• University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
King’s College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Bradford Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Northumbria University Featured Masters Courses
"ocean"×
0 miles

Masters Degrees (Ocean)

  • "ocean" ×
  • clear all
Showing 1 to 15 of 122
Order by 
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This course is designed for students from a mathematical background who wish to apply their skills to understanding the complex behaviour of Earth's atmosphere and oceans. Read more
This course is designed for students from a mathematical background who wish to apply their skills to understanding the complex behaviour of Earth's atmosphere and oceans. This is an exciting interdisciplinary subject, of increasing importance to a society facing climate change.

The focus of the course is on analysing the equations of fluid dynamics and thermodynamics, via mathematical and numerical modelling. Training is thus offered in both modern applied mathematics and atmosphere-ocean science, combining teaching resources from both the School of Mathematics and the School of Earth and Environment. The latter are provided by members of the School's Institute for Climate and Atmospheric Science, part of the National Centre for Atmospheric Science. Only a handful of UK universities are positioned to offer similar interdisciplinary training.

Two-thirds of the course consists of taught modules involving lectures and some computer workshops. Beyond a compulsory core of atmosphere-ocean fluid dynamics, students may choose options from applied maths (e.g., wave and stability theory), atmosphere-ocean science (e.g., climate change processes, weather forecasting), numerical methods and scientific computation. The final third of the course consists of an intensive summer project, in which students conduct an in-depth investigation of a chosen subject related to the course.

Careers
Students will be prepared for postgraduate research in applied mathematics or atmosphere-ocean science, or employment in the environmental sector.

However, given the interdisciplinary nature of the programme, graduates will have expertise and skills in a number of different areas, and should be attractive to wider range of employers.

Read less
You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. Read more

Summary

You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. The MRes is a research-led programme that differs from the MSc in focusing less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one Core modules: Contemporary Topics in Ocean and Earth Science; plus one from: Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography

Optional module: one from: Biogeochemical Cycles in the Earth System; Computational Data Analysis for Geophysicist and Ocean Scientists; Deep-sea Ecology; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large scale Ocean Processes; Zooplankton Ecology and Processes

Semester two
Optional module: one from: Applied Biogeochemistry and Pollution; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Reproduction in Marine Animals; Sea Floor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus research project

Visit our website for further information...



Read less
Subsea pipelines are both key to field development and the transportation of oil and gas. It is also a key global industry. Read more
Subsea pipelines are both key to field development and the transportation of oil and gas. It is also a key global industry. The Offshore and Ocean Technology with Pipeline Engineering MSc course focuses on the skills required to understand the materials, installation and maintenance issues associated with this important infrastructure. This programme is suitable for engineering and science graduates keen to pursue careers within the offshore sector; or graduates currently working in the offshore and ocean-related industries keen to extend their qualifications; or individuals with other qualifications who possess considerable relevant experience.

Read less
The Offshore and Ocean Technology with Offshore Materials Engineering MSc course develops professional engineers with specialist knowledge of the selection, behaviour and maintenance of a wide variety of complex materials used offshore. Read more
The Offshore and Ocean Technology with Offshore Materials Engineering MSc course develops professional engineers with specialist knowledge of the selection, behaviour and maintenance of a wide variety of complex materials used offshore. This knowledge is crucial to the success of the industry, particularly with the growth in novel materials for the renewable energy sector. Our graduates can expect to be in demand globally as specialist structural and materials engineers, in oil and gas, and renewable energy applications.

Read less
Risk management is now the bedrock of many industries. A risk-based approach has been almost universally adopted in the offshore industry with the aim of providing better safety and improved protection for the environment. Read more
Risk management is now the bedrock of many industries. A risk-based approach has been almost universally adopted in the offshore industry with the aim of providing better safety and improved protection for the environment. The Offshore and Ocean Technology with Risk Management MSc course focuses on the key techniques used in the offshore industry. It addresses both qualitative and quantitative methodologies, and explains which techniques are appropriate to different applications.

Read less
Subsea engineering focuses on the deepwater issues of oil and gas exploitation. Operations have moved from relatively shallow water to depths that now demand totally different engineering solutions. Read more
Subsea engineering focuses on the deepwater issues of oil and gas exploitation. Operations have moved from relatively shallow water to depths that now demand totally different engineering solutions. The Offshore and Ocean Technology with Subsea Engineering MSc course addresses both the hardware that is used subsea, such as wellheads and separators, as well as important issues such as field layout, flow assurance and installation/maintenance.

