energy industry.

This programme will produce highly trained scientists and engineers, they will gain the skills, knowledge and confidence to tackle current and future offshore renewable energy challenges. This includes developing new techniques and technologies to design, build, install, operate and maintain devices in hostile environments at an affordable economic cost with minimal environmental impact.

This will reinforce and support the UK’s conjoined infrastructure, which begins in the best academic research centres with leading test facilities and extends through a unique combination of demonstration facilities, ultimately to test and deployment sites.

Programme structure

Each Research Engineer will spend approximately 25% (180 credits) of his or her time in a structured training programme.
The following are some examples of the taught modules;
Introduction to Offshore Renewable Technologies; Hydrodynamics of Offshore Renewable Energy Devices; Electromechanical & Electronic Energy Conversion Systems; Marine Renewable Resource Assessment; Economics Tools for Offshore Renewables; Physical Model Testing for Offshore Renewables; Structural Behaviour of Offshore Renewable Energy Devices; Electricity Network Interaction, Integration and Control; Moorings and Reliability and Innovation Design and Manufacturing Management.

Research project

Research Projects will comprise 540 credits, amounting to 75% of the research engineer effort on the EngD. Research Engineers will attend a total of three summer schools during their projects, and will attend the annual Company Day, and appropriate technical conferences

Research projects are proposed by renewable energy companies in wave, tidal and offshore wind energy. Projects are allocated during the first year of the programme, at the beginning of the second semester (in January). The Research Engineer will take an active role in defining his or her professional development programme in line with the needs of the research project and his or her individual aims.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
Industrial Doctoral Centre for Offshore Renewable Energy is a partnership of the Universities of Edinburgh, Strathclyde and Exeter, the Scottish Association for Marine Science and HR-Wallingford. Read more
Industrial Doctoral Centre for Offshore Renewable Energy is a partnership of the Universities of Edinburgh, Strathclyde and Exeter, the Scottish Association for Marine Science and HR-Wallingford. The Centre is funded by the Energy Technologies Institute and the RCUK Energy programme.

IDCORE offers a four year EngD (Engineering Doctorate) programme. EngD students are known as Research Engineers. They follow a programme based on three elements: postgraduate-level training, transferable skills and engineering leadership, and research. As a Research Engineer you will spend your first nine months of the four-year degree attending an intensive programme of 12 taught courses delivered by internationally renowned academic staff from the Universities of Edinburgh, Strathclyde and Exeter in Edinburgh. These first two terms provide you with skills needed to survive in industry and to get started on your research activities. You will be taught by staff from across the consortium and experts from industry. Practical courses will teach you important laboratory and fieldwork skills; while a group design project will help you to develop team working skills and use knowledge gained during the taught programme.

Following this initial period in Edinburgh you will join your sponsoring company to work as a researcher for the rest of the programme. Your industrial research will be supplemented by summer schools delivered in Oban, Wallingford and Falmouth; and integrated studies in management, business, innovation, enterprise and entrepreneurship, delivered online to maximise their relevance to your experience within the company.

At the end of your research work you will deliver a doctoral thesis or a portfolio of related project work that will be examined for the award of an Engineering Doctorate (EngD) in Offshore Renewable Energy which will be a joint degree from the Universities of Edinburgh, Exeter and Strathclyde.

A scholarship that provides a student stipend of £15k rising to £17k and covers the tuition fees is available for suitably qualified applicants. There are normally 10 of these scholarships available for each intake of students and they are awarded competitively.

Full awards (stipend and fees) are available for suitably qualified UK & EU candidates who have been living in the UK for 3 years prior to the start of the programme. UK and EU candidates living outside the UK are eligible for fees only award.

Applications from candidates who have secured funding from other scholarships schemes will also be considered.

Please visit our website http://www.idcore.ac.uk/public/how-apply and apply online: http://www.ed.ac.uk/pg/785

Read less
The offshore renewable energy market is growing rapidly in the UK and Europe, with firm targets for delivery of a significant amount of energy from renewable sources by 2020. Read more
The offshore renewable energy market is growing rapidly in the UK and Europe, with firm targets for delivery of a significant amount of energy from renewable sources by 2020. Many of the issues faced by this new activity are similar to those faced many years ago by the offshore oil and gas industry and so this course takes full advantage of the experience gained in this sector. The Offshore and Ocean Technology with Offshore Renewable Energy MSc focuses on the technology and management issues of offshore renewable devices, with a strong background in the key technologies for offshore use.

