• University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
De Montfort University Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Kent Featured Masters Courses
Coventry University Featured Masters Courses
University College London Featured Masters Courses
"oceanography"×
0 miles

Masters Degrees (Oceanography)

  • "oceanography" ×
  • clear all
Showing 1 to 15 of 72
Order by 
Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Read more

Program Overview

Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Research carried out both independently and in collaboration with federal government laboratories occurs in many different oceanographic regimes, including coastal BC fjords, the inland sea of the Strait of Georgia, open ocean regions of the Subarctic Pacific, and many other locations, including the Arctic and Antarctic Oceans. The types of problems that can be studied include fundamental questions about the flow of stratified fluids at scales ranging from tens of meters to thousands of kilometers, applied research in estuaries, coastal, and deep-ocean processes, general ocean circulation and climate change issues, marine chemistry, geochemistry, and biogeochemistry, natural product chemistry, marine viruses, fisheries oceanography, plankton ecology and physiology, and primary production of the sea. The Department is well equipped to carry out research in the field (using either its own boat or larger vessels in the oceanographic fleet), at the laboratory bench, and in the numerical heart of a computer. Most problems involve aspects of all three.

Students in Oceanography may select courses, depending on their interest, from the following areas of specialization:
- biological oceanography
- marine chemistry and geochemistry
- physical oceanography and atmospheric sciences

Students are encouraged to broaden their knowledge by taking courses outside their area of specialization. Courses related to Oceanography are also offered in the Departments of Botany, Chemistry, Civil Engineering, Geography, Physics and Astronomy, and Zoology.

Oceanography students normally begin their studies in September but may sometimes arrange to start their thesis/dissertation work in the summer before their first Winter Session. A student wishing to do graduate work in Oceanography should first discuss the proposed program with appropriate faculty in the Department of Earth, Ocean and Atmospheric Sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Oceanography
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, maths, environmental science, physical geography or related disciplines. Read more

Summary

This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, maths, environmental science, physical geography or related disciplines. The programme includes compulsory introductory modules that provide a foundation in interdisciplinary marine science, along with the opportunity to specialise in particular areas through an option of modules, as well as research project experience with marine scientists at the National Oceanography Centre Southampton (NOCS). To highlight the specialisations possible, we have developed “pathways” of suggested module choices, which include: Marine Biology and Ecology; Physical Oceanography and Climate Dynamics; Marine Biogeochemistry; Marine Geology and Geophysics; Marine Resources and Law

Students can either follow one of these “pathways”, or mix options from different pathways, where the timetable allows, to pursue broader interests. Employment in the marine environmental sector is a common destination for MSc Oceanography graduates, and as the degree is a “conversion” to marine science from “pure” science backgrounds, around one-third of graduates also go on to PhD research in marine sciences.

Modules

Semester one

Core introductory modules: Biological Oceanography; Chemical Oceanography; Marine Geology; Physical Oceanography Plus: Key Skills and Literature Review

Optional modules: two from: Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Deep-sea Ecology; Geodynamics and Solid Earth Geophysics; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large-scale Ocean Processes; Microfossils, Environment and Time; Zooplankton Ecology and Processes

Semester two

Optional modules: three from: Global Ocean Carbon Cycle, Ocean Acidification and Climate; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Global Ocean Monitoring; Seafloor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus: Key Skills and Literature Review Research project: From June to September, students work full-time on an independent research project that represents one-third of the MSc degree.

Visit our website for further information...



Read less
This 12 month taught postgraduate course introduces students with a first degree in the physical, mathematical or other numerate sciences to the subject of Physical Oceanography. Read more
This 12 month taught postgraduate course introduces students with a first degree in the physical, mathematical or other numerate sciences to the subject of Physical Oceanography. The course has run for over 40 years and is unique in the UK for the depth of physical oceanography training provided. As well as giving an overview of physical oceanography, the course enable students to study in detail those aspects of the subject for which they have particular interest.

The first two semesters of the course are taught, introducing the student to the physics of the ocean and its role in the climate system. Modules cover both oceanographic theory and its application, as well practical oceanography. The latter includes an introduction of state-of-the-art instrumentation, remote sensing, numerical modelling as well as practical experience working on small boats and the University's state-of-the-art research vessel, the Prince Madog. Student achievement in the course is evaluated by continuous assessment and module examinations.

During the second semester the student begins to focus on specific aspects of the subject, intially through an extensive literature review and then a research project. The research project, which forms a major component of the course, is selected in close consultation with the students to be of direct relevance to their intended future work. For overseas students, well founded projects based on investigations being undertaken in a home institute are encouraged.