Read less
The offshore renewable energy market is growing rapidly in the UK and Europe, with firm targets for delivery of a significant amount of energy from renewable sources by 2020. Read more
The offshore renewable energy market is growing rapidly in the UK and Europe, with firm targets for delivery of a significant amount of energy from renewable sources by 2020. Many of the issues faced by this new activity are similar to those faced many years ago by the offshore oil and gas industry and so this course takes full advantage of the experience gained in this sector. The Offshore and Ocean Technology with Offshore Renewable Energy MSc focuses on the technology and management issues of offshore renewable devices, with a strong background in the key technologies for offshore use.

Read less
The Faculty of Engineering and Applied Science offers the graduate diploma and MASc, MEng, and PhD degrees in the various engineering disciplines, including Civil, Computer, Electrical, Mechanical, Ocean and Naval, Oil and Gas, Process, and Safety and Risk engineering. Read more
The Faculty of Engineering and Applied Science offers the graduate diploma and MASc, MEng, and PhD degrees in the various engineering disciplines, including Civil, Computer, Electrical, Mechanical, Ocean and Naval, Oil and Gas, Process, and Safety and Risk engineering. Faculty expertise encompasses a wide cross-section of specialties and backgrounds; many faculty members have broad industrial experience and complement their teaching and research programs with consultancy services.

The graduate programs offered by the Faculty of Engineering and Applied Science have grown tremendously in the past few years, both in terms of student strength and variety of courses and programs. Our faculty members are increasingly engaged in major research programs supported by NSERC, AIF, CRC and CFI, providing students unique opportunities to work alongside investigators of prestigious projects. Research funding is distributed across the disciplines and graduate students have access to all research facilities and resources. The faculty encourages students to combine two or more traditional disciplines to develop unique and challenging individual programs.

The MEng program involves courses and a thesis, and can be completed in two years of full-time study.

Read less
The aim of this course is to provide a grounding in both practical and theoretical aspects of sea level science in the context of climate change. Read more
The aim of this course is to provide a grounding in both practical and theoretical aspects of sea level science in the context of climate change.

In the last few years it has become rapidly apparent that coastal flooding as a result of intense storms is forming one of the more immediate consequences of changes in storm severity and frequency consistent with what we would expect in a warming climate. Worldwide, governments, coastal planners and the insurance industry are realising that understanding sea level, both in terms of its gradual change and its response to extreme weather events, is vital if we are to try to reduce or mitigate the high human and financial costs of coastal flooding. This provides the practical, and urgent context for developing high-level training in sea level.

Within Liverpool we are well-placed to develop this training because of the co-location of the National Oceanography Centre (NOC) and the School of Environmental Sciences. NOC hosts and provides expertise for the Permanent Service for Mean Sea Level, the primary tide gauge data source for all studies of long-term sea level change. Scientists at the NOC are world leaders in the science of sea level, both in the context of global and regional sea level changes in response to a changing climate and in science of forecasting coastal flooding as a result of tide and storm interaction.

Why Oceanography?

Exceptional academic staff

Taught by staff from the School of Environmental Sciences and the National Oceanography Centre.

World centre

Liverpool is a world centre for oceanography and sea level science

High level computing and lab facilities

Access to high level computing and lab facilities, along with the University research vessel

Career prospects

Our degrees provide pathways into rewarding careers and our graduates have found employment in a wide range of industries and organisations, both in the UK and abroad. Graduates of the Environment and Climate Change MSc have gone on to continue their studies towards a PhD, or are employed in a wide range of positions, including environmental, energy and engineering consultancies, multinational companies (energy), local government, environmental bodies, research positions and teaching.

PhD graduates are now working in academic life as lecturers in Geography, Environmental Science, Economic History, Development Studies and Statistics at universities in the UK and overseas. Others are employed in applied fields, working in Europe, Africa and across the world, for example as professional statisticians (one is now Director of Statistics in Zambia, another working in the Health Service in the UK), development professionals (including a member of staff on the WHO malaria programme in East Africa), and scientists at climate and environmental research centres around the world.