Read less
The Faculty of Engineering runs a multi-disciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy. Read more

Why this course?

The Faculty of Engineering runs a multi-disciplinary postgraduate course entitled Sustainable Engineering with a number of different themes, one of which is offshore renewable energy.

This flexible programme combines study in specialist, advanced engineering technologies underpinned with training in sustainability. The programme has been developed with direct industrial involvement to provide you with a solid understanding of modern, sustainable engineering. As well as gaining an understanding of how sustainable engineering applies to offshore renewable energy, this programme will also provide you with key transferable skills to aid your employability.

The course is designed for experienced or newly qualified engineers in:
- Naval Architecture
- Marine Engineering
- Mechanical Engineering
- Civil Engineering
- Electrical Engineering or related disciplines

The Department of Naval Architecture, Ocean & Marine Engineering, a leading institution in Scotland, offers excellent teaching and research facilities in naval architecture, ocean and marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringoffshorerenewableenergy/

You’ll study

Studying at least three generic classes will meet the key requirements to attain Chartered Engineer status.

You must take three specialist classes if you are studying for the Postgraduate Certificate and up to five if you are studying for a Postgraduate Diploma or MSc.

Successful completion of six classes leads to the award of a Postgraduate Certificate.

- Group project
You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.
Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

- Individual project
MSc students will study a selected topic in depth and submit a thesis.
Successful completion of eight classes, the group project and an individual project leads to the award of an MSc.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- Towing/wave tank exclusively for teaching purposes
- Marine engine laboratory
- Hydrogen fuel cell laboratory
- Cutting-edge computer facilities
- Industry standard software

Studying at least three generic modules will meet the key requirements to attain Chartered Engineer status.

Student competitions

Naval Architecture, Ocean & Marine Engineering supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years our students have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. The first semester is usually from the beginning of October and the second semester starts at the end of January.
Some of the second semester subjects are taught over eight weeks so that you can devote as much time as possible to your individual project work.
Each year about 15 experts from the industry give talks and seminars on wide-ranging topics. Industrial visits are made to a variety of companies.
You’re required to attend an induction prior to the start of the course.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work and 60-70% examination

Careers

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
- Graduate Design Engineer
- Project Engineer
- Renewable Energy Consultant
- Thermal Performance Engineer

Employers include:
- Arup
- Eaton
- Esteyco Energua
- Granite Services International
- Moorfield International
- Mott Macdonald

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Read more
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Begin your voyage to being a part of this vital transformation by studying on the UK’s first MSc Marine Renewable Energy programme. Building on our international reputation for marine research and teaching along with regional and national initiatives, this distinctive degree focuses on the growing marine renewable energy sector.

Key features

-Be at the forefront of the emerging field of marine renewable energy at a time when such expertise is increasingly sought after.
-Develop knowledge and confidence in the critical areas which will help you to be an integral part of the effort to develop and promote marine renewable energy.
-Benefit from our research team’s expertise – our staff achieved ratings of ‘world leading’ and ‘internationally excellent’ in the UK Government’s most recent Research Excellence Framework (REF 2014).
-Take advantage of Plymouth University’s active role in the Southwest Marine Energy Park and the Offshore Renewables Development Programme to stay abreast of the latest developments and make contacts with key players in the field.
-Gain experience in the use of world leading facilities such as the COAST Lab test tanks and the Falcon Spirit research vessel as part of your taught programme and your research.
-Learn in an environment which benefits from PRIMaRE investment in new staff expertise and facilities.
-Benefit from a programme fully-integrated with the £42 million wave hub project, the world's largest wave energy test site, off north Cornwall.
-Live and study in ‘Britain’s Ocean City’, with easy access to businesses and the natural environment involved in your area of study this is an ideal location to study marine renewables.
-Take the opportunity to study abroad in the research project phase and be supported by one Plymouth University supervisor and one supervisor overseas.