Course Objectives
Provide a thorough training in the theory and application of physical oceanography.
Familiarize the student with modern oceanographic instrumentation and observational techniques.
Introduce state-of-the-art computational fluid dynamics, data analysis and fundamental modelling methods.
Provide the student with the practical experience and physical understanding necessary to address significant problems in the coastal ocean environment.fessional life.

Read less
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. Read more
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. The Department has offered MSc programs since the inception of graduate studies at Memorial in 1960 and its first PhD program was created in 1969. In the present day, our students are supervised by faculty with international experience, connections, and recognition. Our research programs receive generous funding from NSERC, the CFI, and other organisations. Our labs and computer facilities are equipped to offer students world-class research opportunities.

Research opportunities in physical oceanography include coastal oceanography, numerical modeling, ocean acoustics, ocean mixing, fisheries oceanography, laboratory fluid dynamics, ocean instrumentation, and operational oceanography. Research in experimental and theoretical condensed matter physics spans four broad themes: (i) biomaterials and soft matter, (ii) magnetic and electronic materials, (iii) nanoscience and molecular physics, and (iv) photonics, spectroscopy, and microscopy. Theoretical and computational studies include numerical and analytic calculations pertaining to condensed matter (magnetic systems, superconductors, polymers, carbon nanostructures, the glass transition, nucleation and dynamics in supercooled liquids) and gravitational and black hole physics. Computational research within the Department is supported by excellent high performance computing facilities.

The MSc program involves courses and a thesis and can be completed in two years of full-time study.

Read less
This qualification is available for industry professionals who have a postgraduate award already but wish to upgrade this to a full Masters. Read more
This qualification is available for industry professionals who have a postgraduate award already but wish to upgrade this to a full Masters. This can be achieved simply by the completion of:

A short period of distance learning study in Applied Research Methods
A workplace focussed research project in an appropriate area

By studying your distance e-learning degree with us, when you graduate you will receive a full Master’s award from Plymouth University a world leader in Marine and Maritime related subjects. This is exactly the same as if you had attended a full time on-campus degree course.

We have a number of different start dates throughout the year to suit individual circumstances.

Read less
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. Read more
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. The Department has offered MSc programs since the inception of graduate studies at Memorial in 1960 and its first PhD program was created in 1969. In the present day, our students are supervised by faculty with international experience, connections, and recognition. Our research programs receive generous funding from NSERC, the CFI, and other organisations. Our labs and computer facilities are equipped to offer students world-class research opportunities.

Research opportunities in physical oceanography include coastal oceanography, numerical modeling, ocean acoustics, ocean mixing, fisheries oceanography, laboratory fluid dynamics, ocean instrumentation, and operational oceanography. Research in experimental and theoretical condensed matter physics spans four broad themes: (i) biomaterials and soft matter, (ii) magnetic and electronic materials, (iii) nanoscience and molecular physics, and (iv) photonics, spectroscopy, and microscopy. Theoretical and computational studies include numerical and analytic calculations pertaining to condensed matter (magnetic systems, superconductors, polymers, carbon nanostructures, the glass transition, nucleation and dynamics in supercooled liquids) and gravitational and black hole physics. Computational research within the Department is supported by excellent high performance computing facilities.

The MSc program involves courses and a thesis and can be completed in two years of full-time study.

Read less
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. Read more
The Department of Physics and Physical Oceanography at Memorial University of Newfoundland has a well-established graduate studies program backed by a strong tradition of research. The Department has offered MSc programs since the inception of graduate studies at Memorial in 1960 and its first PhD program was created in 1969. In the present day, our students are supervised by faculty with international experience, connections, and recognition. Our research programs receive generous funding from NSERC, the CFI, and other organisations. Our labs and computer facilities are equipped to offer students world-class research opportunities.

Research opportunities in physical oceanography include coastal oceanography, numerical modeling, ocean acoustics, ocean mixing, fisheries oceanography, laboratory fluid dynamics, ocean instrumentation, and operational oceanography. Research in experimental and theoretical condensed matter physics spans four broad themes: (i) biomaterials and soft matter, (ii) magnetic and electronic materials, (iii) nanoscience and molecular physics, and (iv) photonics, spectroscopy, and microscopy. Theoretical and computational studies include numerical and analytic calculations pertaining to condensed matter (magnetic systems, superconductors, polymers, carbon nanostructures, the glass transition, nucleation and dynamics in supercooled liquids) and gravitational and black hole physics. Computational research within the Department is supported by excellent high performance computing facilities.

The MSc program involves courses and a thesis and can be completed in two years of full-time study.

