• University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
Coventry University Featured Masters Courses
University of Leeds Featured Masters Courses
"nuclear" AND "science"×
0 miles

Masters Degrees (Nuclear Science)

We have 145 Masters Degrees (Nuclear Science)

  • "nuclear" AND "science" ×
  • clear all
Showing 1 to 15 of 145
Order by 
Why Surrey?. At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries. Read more

Why Surrey?

At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries.

Programme overview

Drawing upon our existing expertise and supported by our MSc in Radiation and Environmental Protection, one of UK’s longest running programmes in its field, our programme will give you a thorough grounding in nuclear science and its applications. This new programmes differs from our existing MSc in Radiation and Environmental Protection as both the group project and the summer dissertation project will be on nuclear science and application topics.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer and students will have the opportunity to complete their dissertation on a topic specialising in nuclear research.

Programme structure

This programme is studied full-time over one academic year. Part-time students study over two academic years, within which the workload is evenly distributed.

The course consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes an eight-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research group project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for the summer dissertation project to be taken in an external industrial environment.

Careers

Completion of this programme will result in strong job opportunities in the nuclear industry, a growing international industry.

The programme will also naturally lead into further study, such as completion of a PhD.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme Learning Outcomes

Knowledge and understanding

  • A systematic understanding of Nuclear Science and Applications in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Nuclear Science and / or its application
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to nuclear science and applications in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of nuclear science
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development


Read less
There is a substantial continuing need for specialist engineers to service the nuclear industry for the operation and decommissioning of the existing reactors, and a growing worldwide programme of building new reactors. Read more
There is a substantial continuing need for specialist engineers to service the nuclear industry for the operation and decommissioning of the existing reactors, and a growing worldwide programme of building new reactors. Against this background, The University of Manchester is offering a postgraduate programme in Nuclear Science & Technology to help supply the industry with expertise level to help fill the predicted skills gap.

Coursework and assessment

Assessment is by written examination, assignment and end of year project/dissertation.

Career opportunities

The aim of this programme is to give graduates and professionals a firm grounding in Nuclear Science & Technology in order to facilitate their advancement in this substantial industry.

Read less
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. Read more
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. This environment of collaboration with key industrial partners enriches your learning experience and exposes you to the scientific and engineering challenges facing nuclear energy today.

The programme offers you the opportunity to gain skills and experience highly sought after by the nuclear industry. As you learn about five key themes of nuclear science and engineering from experts in the field you will develop skills in problem-solving, team-building, communication and scientific writing.

During the challenge project element of the programme you will join a multi-disciplinary team in approaching a genuine industry problem. The challenge is set by industry partners, who will act as your industrial supervisors, provide guidance on your work and attend your final presentation. Previous industry partners include Sellafield, EDF Energy and the Culham Centre for Fusion Energy.

This area of scientific study demands state-of-the-art facilities, and the programme gives you access to a suite of multi-million pound, cutting-edge analytical equipment, supported by dedicated technicians. Facilities include profiling systems, x-ray microscopes, a 200-acre site focused on robotics and device sensor development, and the largest earthquake simulator in the UK.

Programme structure

The five key themes that run through the programme are: the nuclear cycle; nuclear reactor materials and design; nuclear structural integrity; nuclear professionalism and nuclear systems; infrastructure, hazards and risk.

Teaching consists of core lecture-based units in science and engineering:
-Fundamentals of Nuclear Science
-Nuclear Reactor Engineering
-Nuclear Material Behaviour
-Nuclear Reactor Physics
-Nuclear Fuel Cycle

The Research Skills and Group Project units help develop the skills needed to work in this area, including industry-focused workshops, an industry-set challenge and a major individual research project, for which the practical work takes place over the summer.

Careers

Graduates will leave equipped with a familiarity with the nuclear industry and its unique safety culture, and they will be prepared to enter the industry or continue towards further research in academia.

Read less
Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up. Read more

About the course

Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up.

You’ll be based in the department’s world-leading NucleUS Immobilisation Science Laboratory, and will take eight modules on the nuclear fuel cycle. Topics include reactor materials and nuclear waste management with each module including one week at one of our partner universities.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Sample modules

Processing, Storage and Disposal of Nuclear Waste; Nuclear Fuel Cycle; Reactor Physics and Criticality; Risk Management.