Course details

The taught modules in the first period are compulsory and are designed to provide you with a broad background on marine renewable as well as a solid basis for the option modules in period two. You’ll undertake three modules in period one that provide a background in marine renewable energy: introduction to marine renewable energy, economics, law and policy for marine renewable energy, research skills and research methods. In period two you can choose three options from a choice of five: assessment of coastal resources and impacts, marine planning, economics of the marine environment, mechanics of marine renewable energy structures, and wave and current modelling for marine renewable energy. During period three you’ll undertake a research project and dissertation. Due to the extensive staff research expertise there is a wide range of potential projects spanning marine science, engineering and socio-economics. You may also carry out projects with external organisations that have interests in marine renewable energy.

Core modules
-MAR513 Research Skills and Methods
-MAR526 Introduction to Marine Renewable Energy
-MAR527 Economics, Law and Policy for Marine Renewable Energy
-MAR524 MSc Dissertation

Optional modules
-MAR529 Marine Planning
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR507 Economics of the Marine Environment
-MAR512 Assessment of Coastal Resources and Impacts

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Costs. Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Read more
Costs: Fees for 2016/17 TBC. 2015-2016 Irish/EU €8,500. Plus subsistence expenses (food etc.) associated with field trips, including the Tidal Energy module based at Queen’s Marine Laboratory, Portaferry, Northern Ireland. Software necessary for assignments will be provided in UCC laboratories but may not be available for remote use. Optional sea safety training.

Overview

The programme covers a range of engineering and non-engineering topics relevant to the marine renewable energy industry, which is expected to grow rapidly in the coming decade. This will lead to a requirement for engineers with good knowledge of engineering fundamentals as well as detailed knowledge of how wind, wave and tidal devices will be designed, deployed and operated. A key aspect of the programme is the provision of specially-developed advanced modules in marine renewable energy which are not available in any other master’s course. This is an all-Ireland programme, hosted by UCC, delivered in partnership with the following academic institutions: Cork Institute of Technology, Dublin Institute of Technology, National University of Ireland, Maynooth, Queen’s University Belfast, University College Dublin and the University of Limerick.

Course Details

Students take 90 credits as follows:

In Part I students must take the five core modules (unless these or equivalent courses have already been taken), to a total of 25 credits. Students also choose electives from the list below, or may, with the approval of the Programme Director, choose other modules from the University’s Calendar.

NB: For the purposes of this programme it has been agreed that all non-UCC modules are treated as either 5 or 10 credits.

Part II consists of a Marine Renewable Energy Research Project (NE6020), to the value of 30 credits, completed over the summer months, either in industry or in an academic research laboratory in one of the partner institutions. Projects are offered subject to availability of suitable proposals from industry, and will be offered to students based on order of merit of results achieved in Part I. Students are also encouraged to make efforts to secure their own placement from suitable industrial hosts, outside of the list provided.

In every case, the final choice of modules is subject to the approval of the Programme Director of the MEngSc (Marine Renewable Energy). Students may take a maximum total of 15 credits only of undergraduate modules on this programme.

Part I
Core Modules
CE4020 Environmental Hydrodynamics (5 credits; UCC)
NE6003 Wind Energy (5 credits; UCC)
NE6005 Ocean Energy (5 credits; UCC)
NE6010 Advanced Topics in Marine Renewable Energy (5 credits; All institutions)
NE6906 Tidal Energy (5 credits; QUB; 1-week block)

Elective Modules

Students select modules to the value of 35 credits from the following list, (or from elsewhere in the UCC Calendar, subject to approval):

AC6301 Innovation Finance (5 credits) (UCC)
NE3003 Sustainable Energy (5 credits; UCC)
CE4013 Harbour & Coastal Engineering (5 credits; UCC)
CE6024 Finite Element Analysis (5 credits; UCC)
EE4001 Power Electronics, Drives & Energy Conversion (5 credits; UCC)
EE4010 Electrical Power Systems (5 credits; UCC)
EV4012 Environmental Impact Assessments (5 credits) (UCC)
GL6007 Practical Offshore Geological Exploration (5 credits; offered subject to availability of survey vessel time) (UCC)
IS6306 Technology Business Planning (5 credits) (UCC)
LW6104 Intellectual Property Law for High-Tech Entrepreneurs (5 credits) (UCC)
NE6007 Energy Systems Modelling (5 credits; UCC)
NE6901 Control Systems (5 credits; NUIM - EE612)
NE6902 Maintenance & Reliability (5 credits; CIT - MANU8003)

Part II
NE6020 Marine Renewable Energy Research Project (30 credits; All institutions; Summer)

Application Procedure

Application for this programme is on-line at http://www.pac.ie/ucc. Places on this programme are offered in rounds. The closing dates for each round can be found here (http://www.ucc.ie/en/study/postgrad/how/applicationclosingdates/). For full details of the application procedure click How to apply - http://www.ucc.ie/en/study/postgrad/how/

Course Practicalities

You will be studying a range of engineering and non-engineering topics relevant to a career in the marine renewable energy industry.