Read less
You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. Read more

Summary

You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. The MRes is a research-led programme that differs from the MSc in focusing less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one Core modules: Contemporary Topics in Ocean and Earth Science; plus one from: Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography

Optional module: one from: Biogeochemical Cycles in the Earth System; Computational Data Analysis for Geophysicist and Ocean Scientists; Deep-sea Ecology; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large scale Ocean Processes; Zooplankton Ecology and Processes

Semester two
Optional module: one from: Applied Biogeochemistry and Pollution; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Reproduction in Marine Animals; Sea Floor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus research project

Visit our website for further information...



Read less
The aim of this course is to provide a grounding in both practical and theoretical aspects of sea level science in the context of climate change. Read more
The aim of this course is to provide a grounding in both practical and theoretical aspects of sea level science in the context of climate change.

In the last few years it has become rapidly apparent that coastal flooding as a result of intense storms is forming one of the more immediate consequences of changes in storm severity and frequency consistent with what we would expect in a warming climate. Worldwide, governments, coastal planners and the insurance industry are realising that understanding sea level, both in terms of its gradual change and its response to extreme weather events, is vital if we are to try to reduce or mitigate the high human and financial costs of coastal flooding. This provides the practical, and urgent context for developing high-level training in sea level.

Within Liverpool we are well-placed to develop this training because of the co-location of the National Oceanography Centre (NOC) and the School of Environmental Sciences. NOC hosts and provides expertise for the Permanent Service for Mean Sea Level, the primary tide gauge data source for all studies of long-term sea level change. Scientists at the NOC are world leaders in the science of sea level, both in the context of global and regional sea level changes in response to a changing climate and in science of forecasting coastal flooding as a result of tide and storm interaction.

Why Oceanography?

Exceptional academic staff

Taught by staff from the School of Environmental Sciences and the National Oceanography Centre.

World centre

Liverpool is a world centre for oceanography and sea level science

High level computing and lab facilities

Access to high level computing and lab facilities, along with the University research vessel

Career prospects

Our degrees provide pathways into rewarding careers and our graduates have found employment in a wide range of industries and organisations, both in the UK and abroad. Graduates of the Environment and Climate Change MSc have gone on to continue their studies towards a PhD, or are employed in a wide range of positions, including environmental, energy and engineering consultancies, multinational companies (energy), local government, environmental bodies, research positions and teaching.

PhD graduates are now working in academic life as lecturers in Geography, Environmental Science, Economic History, Development Studies and Statistics at universities in the UK and overseas. Others are employed in applied fields, working in Europe, Africa and across the world, for example as professional statisticians (one is now Director of Statistics in Zambia, another working in the Health Service in the UK), development professionals (including a member of staff on the WHO malaria programme in East Africa), and scientists at climate and environmental research centres around the world.

The programme will provide training suitable for those seeking a career in the insurance and re-insurance industries, in coastal management, and in risk assessment/long-term planning for coastally-based organizations and governments. For those seeking to go on to further research in climate change and sea level, it will provide an unparalleled background, addressing many of the high priority requirements recently identified by NERC for doctoral training. Aspects of the course, such as research skills and data analysis of environmental records (including time series analysis) provide skills which are in demand across a wide range of scientific, engineering and financial fields.

Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

Key features

Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.

Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.

Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.

Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.

Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) and RYA power boat certificates alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).

Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

How to apply

All applications for undergraduate courses are made through UCAS (Universities and Colleges Admissions Service).

UCAS will ask for the information contained in the box at the top of this course page including the UCAS course code and the institution code.

To apply for this course and for more information about submitting an application including application deadline dates, please visit the UCAS website.

Support is also available to overseas students applying to the University from our International Office via our how to apply webpage or email .

Read less
This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. Read more

Summary

This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. You will spend a full semester at three out of the four European universities (Southampton, Bilbao, Bordeaux, Liege) and will study in English. Your dissertation can be taken at any of these institutions or at any other MER partner institution worldwide. This experience of mobility, along with the emphasis on environment and resources in the programme, will empower you in the pan-European job and research market.

Modules

Semenster one delivered by the University of Southampton or the University of Bordeaux
Modules offered at Southampton:

Core modules: Contemporary Topics in Marine Science Policy and Law; Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography
Optional modules: Coastal Sediment Dynamics; Marine GeoArchaeology; Microfossils, Environment and Time; Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; International Maritime and Environment Law; Introductory Remote Sensing of the Oceans; Largescale Ocean Processes; Deep-sea Ecology; Zooplankton Ecology and Processes

Semester two delivered by the University of the Basque Country, Bilbao.

Semester three delivered by the University of Southampton or the University of Liege.
Modules offered at Southampton:

Option modules: four from: Deep-sea Ecology; Zooplankton Ecology and Processes; and any option not taken in the first semester Specialisation in: Biodiversity and Preservation of the Marine Environment and its Resources; Design of Sampling Schemes and Data Analysis in Research Projects; Ecotoxicology; Integrated Assessment of the Quality of the Marine Environment; Sustainable Management of Marine Living Resources; Sustainable Management of Marine Non-living Resources

Visit our website for further information...