Read less
Delivered by a consortium of ten universities and institutes, this full- or part-time programme will give you access to more than 90% of the UK’s nuclear teaching expertise. Read more
Delivered by a consortium of ten universities and institutes, this full- or part-time programme will give you access to more than 90% of the UK’s nuclear teaching expertise.

For the MSc you’ll be asked to choose four core modules and four elective modules, and to complete a project and dissertation to the value of 180 credits.

We’ve grouped the modules in streams to accommodate students’ different interests. To complete each will take approximately 150 hours of work, including one week’s direct teaching.

It’s also possible to qualify for a Diploma (120 credits) by completing the four core modules plus four elective modules; or a Certificate (60 credits) by completig the four core modules.

Key Facts

REF 2014
We're 15th in UK for 4* and 3*research (world leading and internationally excellent), and we achieved 100% excellence in a research environment.

Why Department of Physics?

Excellent facilities

We're a major centre for research and recieve around £35m of funding per year from the research councils, the University and other sources.

Exciting, rigorous research environment

Study for a Physics PhD, MPhil, MRes or pursue one of our taught MSc programmes.

Career prospects

Past Physics postgraduates have begun careers in academia and other public or private research environments, in industry (for example in the nuclear and nuclear related industries), in financial services, health services, the scientific civil service and further education both in the UK and abroad.

Read less
Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. Read more

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. The Belgian Nuclear Higher Education Network (BNEN) combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre SCK-CEN.

What is the Master of Nuclear Engineering about? 

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including:

  • power production
  • nuclear fuel production
  • radioelement production
  • engineering
  • accelerator design and fabrication
  • waste management
  • safety management
  • nuclear medicine
  • research

 The Belgium Nuclear Higher Education Network combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre. 

Structure

The current programme can be divided into three core blocks:

  • Introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, materials sciences and the principles of energy conversion through use of nuclear phenomena, supplemented by a core block of nuclear engineering applied to electricity generation and reactor use; theory of reactors and neutronics, thermal hydraulic phenomena during reactor operation, the nuclear fuel cycle and specific material-corrosion problems.
  • A block of elective courses that allow students to deepen certain topics of their choice.
  • A Master’s thesis.

The collaboration with SCK*CEN makes it possible to include actual use of facilities in the curriculum, supporting the development of skills and competences in a research environment. All subjects are taught by academics appointed by the partner universities, whereas the practical exercises and laboratory sessions are supervised by the experts of SCK*CEN. The Master’s thesis offers an opportunity for internship in industry or in a research laboratory.

All teaching activities take place on the premises of SCK*CEN. Courses are organised in English and in a modular way; teaching in blocks of one to three weeks for each module allows optimal time management for students and lecturers, facilitates registration for individual modules, and allows easy exchange with international students.

BNEN has served as a role model for the European Nuclear Education Network (ENEN) which now has become an association of over 60 members (universities, industry, regulators, research centres), aiming at facilitating mobility in Europe for students in nuclear engineering.

One particular aspect of the BNEN degree is that it automatically leads to the recognition as Class I Expert by the Federal Agency of Nuclear Control. In order to receive this accreditation the programme must at least offer 24 credits in Nuclear Safety and 12 credits in Radioprotection. 

Spotlight 

The Master of Science in Nuclear Engineering programme is an internationally oriented, interuniversity programme organised by BNEN in close collaboration with nuclear research centres and industry. The aim of the BNEN programme is to provide students with all the skills and scientific and technical background necessary to carry out duties at a high level of responsibility in order to ensure the safe and economical operation of nuclear power plants, the regulation and control of nuclear installations or to design new nuclear systems.

A major strength of the BNEN programme, as to its sustainability, is that it allows providing high quality academic education by experts from (or appointed by) the main Belgian universities at low individual cost and thus very efficiently harmonised/rationalised. In addition, the participation of the nuclear research centre SCK*CEN in the consortium provides superb realistic experimental facilities in a difficult (radioactive) environment at low cost for the universities.