The programme will include modules in engineering topics such as Wind Energy, Wave Energy, Tidal Energy, Ocean-Structure Interactions; Ocean Energy Device Design; Control Engineering; Mechanical Engineering; Grid Integration and Storage; Marine Operations & Robotics.

The course content will be delivered via blended learning, with some modules presented in traditional lecture format, and some modules delivered remotely using e-learning technologies. All modules will have a significant element of continuous assessment throughout the year. The Tidal Energy module is delivered during a one-week field visit to the Portaferry research laboratory of Queen’s University Belfast.

A significant element of the programme is a R&D project carried out in conjunction with either an industry partner or an academic research group, with the final three months spent working on the project on placement with the partner.

Non-engineering topics available include Intellectual Property Law; Innovation Finance; Environmental Impact Assessment; Practical Offshore Geological Exploration.

Assessment

Taught modules (total >= 60 ECTS): will be assessed via a mixture of continuous assessment (assignments and mini design projects) and traditional examinations. This depends on the contributing institution, for example in NUIM, coursework and project-based learning is emphasised. The project module (30 ECTS) will be assessed by means of: oral presentation and seminar; logbook; written report, with input from the industrial placement supervisor.

Read less
The Offshore and Ocean Technology with Offshore Materials Engineering MSc course develops professional engineers with specialist knowledge of the selection, behaviour and maintenance of a wide variety of complex materials used offshore. Read more
The Offshore and Ocean Technology with Offshore Materials Engineering MSc course develops professional engineers with specialist knowledge of the selection, behaviour and maintenance of a wide variety of complex materials used offshore. This knowledge is crucial to the success of the industry, particularly with the growth in novel materials for the renewable energy sector. Our graduates can expect to be in demand globally as specialist structural and materials engineers, in oil and gas, and renewable energy applications.

Read less
Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. Read more

Course overview

Our Offshore Engineering MSc provides you with the specialist education necessary to enter the offshore engineering industry. You will specialise in the design, dynamic and strength analysis of fixed and floating offshore oil and gas platforms. You will also study subsea systems, including marine systems to produce renewable energy.

Teaching consists of lectures, practical sessions, seminars and personal supervision covering a variety of topics in offshore engineering. You also choose an individual dissertation project. This may be theoretical, experimental or the development of a simulation model of hydrodynamics and/or structural strength of offshore systems. Research strengths include: hydrodynamics of deepwater offshore structures; pipeline and subsea systems; structural analysis of offshore structures; dynamics of mooring and marine riser systems.

You will also benefit from participating in projects sponsored directly by industry partners whenever they are available.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/offshore-engineering-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/offshore-engineering-msc/#howtoapply

Read less
This Masters in Geospatial & Mapping Sciences focuses on understanding the theory and practice of geospatial data collection, land and hydrographic surveying, data and information quality, applications of survey information, and research and development in the field of geomatics. Read more
This Masters in Geospatial & Mapping Sciences focuses on understanding the theory and practice of geospatial data collection, land and hydrographic surveying, data and information quality, applications of survey information, and research and development in the field of geomatics. It is strongly endorsed by industry, accredited by the RICS and has an excellent employment record.