The programme will provide training suitable for those seeking a career in the insurance and re-insurance industries, in coastal management, and in risk assessment/long-term planning for coastally-based organizations and governments. For those seeking to go on to further research in climate change and sea level, it will provide an unparalleled background, addressing many of the high priority requirements recently identified by NERC for doctoral training. Aspects of the course, such as research skills and data analysis of environmental records (including time series analysis) provide skills which are in demand across a wide range of scientific, engineering and financial fields.

Read less
This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, maths, environmental science, physical geography or related disciplines. Read more

Summary

This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, maths, environmental science, physical geography or related disciplines. The programme includes compulsory introductory modules that provide a foundation in interdisciplinary marine science, along with the opportunity to specialise in particular areas through an option of modules, as well as research project experience with marine scientists at the National Oceanography Centre Southampton (NOCS). To highlight the specialisations possible, we have developed “pathways” of suggested module choices, which include: Marine Biology and Ecology; Physical Oceanography and Climate Dynamics; Marine Biogeochemistry; Marine Geology and Geophysics; Marine Resources and Law

Students can either follow one of these “pathways”, or mix options from different pathways, where the timetable allows, to pursue broader interests. Employment in the marine environmental sector is a common destination for MSc Oceanography graduates, and as the degree is a “conversion” to marine science from “pure” science backgrounds, around one-third of graduates also go on to PhD research in marine sciences.

Modules

Semester one

Core introductory modules: Biological Oceanography; Chemical Oceanography; Marine Geology; Physical Oceanography Plus: Key Skills and Literature Review

Optional modules: two from: Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Deep-sea Ecology; Geodynamics and Solid Earth Geophysics; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large-scale Ocean Processes; Microfossils, Environment and Time; Zooplankton Ecology and Processes

Semester two

Optional modules: three from: Global Ocean Carbon Cycle, Ocean Acidification and Climate; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Global Ocean Monitoring; Seafloor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus: Key Skills and Literature Review Research project: From June to September, students work full-time on an independent research project that represents one-third of the MSc degree.

Visit our website for further information...



Read less
To reduce greenhouse gas emissions and aid sustainable development, there is an urgent need to support our electricity generating capacity through the development of low carbon technologies, particularly those generated from renewable sources. Read more
To reduce greenhouse gas emissions and aid sustainable development, there is an urgent need to support our electricity generating capacity through the development of low carbon technologies, particularly those generated from renewable sources. The ocean represents a vast and largely untapped energy resource, that could be exploited as a form of low carbon electricity generation, and there is much European and global commercial and R&D activity in this energy sector. The UK is the world leader in the development of wave and tidal stream technologies, and if marine energy deploys globally, the UK is uniquely positioned to capture a substantial market share, with the potential to contribute as much as £4.3 bn to UK GDP up to 2050. The aim of this MSc programme is to equip students with the skills necessary to identify and quantify the potential of specific locations for marine renewable energy generation installations, with an emphasis on the resource (waves and tides), time series analysis, numerical modelling, and the challenges faced when placing arrays of devices in the marine environment.

This 12 month taught postgraduate course introduces students with a first degree in the physical, mathematical or other numerate sciences to the subject of Marine Renewable Energy. As well as providing an overview of marine renewable energy, the course enables students to research in detail those aspects of the subject in which they are particularly interested. The course places particular emphasis on assessing the wave & tidal energy resource, and geophysical nature of sites, providing students with the necessary skills for marine renewable energy resource and site characterisation from a theoretical, technical, and practical perspective.

Course Structure and Modules
The first two semesters of the course are taught, introducing the student to the physics of the ocean, and the ways in which we can make use of the ocean to generate electricity, whilst minimising environmental impacts. Modules cover both oceanographic theory and its application, as well as practical oceanography. The latter includes an introduction to state-of-the-art instrumentation and numerical modelling, as well as practical experience working on the University's state-of-the-art research vessel, the 35 metre RV Prince Madog. The course also includes a module on geophysical surveying, teaching the techniques used to survey sites suitable for deploying wave and tidal energy arrays. Student achievement in the course is evaluated by a combination of continuous assessment and module examinations.

During the second semester, the students begin to focus on specific aspects of the subject, initially through a dedicated module on marine renewable energy, and subsequently through an extensive literature review followed by a research project. The research project, which forms a major component of the course, is selected in close consultation with the students such that it is of direct relevance to their intended future work. The School of Ocean Sciences has extensive links with the marine renewable energy sector, and many of the projects will be in collaboration with industry. For overseas students, well founded projects based on investigations being undertaken in a home institute are encouraged.