A further fundamental strength of the programme can be found in the fact that a well-balanced curriculum is offered where the contents and format have been discussed at length with representatives of the major nuclear companies that are the first potential employers of the graduates. Objectives and programme outcomes were defined that encompass in depth disciplinary specific competences as well as, but in a less pronounced way, transferable skills and competences that are needed for an efficient integration of a graduate in a larger engineering team. There is a nearly complete overlap between objectives and realised competences in courses, electives, exercises and Master’s thesis. This can be ascribed to the following contributing factors:

  • There is a good balance between theory and practical skills. This is implemented through an appropriate diversity of didactic formats, including exercises and/or labs for nearly all courses.
  • There is a good balance between basic subjects and advanced subjects through elective course modules and topical days organized by SCK*CEN.
  • There is appropriate care for multidisciplinary scientific competences and for transferable skills through the importance given to the Master’s thesis.
  • The competences of the teaching staff (lecturers and assistants) with respect to the theoretical background are strong.
  • There is a good mix of junior and senior lecturers.
  • The education in programmes is backed by world-class research at the universities, the research center and the involvement of teachers working in international research institutes.
  • The involvement of several professors who have their principal employment in nuclear companies.
  • There is a large and dynamic group of young researchers involved in the course teaching (seminars), labs and exercises sessions and as mentors of Master’s theses.
  • Both the professors and the young researchers are very active in the major international research programmes and associations related to applications of nuclear phenomena.

Career perspectives

Graduates possess the necessary skills and knowledge to carry out duties at a high level of responsibility in:

  • nuclear power plants
  • nuclear research reactors
  • nuclear regulatory organisations
  • nuclear engineering firms
  • nuclear fuel fabrication
  • nuclear waste treatment
  • radio-isotope production

In addition, the degree itself is an important part of the legal qualifications necessary to become a safety professional in a major nuclear installation.



Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Our Nuclear Medicine. Science & Practice course will give you the skills to deliver safe, high-quality nuclear medicine services based on training in a strong scientific and academic framework in an approved structured service environment. . Read more

Our Nuclear Medicine: Science & Practice course will give you the skills to deliver safe, high-quality nuclear medicine services based on training in a strong scientific and academic framework in an approved structured service environment. 

Key benefits

  • GMC approved course for nuclear medicine training in the uk
  • Conveniently based in central London
  • All learning materials, including audio-recorded lectures, are accessible online via King’s E-learning and Teaching Service (KEATS) to support distance learning.
  • Contact with experts and key opinion leaders from across the UK.
  • Close links with leading London Medical Schools and nuclear medicine departments.

Description

This course draws on professional expertise from many disciplines. Our lectures will instruct you in clinical practice, radiopharmaceutical, scientific and regulatory issues in nuclear medicine, as well as providing a solid foundation in diagnostic nuclear oncology and radionuclide therapy. The course features practical components, ranging from clinical observations, audit, physics and radiopharmacy experiments and original research.

This course will develop your skills so that you can provide safe, high-quality nuclear medicine services.

Course purpose

This programme develops skills for the provision of safe, high-quality nuclear medicine services by offering nuclear medicine training with a strong scientific and academic framework in an approved structured service environment.

Course format and assessment

Teaching

If you are an MSc student, you will have 222 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

If you are a PG Dip student, you will have 174 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

If you are a PG Cert student, you will have 120 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

Typically, one credit equates to 10 hours of work.

Assessment

We will assess you through a variety of methods, including:

  • Unseen written exams
  • Coursework
  • Practical Logbooks
  • Written Thesis 

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change.

Extra information

This course is primarily taught at the King’s College London St Thomas’ Campus. All teaching materials are accessible on line via the KEATs eLearning platform to support distance learning and revision. Lectures are delivered at St Thomas’ Hospital with a short mini module at Great Ormond Street Hospital. Work placements are usually undertaken in the students’ own institution (UK students) or in major London Teaching hospitals.  

Career prospects

Students continue to work in a range of nuclear medicine services.



Read less
Programme Aims. Read more

Programme Aims

This award is offered within the Postgraduate Scheme in Health Technology, which aims to provide professionals in Medical Imaging, Radiotherapy, Medical Laboratory Science, Health Technology, as well as others interested in health technology, with an opportunity to develop advanced levels of knowledge and skills.

The award in Medical Imaging and Radiation Science (MIRS) is specially designed for professionals in medical imaging and radiotherapy and has the following aims.

A. Advancement in Knowledge and Skill

  • ​To provide professionals in Medical Imaging and Radiotherapy, as well as others interested in health technology, with the opportunity to develop advanced levels of knowledge and skills;
  • To develop specialists in their respective professional disciplines and enhance their career paths;
  • To broaden students' exposure to a wider field of health science and technology to enable them to cope with the ever-changing demands of work;
  • To provide a laboratory environment for testing problems encountered at work;
  • To equip students with an advanced knowledge base in a chosen area of specialisation in medical imaging or radiotherapy to enable them to meet the changing needs of their disciplines and contribute to the development of medical imaging or radiation oncology practice in Hong Kong; and
  • To develop critical and analytical abilities and skills in the areas of specialisation that are relevant to the professional discipline to improve professional competence.