Why this programme

-This programme meets the academic requirements for membership of relevant professional bodies and is accredited by the Royal Institute of Chartered Surveyors (RICS) and the Chartered Institution of Civil Engineering Surveyors.
-If you are seeking a career in geomatics: land and engineering surveying; hydrographic surveying; land registration/cadastre and LIS; photogrammetric and remote sensing engineering; management of geospatial information; this programme is for you.
University of Glasgow’s School of Geographical and Earth Sciences is proud to announce that it is ranked 32nd in the world (QS World Rankings 2014).
-The School is consistently ranked amongst the top 10 in the UK and top 5 in Scotland, recently achieving 2nd in Scotland and 8th in the UK (Guardian University Guide 2015).
-With a 95% overall student satisfaction in the National Student Survey 2014, the School of Geographical and Earth Sciences continues to meet student expectations combining both teaching excellence and a supportive learning environment.
-The MSc in Geospatial and Mapping Sciences is an industry-sponsored programme and has been developed in close collaboration with industry to meet global demand for professionals in this field.
-You will benefit from access to the latest surveying equipment and software, including RTK GPS and terrestrial laser scanners.
Textbooks for semester 1 courses are included in fees; and you will attend a week long practical surveying course (included in fees).

Programme structure

Semester 1 – 60 credits
-Fundamentals of Geomatics GEOG5008 (20 credits)
-Principles and Practice of Land Surveying GEOG5017 (20 credits)
-Principles of GIS GEOG5019 (10 credits)
-Topographic Mapping and Landscape Monitoring GEOG5025 (10 credits)

Semester 2 – 60 credits
-Applied Land Surveying GEOG5099 (10 credits)
-Engineering Surveying GEOG5007 (10 credits)
-Geodesy & GNSS GEOG5012 (10 credits)
-Hydrographic Survey GEOG5014 (10 credits)
-Research & Professional Issues in Geomatics GEOG5021(10 credits)
One of:
-Applied Hydrographic Surveying GEOG5098 (10 credits)
-Geospatial Data Infrastructures and Land Administration GEOG5013 (10 credits)

Summer – 60 credits
-MSc Project GEOG5085P (60 credits)

Accreditation

MSc Geospatial and Mapping Sciences, if fully completed with the award of an MSc, is accredited by the Royal Institution of Chartered Surveyors (RICS) and the Chartered Institution of Civil Engineering Surveyors (ICES).

Industry links and employability

-The MSc in Geospatial and Mapping Sciences is a one-year Masters programme aimed at those seeking a career in Geomatics (land and engineering surveying, hydrographic surveying, land registration/cadastre and LIS, photogrammetric and remote sensing engineering or the management of geospatial information). The focus of the programme is on understanding the theory and practice of geospatial data collection, data and information quality, applications of survey information and research and development in the field of Geomatics.
-Despite the increasing automation of geospatial data capture techniques there remains a demand for professionals who have a deep understanding of the background principles of the instrumentation and methods used and how these impact on the quality of information captured. There are also increasing requirements to integrate data from a variety of sources which requires a full understanding of datums, co-ordinate systems and transformations to ensure correct relationships are maintained for critical applications. The programme also covers issues such as project planning, reporting, and policy issues related to geospatial data capture, management and distribution.
-You will benefit from significant input from industry to our teaching programme, including teaching on some courses, guest lectures and seminars. There are also informal opportunities to meet people from industry at open events and visits to company offices. Projects may be carried out in conjunction with industry.
-Major employers, such as Fugro and Subsea 7, regularly visit and conduct on site interviews with students.
-You will develop transferable skills that will improve your career prospects, such as project management, team-working, fieldwork, data analysis, problem-solving, critical evaluation of scientific & professional literature, and how to effectively communicate with different audiences.
-This course is available full or part time and it is also possible to study for a Postgraduate Certificate or Postgraduate Diploma.

Career prospects

Career opportunities include land surveyor, engineering surveyor, hydrographic surveyor, GIS specialist, environmental consulting. There is currently a very high demand for surveyors, especially in hydrographic survey, in support of offshore oil and renewable energy engineering and maintenance. Several of the key employers visit us each year to recruit students. In addition to the offshore energy industry, land surveyors are in demand in many parts of the world to support mining operations, major civil engineering projects and to provide surveying services for Land Registration. A strong background in data capture, datums and co-ordinate systems, and data processing can also be of value in the GIS and environmental management sectors.