Read less
Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Read more

Program Overview

Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Research carried out both independently and in collaboration with federal government laboratories occurs in many different oceanographic regimes, including coastal BC fjords, the inland sea of the Strait of Georgia, open ocean regions of the Subarctic Pacific, and many other locations, including the Arctic and Antarctic Oceans. The types of problems that can be studied include fundamental questions about the flow of stratified fluids at scales ranging from tens of meters to thousands of kilometers, applied research in estuaries, coastal, and deep-ocean processes, general ocean circulation and climate change issues, marine chemistry, geochemistry, and biogeochemistry, natural product chemistry, marine viruses, fisheries oceanography, plankton ecology and physiology, and primary production of the sea. The Department is well equipped to carry out research in the field (using either its own boat or larger vessels in the oceanographic fleet), at the laboratory bench, and in the numerical heart of a computer. Most problems involve aspects of all three.

Students in Oceanography may select courses, depending on their interest, from the following areas of specialization:
- biological oceanography
- marine chemistry and geochemistry
- physical oceanography and atmospheric sciences

Students are encouraged to broaden their knowledge by taking courses outside their area of specialization. Courses related to Oceanography are also offered in the Departments of Botany, Chemistry, Civil Engineering, Geography, Physics and Astronomy, and Zoology.

Oceanography students normally begin their studies in September but may sometimes arrange to start their thesis/dissertation work in the summer before their first Winter Session. A student wishing to do graduate work in Oceanography should first discuss the proposed program with appropriate faculty in the Department of Earth, Ocean and Atmospheric Sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Oceanography
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering. Read more

Why this course?

This programme is for graduate engineers in naval architecture, offshore engineering, mechanical engineering and other related disciplines who wish to pursue a career in offshore engineering.

It provides you with practical knowledge of offshore floating systems. You’ll look at their conceptions, design and installation. You’ll also gain a sound basis of mathematical and engineering fundamentals.

With the world-wide search for offshore oil and gas moving into increasingly hostile areas of ocean and deep and ultra-deep water, floating systems are becoming more widely used. Floating systems must be designed and built to withstand harsh environments with innovative methods and techniques being adopted to develop robust as well as economically efficient and safe structures. In meeting these challenges, concern for the environment is of increasing importance.

The Department of Naval Architecture, Ocean & Marine Engineering (NAOME), a leading institution in Scotland, offers excellent teaching and research facilities in Naval Architecture, Ocean and Marine engineering, which expands your career opportunities in naval architecture, marine, offshore oil and gas industry.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/offshorefloatingsystems/

You’ll study

The programme consists of three components:
- instructional modules
- group project
- individual project (MSc only)

- Group project
You’ll be part of a group of three to five people in ‘consultant teams’ for 10 weeks addressing a practical engineering problem. You’ll then have the opportunity to present the report to a panel of industrial experts.
This project will enhance your team working and communication skills. It also provides valuable access to industrial contacts.
It will give you a good understanding of all aspects of research work. In addition, the technological study must be accompanied by survey of the relevance and applicability of the findings to the maritime industries at large.
You'll learn efficient ways to gather information, to distribute workload and to delegate amongst the group, to analyse their results and to appreciate the broader implications of the whole project. In-depth technological studies will be accompanied by increasingly important competence in managerial skills, quality assurance and a sound appreciation of the economic, political, social and environmental issues crucial to professional success.

- Individual project (MSc only)
MSc students will take on an individual dissertation on a topic of their own interest. The aim of the individual project is to develop your research skills and to combine many of aspects learned from other modules within a specific topic. This will be achieved by you carrying out work into a particular topic relating to your chosen theme and preparing a dissertation.

Facilities

We have excellent teaching facilities including:
- Catalina - our departmental racing yacht
- Kelvin Hydrodynamics Lab - the largest ship-model experiment tank in any UK university
- towing/wave tank exclusively for teaching purposes
- marine engine laboratory
- hydrogen fuel cell laboratory
- cutting-edge computer facilities
- industry standard software

Accreditation

This course is accredited by the Royal Institution of Naval Architects (RINA) and the Institute of Marine Engineering, Science and Technology (IMarEST).

Student competitions

NAOME supports and promotes students in various competitions and awards, from cash bursaries for top performing students to the highest of awards from international organisations.