B. Professional Development

  • ​To develop students' ability in critical analysis and evaluation in their professional practices;
  • To cultivate within healthcare professionals the qualities and attributes that are expected of them;
  • To acquire a higher level of awareness and reflection within the profession and the healthcare industry to improve the quality of healthcare services; and
  • To develop students' ability to assume a managerial level of practice.

C. Evidence-based Practice

  • ​To equip students with the necessary skill in research to enable them to perform evidence-based practice in the delivery of healthcare service and industry.

D. Personal Development

  • ​To provide channels through which practising professionals can continuously develop themselves while at work; and
  • To allow graduates to develop themselves further after graduation.

Characteristics

The Medical Imaging and Radiation Science award offers channels for specialisation and the broadening of knowledge for professionals in medical imaging and radiotherapy. It will appeal to students who are eager to become specialists or managers in their areas of practice. Clinical experience and practice in medical imaging and radiotherapy are integrated into the curriculum to encourage more reflective observation and active experimentation.

Programme Structure

To be eligible for the MSc in Medical Imaging and Radiation Science (MScMIRS), students are required to complete 30 credits:

  • 2 Compulsory Subjects (6 credits)
  • 3 Core Subjects (9 credits)
  • 5 Elective Subjects (15 credits)

Apart from the award of MScMIRS, students can choose to graduate with one of the following specialisms:

  • MSc in Medical Imaging and Radiation Science (Computed Tomography)
  • MSc in Medical Imaging and Radiation Science (Magnetic Resonance Imaging)
  • MSc in Medical Imaging and Radiation Science (Ultrasonography)

To be eligible for the specialism concerned, students should complete 2 Compulsory Subjects (6 credits), a Dissertation (9 credits) related to that specialism, a specialism-related Specialty Subject (3 credits), a Clinical Practicum (3 credits) and 3 Elective Subjects (9 credits).

 Compulsory Subjects

  • Research Methods & Biostatistics
  • ​Multiplanar Anatomy

Core Subjects

  • Advanced Radiotherapy Planning & Dosimetry
  • Advanced Radiation Protection
  • Advanced Technology & Clinical Application in Computed Tomography *
  • Advanced Technology & Clinical Application in Magnetic Resonance Imaging *
  • Advanced Technology & Clinical Application in Nuclear Medicine Imaging
  • Advanced Topics in Health Technology
  • Advanced Ultrasonography *
  • Clinical Practicum (CT/MRI/US)
  • Dissertation
  • Digital Imaging & PACS
  • Imaging Pathology

 * Specialty Subject

Elective Subjects

  • Bioinformatics in Health Sciences
  • Professional Development in Infection Control Practice


Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
The Science Communication MA at Kent is unique in that it includes both practical and critical aspects of the subject. Read more

The Science Communication MA at Kent is unique in that it includes both practical and critical aspects of the subject. You engage with a variety of media, including print, audio-visual and web-based presentation. 

You are taught by lecturers in medical and science humanities, and by scientists. These include nationally recognised teachers, a blogger for a national newspaper, museum experts and regulars on national media.

About the School of History

The School of History at the University of Kent offers a great environment in which to research and study. Situated in a beautiful cathedral city with its own dynamic history, the University is within easy reach of the main London archives and is convenient for travelling to mainland Europe.

The School of History is a lively, research-led department where postgraduate students are given the opportunity to work alongside academics recognised as experts in their respective fields. The School was placed eighth nationally for research intensity in the Research Excellence Framework 2014.

There is a good community spirit within the School, which includes regular postgraduate social meetings, weekly seminars and a comprehensive training programme with the full involvement of the School's academic staff.

National ratings

History at Kent was ranked 19th in The Guardian University Guide 2017. In the National Student Survey 2016, 94% of our History students were satisfied with the overall quality of their course. 

History at Kent was ranked 16th for graduate prospects in The Guardian University Guide 2017 and 17th for graduate prospects in The Complete University Guide 2017. Of History students who graduated in 2015, 92% were in work or further study within six months (DLHE).

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules.

You take four modules including two compulsory modules (BI830, Science at Work and HI866, Science and Medicine in Context) and two additional specialist modules (to be chosen from a choice of variable yearly options). 