Read less
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. Read more
This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. The course provides advanced training in marine biology with a strong emphasis on practical training.

The course provides training addressing the following major themes:

Marine Ecology Skills
Habitat Ecology / Coastal Survey
Marine Fisheries
Marine Vertebrates
Marine Invertebrates
Research Design & Planning
Research Project / Dissertation
The programme is achieved through a series of compulsory modules encompassing theory, practical, private study and practical research.

The School of Ocean Sciences at Bangor University has over 50 years experience of teaching at postgraduate level, and excellent teaching and research facilities for the study of the marine biology. Undergraduate teaching was graded excellent in the last Teaching Quality Assessment, and research was graded 4* in the Research Assessment Exercise. NERC has designated the School as a Centre of Excellence in Coastal Seas, Marine Biology and Biological Oceanography.

The MSc course in Marine Biology is one of a suite of 4 focused MSc courses in marine science run within the School. New students on this course are inducted to the University and School via an introductory course consisting of orientation through site tours, excursions and social events, and 5 weeks of quantifying biological variability, learning Information Technology, and practising presentation skills. Pre-sessional English language training courses are also available for overseas students.

The MSc course is managed by a course team comprising of the Course Director, Deputy Course Director and Postgraduate Course Administrator. The team report to the School Course Board, which in turn reports to the College of Natural Sciences. Each student has a personal tutor drawn from the teaching staff. The School has 30 academics teaching and researching across the marine science disciplines of Marine Biology (15), Biogeochemistry (2), Physical Oceanography (6) and Geological Oceanography (7) with a similar overall number of technical staff. Teaching on the MSc Marine Biology will be provided from 'in house' in the main, but additional teaching will be provided from the University's School of Biological Sciences and the National Museum of Wales.

The MSc course is housed in a fully serviced and dedicated postgraduate suite. The School is located on the shores of the Menai Strait which separates the Isle of Anglesey from the mainland. The Menai Strait is a proposed Statutory Marine Resource and EU Special Area of Conservation and there are unspoilt marine environments relatively close by.

The University's newly refurbished science library is located in nearby in Bangor. Specialist facilities in the School include temperate and tropical aquaria, satellite imaging processing and Geographical Information System computing, diving and field survey operations (including ROVs and sledges) and laboratories for benthic analysis, nutrition, microbiology, genetics, radiochemical analysis, stable isotopes, sediments and organic chemistry, scanning electron microscopy. An additional strength in our field teaching, is work at sea aboard the only ocean-going research vessel in the Higher Education sector (RV Prince Madog), which entered service in 2001.

MSc course students can benefit from the School's links with other institutions, especially for research project opportunities. Such links presently include the Virginia Institute of Marine Science, U.S.A., University of Mauritius, Catholic University Chile etc.

Read less
This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise. Read more

Summary

This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise.

You will gain hands-on research experience through an advanced project with leading international researchers. The MRes focuses less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one:

Core modules: Contemporary Topics in Ocean and Earth Science; Introduction to Marine Geology; plus one from Introduction to Chemical Oceanography or Introduction to Physical Oceanography

Optional modules: Applied and Marine Geophysics; Basin Analysis; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Geodynamics and Solid Earth Geophysics; Microfossils, Environments and Time

Semester two:

Optional modules: Applied Coastal Sediment Dynamics; Ecological Modelling; Global Climate Cycles;
High-resolution Marine Geophysics

Plus research project

Visit our website for further information...



Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
This career-led programme aims to develop critical awareness and environmental management of coastal issues, and will provide a core knowledge of Coastal Flood Defences, Coastal Morphodynamics and Coastal Sediment Dynamics. Read more

Summary

This career-led programme aims to develop critical awareness and environmental management of coastal issues, and will provide a core knowledge of Coastal Flood Defences, Coastal Morphodynamics and Coastal Sediment Dynamics. Delivered jointly by academics from Civil Engineering and Ocean and Earth Science, this accredited programme provides appropriate vocational training for interested engineers and physical scientists.

Modules

Introductory and core modules: Modelling Coastal Processes; Coastal and Flood Defence; Coastal Morphodynamics; Coastal Sediment Dynamics, Environmental Audit and Risk Assessment; GIS; Introduction to Civil Engineering (for non-engineers); Introduction to Marine Geology (for engineers); Key Skills and Applied Coastal Oceanography; Maritime and Coastal Engineering

Optional modules: further module options are available

Visit our website for further information...



Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X