In recent years students from NAOME have been triumphant in the following high profile competitions:
- Science, Engineering & Technology Student of the Year (SET Awards)
- Best Maritime Technology Student (SET Awards)
- Double winner of BP’s Ultimate Field Trip Competition
- Strathclyder of the Year

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

There are two teaching periods (semesters) of 12 weeks each. Some of the second semester subjects are taught over eight weeks. This is so that you can devote as much time as possible to your individual project work.

Course modules are delivered in form of formal lectures supported with tutorials and laboratory experiment.

- Guest lectures
During term time, we arrange weekly seminars in which leaders and pioneers of the maritime, oil and gas and marine renewables industries visit the department and present to students. This is a great way of supplementing your education with the latest developments and gaining industry contacts for your future career.
Industrial visits are also made to a variety of companies.

Assessment

There are two types of method for module assessment. One is course work assessment only, the other is examination assessment. For examined modules the final assessment mark consists of 30-40% course work marks and 60-70 examination marks.

Careers

Graduates will be well-prepared for a challenging career in all sectors of offshore engineering dealing not only with offshore floating systems but also fixed marine structures.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The emergence of the Law of the Sea Convention and establishment of Exclusive Economic Zones has given coastal states extensive and comprehensive rights and obligations over marine resources in vast areas of ocean. Read more
The emergence of the Law of the Sea Convention and establishment of Exclusive Economic Zones has given coastal states extensive and comprehensive rights and obligations over marine resources in vast areas of ocean. Wise management of ocean resources is essential if the full economic potential of these new entitlements is to be realised. To ensure the continuing biological productivity of these areas, the level and type of development of activities such as waste dumping, mineral extraction, recreation, industrial and urban growth, fisheries and aquaculture, need to be controlled, and interactions of these often conflicting activities resolved by management.

This MSc is a full-time one-year course, consisting of 9 months taught course and 3 months research project, and examined by continuous assessment. The course provides theoretical and practical training in measuring and quantifying marine resources and the effects of conflicting usage upon them. It provides a sound scientific basis on which to develop policy and make decisions on marine resource exploitation and protection around the world.

Course Aims
To broaden the student's awareness of the economic potential of the ocean, to generate an understanding of the major marine biological resources and the physical processes controlling these resources, to provide theoretical and practical training in measuring and quantifying these resources and the effects of conflicting usage upon them, to enhance those skills necessary to manage effectively the sea area of national jurisdiction, and to produce graduates with appropriate experience for developing policy and making decisions on marine resources and other marine uses for their individual countries or regions. To date, most graduates have taken up employment in the field of marine environmental protection in the UK and abroad.

You will receive training in the following major modules:

Marine Ecology Skills
Marine Fisheries
Coastal Habitat Ecology and Survey
Marine Environmental Impacts and their Assessment
Marine Conservation and Coastal Zone Management
Research Project design and Planning
Research Project and Dissertation
Modules combine different learning approaches, including taught lectures, seminars and working groups, practicals in the laboratory, on the shore or at sea, as well as personal study and practical research.

Skills Trained
The broad areas covered in each module are outlined below. For more detail on what our current students are studying you can take a look at our online module information.

Marine Ecology Skills
Experimental and survey design
Statistical techniques
Ship work
Taxonomic Workshop
Marine benthos survey
Statistical analysis
Report writing
Marine Fisheries
Fisheries biology
Fisheries resources
Fisheries survey at sea
Population dynamics of fin fish
Coastal Habitat Ecology and Survey
Coastal habitat ecology
Survey techniques
Planning biological surveys
Risk assessment
Team field survey
Marine Environmental Impacts and their Assessment
Physical and chemical processes causing impacts
Development of the coastal zone
Environmental Impact Assessment
Preparation of an Environmental Impact Statement
Consultant / Developer interviews
EIA public meeting
Marine Conservation and Coastal Zone Management
Environmental remote sensing and Geographical Information Systems
Coastal Zone Law
Socioeconomics
Biodiversity
Conservation
Sustainability
Integrated Coastal Zone Management
Coastal Zone Management Conference
Research Project Design and Planning
Literature review
Project proposal development
Scientific peer review
Research Project and Dissertation
Health and Safety
Practical research at home or overseas
20,000 word dissertation

Read less

Show 10 15 30 per page



Cookie Policy    X