During the summer term and over the summer vacation you take the History Dissertation module, which involves writing a 15,000-18,000 word thesis. 

HI866 - Science and Medicine in Context (30 credits)

BI830 - Science at Work (30 credits)

HI817 - Deformed, Deranged and Deviant (30 credits)

HI857 - Geiger Counter at Ground Zero: Explorations of Nuclear America (30 credits)

HI881 - Museums, Material Culture and the History of Science (30 credits)

HI883 - Work Placement (30 credits)

HI887 - Knowledge in the Real World (30 credits)

HI888 - Money and Medicine in Britain and America since 1750 (30 credits)

HI993 - History Dissertation (60 credits)

The programme aims to:

  • equip students to communicate science effectively in a variety of media
  • enable students to understand the social and professional processes by which scientific knowledge is made and communicated
  • give students an understanding of the process of scientific investigation
  • provide a stimulating, research-active environment for teaching and learning in which students are supported and motivated to achieve academic and personal potential
  • facilitate learning experience (integration and application of knowledge) through a variety of teaching and assessment methods
  • give students the experience of undertaking an independent research project
  • prepare students for further training and employment in science and non-science based careers by developing transferable and cognitive skills
  • develop the qualities needed for employment in situations requiring the exercise of professionalism, independent thought, personal responsibility and decision-making in complex and unpredictable circumstances Provide access to as wide a range of students as practicable

Research areas

Medieval and early modern history

Covering c400–c1500, incorporating such themes as Anglo-Saxon England, early-modern France, palaeography, British and European politics and society, religion and papacy.

Modern history

Covering c1500–present, incorporating such themes as modern British, European and American history, British military history, and 20th-century conflict and propaganda.

History of science, technology and medicine

Incorporating such themes as colonial science and medicine, Nazi medicine, eugenics, science and technology in 19th-century Britain.

Careers

As the job market becomes increasingly competitive, postgraduate qualifications are becoming more attractive to employers seeking individuals who have finely tuned skills and abilities, which our programmes encourage you to hone. As a result of the valuable transferable skills developed during your course of study, career prospects for history graduates are wide ranging. Our graduates go on to a variety of careers, from research within the government to teaching, politics to records management and journalism, to working within museums and galleries – to name but a few.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/



Read less
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. Read more
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. It gives healthcare professionals currently involved in Nuclear Medicine practice the opportunity to develop and enhance their skills and understanding of this rapidly evolving subject and its application.

Key benefits

This course is accredited by the Society and College of Radiographers (SCoR).

Course detail

The MSc Nuclear Medicine course provides the educational and research foundations required to evaluate current working practice and understand the opportunities currently available in nuclear medicine and molecular imaging environments. As a result, peer learning is a big part of this course's value to individuals and employers. In addition to developing skills directly linked to clinical practice, you will also have the opportunity to contribute to the nuclear medicine knowledge base through research and publication.

This course is designed in conjunction with a number of clinical experts, and our partnership with clinical software provider Hermes Medical Solutions. This means it produces competent and professional practitioners with the skills needed to optimise and promote this imaging modality in current models of patient care.

Year 1 Postgraduate Certificate

• Fundamental Clinical Skills in Nuclear Medicine
• Science and Instrumentation in Current Nuclear Medicine Practice
• Cross-sectional Anatomy for the Nuclear Medicine Practitioner

Year 2 Postgraduate Diploma

• Enhancing Nuclear Medicine Practice
• Current Applications of Hybrid Imaging Practice
• Evidencing Work Based Learning

Year 3 MSc

• Health and Social Care Research: Methods and Methodology
• Research Dissertation

Format

The course is mostly distance-based, with only three contact days per year. This approach is highly popular for employers and employees in nuclear medicine, and is supported by a range of clinical experts alongside the UWE academic team. It's designed to give you the knowledge and skills needed to practice in a safe and competent manner, and a comprehensive education and research base to evaluate and inform current and future practice. There are many opportunities for inter-professional collaboration and shared learning, and you'll learn in practical settings how nuclear medicine contributes to patient management.

Assessment

Assessment methods include written assignments, case studies, online interactions and clinical portfolios.

Careers / Further study

You must be currently practicing nuclear medicine the routes available on this course are designed to help you complement existing skills and knowledge with a view to career progression.

