• University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
Imperial College London Featured Masters Courses
Durham University Featured Masters Courses
Swansea University Featured Masters Courses
"nuclear" AND "physics" A…×
0 miles

Masters Degrees (Nuclear Physics Research)

We have 81 Masters Degrees (Nuclear Physics Research)

  • "nuclear" AND "physics" AND "research" ×
  • clear all
Showing 1 to 15 of 81
Order by 
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. Read more

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. The Belgian Nuclear Higher Education Network (BNEN) combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre SCK-CEN.

What is the Master of Nuclear Engineering about? 

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including:

  • power production
  • nuclear fuel production
  • radioelement production
  • engineering
  • accelerator design and fabrication
  • waste management
  • safety management
  • nuclear medicine
  • research

 The Belgium Nuclear Higher Education Network combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre. 

Structure

The current programme can be divided into three core blocks:

  • Introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, materials sciences and the principles of energy conversion through use of nuclear phenomena, supplemented by a core block of nuclear engineering applied to electricity generation and reactor use; theory of reactors and neutronics, thermal hydraulic phenomena during reactor operation, the nuclear fuel cycle and specific material-corrosion problems.
  • A block of elective courses that allow students to deepen certain topics of their choice.
  • A Master’s thesis.

The collaboration with SCK*CEN makes it possible to include actual use of facilities in the curriculum, supporting the development of skills and competences in a research environment. All subjects are taught by academics appointed by the partner universities, whereas the practical exercises and laboratory sessions are supervised by the experts of SCK*CEN. The Master’s thesis offers an opportunity for internship in industry or in a research laboratory.

All teaching activities take place on the premises of SCK*CEN. Courses are organised in English and in a modular way; teaching in blocks of one to three weeks for each module allows optimal time management for students and lecturers, facilitates registration for individual modules, and allows easy exchange with international students.

BNEN has served as a role model for the European Nuclear Education Network (ENEN) which now has become an association of over 60 members (universities, industry, regulators, research centres), aiming at facilitating mobility in Europe for students in nuclear engineering.

One particular aspect of the BNEN degree is that it automatically leads to the recognition as Class I Expert by the Federal Agency of Nuclear Control. In order to receive this accreditation the programme must at least offer 24 credits in Nuclear Safety and 12 credits in Radioprotection. 

Spotlight 

The Master of Science in Nuclear Engineering programme is an internationally oriented, interuniversity programme organised by BNEN in close collaboration with nuclear research centres and industry. The aim of the BNEN programme is to provide students with all the skills and scientific and technical background necessary to carry out duties at a high level of responsibility in order to ensure the safe and economical operation of nuclear power plants, the regulation and control of nuclear installations or to design new nuclear systems.

A major strength of the BNEN programme, as to its sustainability, is that it allows providing high quality academic education by experts from (or appointed by) the main Belgian universities at low individual cost and thus very efficiently harmonised/rationalised. In addition, the participation of the nuclear research centre SCK*CEN in the consortium provides superb realistic experimental facilities in a difficult (radioactive) environment at low cost for the universities.

A further fundamental strength of the programme can be found in the fact that a well-balanced curriculum is offered where the contents and format have been discussed at length with representatives of the major nuclear companies that are the first potential employers of the graduates. Objectives and programme outcomes were defined that encompass in depth disciplinary specific competences as well as, but in a less pronounced way, transferable skills and competences that are needed for an efficient integration of a graduate in a larger engineering team. There is a nearly complete overlap between objectives and realised competences in courses, electives, exercises and Master’s thesis. This can be ascribed to the following contributing factors:

  • There is a good balance between theory and practical skills. This is implemented through an appropriate diversity of didactic formats, including exercises and/or labs for nearly all courses.
  • There is a good balance between basic subjects and advanced subjects through elective course modules and topical days organized by SCK*CEN.
  • There is appropriate care for multidisciplinary scientific competences and for transferable skills through the importance given to the Master’s thesis.
  • The competences of the teaching staff (lecturers and assistants) with respect to the theoretical background are strong.
  • There is a good mix of junior and senior lecturers.
  • The education in programmes is backed by world-class research at the universities, the research center and the involvement of teachers working in international research institutes.
  • The involvement of several professors who have their principal employment in nuclear companies.
  • There is a large and dynamic group of young researchers involved in the course teaching (seminars), labs and exercises sessions and as mentors of Master’s theses.
  • Both the professors and the young researchers are very active in the major international research programmes and associations related to applications of nuclear phenomena.