Graduates of this programme have gone on to positions such as:
-Offshore Surveyor at NCS Survey
-Hydrographic Surveyor at Subsea 7
-Offshore Surveyor at Subsea 7
-Analyst at Morgan Stanley
-Offshore Surveyor at UTEC
-Offshore Surveyor at iSurvey Offshore Ltd
-Research Scientist Associate at a university
-Fellow at European Organisation for Nuclear Research
-Offshore Surveyor at Marine Offshore Designer
-Hydrographic Surveyor at UTEC
-Assistant Land Surveyor at UTEC Star net
-Trainee Surveyor at Fugro
-Hydrographic Surveyor at Harkand Andrews Survey
-Offshore Supporter at Subsea 7
-Offshore Surveyor at Fugro
-Offshore Hydrographic Surveyor at UTEC
-Graduate Supervisor at AECOM
-GIS Technician at Farazamin Company Tehran
-Graduate Surveyor at Met Geo Environmental Ltd

Read less
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and assessed by coursework and examinations. The course provides theoretical and practical training in measuring, quantifying and understanding the physical processes within the geological marine environment. It provides a sound scientific basis on which to decide how best to design and execute marine surveys, be they geophysical, sedimentological or geological, for the required purpose.

The MSc in Applied Marine Geoscience evolved from its predecessor, the Marine Geotechnics course which boasted a 30 year pedigree.

A series of modules have been designed to explain the processes that form and characterise a wide variety of sedimentary environments, from the littoral zone to the deep ocean. Those controls range from the dynamical, chemical, climatic to geological; all are inter-related. The student also gains knowledge and understanding of survey techniques in order to map these environments and thereby gain a better understanding of the processes that shape them. The final facet of the course involves an explanation of how these sedimentary materials react to imposed loads - how they behave geotechnically.

From past experience it is found that students on completion of the course will find employment in the offshore hydrocarbons industry, geophysical contract companies (both offshore and terrestrial), geotechnical engineering companies, river and harbour boards or government establishments. The course may also lead students to further academic research studies.

Aims of the course
The aim of the course is to provide the world with people who

understand the inter-relationships between the forces which shape the marine geological environment,
have mastered the practical and analytical techniques necessary to study those controls and survey the geological settings
can critically analyse their findings and present them at a standard and in a form required by end-users, be they commercial or academic.
Whilst the form and style of presentation of work may differ, the skills required by doctoral students and those by potential employers (the marine geoservices industry) overlap to a large extent. Specifically identifying aspects of the course in this light, we aim to enable the students to:

be skilled in planning and acquiring good quality data in the laboratory and in the field in a safe manner
be able to work as a team in the acquisition of larger data-sets
appreciate the importance of recognising the limitations of model-based interpretation of data
review and critically analyse previous work both before and after undertaking data acquisition or modelling
understand the fundamental workings of the offshore geoservices industry
In a more general sense, the course is designed to act as a conversion course for a physical scientist who wants to hone their research skills whilst at the same time getting a grasp of how those skills are applied to solve both academic and commercially based problems. An important part of the course philosophy is the idea that the challenges that face marine geoscientists can often only be solved by taking a multi-disciplinary approach and we instil this idea of wider thought into our graduates.

The course aims to place the student in a strong position to go on to doctoral studies on issues such as palaeoclimatology, geophysics or sedimentology; or enter directly into the offshore industry e.g. to geohazard analysis, or offshore renewable energy exploitation.

Read less
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. Read more
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. As a result of the review we are launching new course titles, reorganising and renaming some courses and withdrawing others.

As part of this review, the decision has been taken to remove Carbon Capture and Storage from our portfolio for 2017/18 registration. We are confident that we can offer a suitable and exciting replacement and believe that the Advanced Chemical Engineering MSc is most closely aligned to this course. Below are the available MSc’s in our Energy & Power programme:

Advanced Mechanical Engineering
Design of Rotating Machines
Energy Systems & Thermal Processes
Flow Assurance for Oil & Gas Production
Process Systems Engineering
Energy from Waste
Offshore Materials Engineering
Offshore Pipeline Engineering
Offshore Risk Management
Offshore Subsea Engineering
Renewable Energy Engineering
Renewable Energy Technology
Offshore Renewable Energy
Geothermal Engineering.

Alternatively if you would like to discuss your options further please email

Read less
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. Read more
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. As a result of the review we are launching new course titles, reorganising and renaming some courses and withdrawing others.