Our links with software providers, and nuclear medicine practitioners and employers, are excellent, and this course is designed to benefit you and your employer by enhancing your ability to contribute to current thinking and practice.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
We have designed our Science & Security MA to provide you with a detailed understanding of science and its relationship to international politics. Read more

We have designed our Science & Security MA to provide you with a detailed understanding of science and its relationship to international politics. Developments in technology are central to all aspects of international conflict and you will need a multidisciplinary understanding of these developments to fully comprehend their policy implications. Through this programme you will gain a deep understanding of topics such as nuclear weapons, arms control verification, cyber security, and terrorism.

Key benefits

  • We have designed this unique programme to develop your ability to understand and analyse the security implications of scientific and technological developments, while utilising knowledge and tools of analysis from the hard sciences, political science, history, philosophy and sociology.
  • Our Centre for Science and Security Studies, based in the Department of War Studies, provides a vibrant home for our MA programme. It has a growing team of PhD students and researchers, and sponsors its own speaker series.
  • You are encouraged to apply for internships (on our research projects and/or with other relevant institutions in London such as the Verification Research, Training and Information Centre (VERTIC) and IISS).
  • You will have access to visiting academics, serving officers, government ministers and other experts who give regular public lectures and seminars.
  • The Department of War Studies is unique in the UK and one of the very few university departments in the world devoted exclusively to the study of war as a human phenomenon.
  • Our Department has an excellent reputation as a graduate-training institution and is recognised as such by the British Academy, the Arts and Humanities Research Council and the Economic and Social Research council.
  • Taught by leading experts who bring an extensive and continually growing network of links with other departments, think-tanks, organisations, policymaking bodies and institutions.

Description

It is increasingly important to understand the security implications of scientific and technological developments. While science and technology have always affected national and international security, current developments in the space, nuclear and biological weapons and long-range missiles, as well as work in biotechnology and information technology suggest that science will exert a greater and more complex influence on security and policy planning. At the same time, individuals and sub-national groups have greater access to new technologies than ever before.

Our course will provide you with an integrated understanding of science and politics. You will develop an understanding of the science underlying key weapons systems and technologies, the main concepts and tools of international politics and security studies and the process by which scientists and policymakers can interact productively in the policy process. Our goal is to equip you to analyse the impact of current and future scientific developments on security.

Course purpose

Our course is designed to provide you with an integrated understanding of science and international politics to cope with the demands of the emerging security agenda.

Course format and assessment

Teaching

For lectures, seminars andf feedback, you will typically have 20-40 hours per 40 credit module plus 12 hours of dissertation supervision. You will also have approximately 360 hours per 40 credit module plus 588 hours for dissertation for self-study. Typically, one credit equates to 10 hours of work.

Assessment

Most 20 and 40-credit modules are assessed through a combination of essays, presentation, oral vivas and/or exams.

The dissertation module assessment will be based on a 100% dissertation assignment (up to 15,000 words).

Career prospects

War Studies graduates go on to work for NGOs, the FCO, the MOD, the Home Office, NATO, the UN or pursue careers in journalism, finance, academia, the diplomatic services, the armed forces and more. Recent posts held by our alumni include Threat Analyst, Director of Political Violence Forecasting, Research Advisor at NATO Defence College, Foreign Policy Fellow.



Read less
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation. Read more
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation.

The University of Birmingham has a long and established track record of research and education in the nuclear sector, including reactor technology, metallurgy and materials, decommissioning and waste management, dating back to the earliest days of the nuclear industry. The University runs one of the longest-standing Masters level courses in the nuclear sector (over 50 years), in the Physics and Technology of Nuclear Reactors (PTNR). The University has extensive links to the nuclear industry and regulators both within the UK and internationally, including National Nuclear Labs, Japan Atomic Energy Agency, Idaho National Labs, NAGRA, British Energy, AMEC, Serco, HSE (NII), Atkins, Babcock Marine, Westinghouse, UKAEA, EDF, E.ON and RWE NPower.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include
◾Advanced data analysis
◾Detection and analysis of ionising radiation
◾Environmental radioactivity
◾Imaging and detectors
◾Nuclear power reactors
◾Research skills
◾Extended project

Optional courses include
◾Advanced electromagnetic theory
◾Advanced nuclear physics
◾Computational physics laboratory
◾Dynamics, electrodynamics and relativity
◾Energy and environment
◾Medical imaging
◾Nuclear and particle physics
◾Relativistic quantum fields
◾Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

For further information on the content of individual courses please see Honours and Masters level courses.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less

Show 10 15 30 per page



Cookie Policy    X