As part of this review, the decision has been taken to remove Energy Supply for low Carbon Futures from our portfolio for 2017/18 registration. We are confident that we can offer a suitable and exciting replacement and believe that the Renewable Energy Technology MSc is most closely aligned to this course. Below are the available MSc’s in our Energy & Power programme:

Advanced Mechanical Engineering
Design of Rotating Machines
Energy Systems & Thermal Processes
Flow Assurance for Oil & Gas Production
Process Systems Engineering
Energy from Waste
Offshore Materials Engineering
Offshore Pipeline Engineering
Offshore Risk Management
Offshore Subsea Engineering
Renewable Energy Engineering
Renewable Energy Technology
Offshore Renewable Energy
Geothermal Engineering.

Alternatively if you would like to discuss your options further please email

Read less
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. Read more
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. As a result of the review we are launching new course titles, reorganising and renaming some courses and withdrawing others.

As part of this review, the decision has been taken to remove Materials for Energy Systems from our portfolio for 2017/18 registration. We are confident that we can offer a suitable and exciting replacement and believe that the Offshore Materials Engineering MSc is most closely aligned to this course. Below are the available MSc’s in our Energy & Power programme:

Advanced Mechanical Engineering
Design of Rotating Machines
Energy Systems & Thermal Processes
Flow Assurance for Oil & Gas Production
Process Systems Engineering
Energy from Waste
Offshore Materials Engineering
Offshore Pipeline Engineering
Offshore Risk Management
Offshore Subsea Engineering
Renewable Energy Engineering
Renewable Energy Technology
Offshore Renewable Energy
Geothermal Engineering.

Alternatively if you would like to discuss your options further please email

Read less
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. Read more
The MSc portfolio within our Energy & Power programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. As a result of the review we are launching new course titles, reorganising and renaming some courses and withdrawing others.

As part of this review, the decision has been taken to remove Gas Energy from our portfolio for 2017/18 registration. We are confident that we can offer a suitable and exciting replacement and believe that the Offshore Pipeline Engineering MSc or Geothermal Engineering MSc is most closely aligned to this course. Below are the available MSc’s in our Energy & Power programme:

Advanced Mechanical Engineering
Design of Rotating Machines
Energy Systems & Thermal Processes
Flow Assurance for Oil & Gas Production
Process Systems Engineering
Energy from Waste
Offshore Materials Engineering
Offshore Pipeline Engineering
Offshore Risk Management
Offshore Subsea Engineering
Renewable Energy Engineering
Renewable Energy Technology
Offshore Renewable Energy
Geothermal Engineering.

Alternatively if you would like to discuss your options further please email

Read less
The Institute for Energy Systems (IES) is a world-leading centre of research in marine and renewable energy, and is home to international expertise covering energy and climate change, machines and power-electronic interfaces and power system operation and control. Read more

Research profile

The Institute for Energy Systems (IES) is a world-leading centre of research in marine and renewable energy, and is home to international expertise covering energy and climate change, machines and power-electronic interfaces and power system operation and control.

Academic expertise includes:

resource modelling
hydrodynamics
aerodynamics,
computational fluid dynamics
thermodynamics
electromagnetics
power electronics
control
power systems analysis
life-cycle analysis

Collaborations

The Institute also hosts the EPSRC-funded UK Centre for Marine Energy Research, and is founder and chair of the Ocean Energy Group within the European Energy Research Alliance.

In addition to traditional PhD training opportunities, IES leads the innovative IDCORE Engineering Doctoral Centre in Offshore Renewable Energy and the very well-established and successful MSc in Sustainable Energy Systems.

The Institute is a partner in the EPSRC funded CDT in Wind and Marine led by Strathclyde University. It also co-hosts the UK Energy Research Centre and collaborates in a Joint Research Institute in Energy with Heriot-Watt University.

Training and support

Students are strongly encouraged and trained to present their research at conferences and in journal papers during the course of their PhD.

Students are also encouraged to attend transferable skills courses provided by the University and to participate in external courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

PhD candidates pursue their research projects under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will be linked to two academic supervisors, and one industrial supervisor if the project is industrially sponsored.

Facilities

IES has excellent experimental facilities for both marine and electrical power. The Institute hosts the unique FloWave Ocean Energy Research Facility, which is the world’s most sophisticated large marine energy test laboratory.

Research opportunities

We offer a comprehensive range of exciting research opportunities through a choice of postgraduate research degrees: MSc by Research, MPhil and PhD.

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X