Career perspectives

Graduates possess the necessary skills and knowledge to carry out duties at a high level of responsibility in:

  • nuclear power plants
  • nuclear research reactors
  • nuclear regulatory organisations
  • nuclear engineering firms
  • nuclear fuel fabrication
  • nuclear waste treatment
  • radio-isotope production

In addition, the degree itself is an important part of the legal qualifications necessary to become a safety professional in a major nuclear installation.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Laser Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Laser Physics enables students to pursue a one year individual programme of research. The Laser Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The two main research groups within the Department of Physics currently focus on the following areas of research:

Atomic, Molecular and Quantum Physics Group

Fundamental Atomic Physics

Condensed Matter and Material Physics

Analytical Laser Spectroscopy

Particle Physics Theory Group

String theory, quantum gravity and the AdS/CFT correspondence

Lattice gauge theories, QCD

Supersymmetric field theory, perturbative gauge theory

Field Theory in curved spacetime

Physics beyond the standard model

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Laser Physics programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanotechnology (Physics)  at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanotechnology (Physics)  at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Nanotechnology (Physics) enables students to pursue a one year individual programme of research. The Nanotechnology (Physics) programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

For MSc by Research in Nanotechnology (Physics) programme you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element. The Nanotechnology (Physics) programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research in Nanotechnology (Physics) you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the MSc by Research in Nanotechnology (Physics) in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

This MSc by Research in Nanotechnology comes under the Nano-physics and the life sciences research area at Swansea. The fundamental understanding of the electronic, structural, chemical and optical properties of materials on the nano-scale is essential for advances in nanotechnology, in particular the development of new devices via the incorporation of novel materials. Advances in experimental physics underpin these developments via characterisation and quantification of quantum phenomena which dominate at these length scales.

The Nanotechnology research concentrates on two main areas: determining properties of materials (e.g., graphene) on the nano-scale using scanning probe based techniques; the development of imaging and laser based spectroscopic techniques to study biological samples (e.g., imaging of cellular components and bacteria).



Read less
What is the Master of Physics all about?. The programme aims to train physicists capable of working in research institutes or corporate environments. Read more

What is the Master of Physics all about?

The programme aims to train physicists capable of working in research institutes or corporate environments. Upon successful completion of the programme, students will have acquired:

  • thorough knowledge of physics in general as well as more in-depth knowledge of at least one specialized area;
  • the ability to make sound judgments informed by current research;
  • the ability to gain new insights and results and to develop new methods;
  • the ability to solve physical problems using the most appropriate experimental and/or theoretical methods and to report on research findings;
  • the ability to structure and analyse specific problems in different situations;
  • strong teamwork skills;
  • the ability to communicate findings and insights;
  • a critical understanding of the role that physics plays in society.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

After a semester with advanced courses in different disciplines of physics, you choose a major research specialization consisting of advanced and specialized courses and a master’s thesis of 30 ECTS.

The remaining 30 ECTS allow you to follow one of two options: Research or Physics in Society.

  • The Research option prepares you for a research career in academia or industry. You broaden your research skills by choosing a minor research domain, including at least 12 ECTS courses from that domain and complemented by a research internship or with other courses.
  • The Physics and Society option offers you the opportunity to prepare for a career as a physicist outside academia, through courses preparing you for entrepreneurship or via an internship in a company.

Department

The mission of the Department of Physics and Astronomy is exploring, understanding and modelling physical realities using mathematical, computational, experimental and observational techniques. Fifteen teams perform research at an international level. Publication of research results in leading journals and attracting top-level scientists are priorities for the department.

New physics and innovation in the development of new techniques are important aspects of our mission. The interaction with industry (consulting, patents...) and society (science popularisation) are additional points of interest. Furthermore, the department is responsible for teaching basic physics courses in several study programmes.

Objectives

The master students will grow into independent and critical scientists. Masters of physics will have developed sufficient knowledge and skills to participate in competitive national or international PhD programmes. Moreover the acquired research methodology will prepare the student for employment as a scientist in any chosen profession.

The curriculum is constructed in a way that the student can specialize in an area of choice by joining one of the research groups of the department. This specialization can be in the field of nuclear physics, condensed matter physics ortheoretical physics. A major part of the curriculum consists of research resulting in a master thesis. The subject of the thesis is chosen by the student during the course of the second semester of the 1st Master year and students join a research team from the 3th semester onwards.

The students can choose an option to prepare themselves better for a future in research or in industry or society related fields.

In the option "research" the student can take courses from another research specialization than its major one, which can be accompanied by an internship in one of the research teams of this minor discipline. As such our students have the possibility to broaden their knowledge in at least two scientific disciplines (in physics or a related field), which is invaluable when a further research career in or out of academia is considered.

In the option "Physics for society" students can choose for an internship of a full semester in a company or they can take courses from the LCIE Entrepreneurship Academy who wants to prepare academics for entrepreneurschip.

The Erasmus programme of the European Union offers an excellent opportunity for Belgian students who would like to combine their study with experience outside the KU Leuven. All research groups of the department have a network of European collaborators and we advise interested students to integrate this exchange with their thesis research during their second Master year. Choices concerning the Erasmus programme need to be made in December of the 1st Master year. Address the Erasmus coordinator to obtain specific information on this European programme.

Career perspectives

The Department of Physics and Astronomy at KU Leuven generates substantial research funding. Consequently, many research positions are available, and more than half the students obtaining a master’s degree in physics eventually start a PhD programme in one of the department’s research groups.

A number of graduates prefer to pursue a second master’s degree, with medical radiation physics, environmental sciences, and statistics as the most popular subjects. There are also excellent career opportunities in industry (ICT, material research, electronics), consulting, government, banking (statistics), and higher education. Unemployment is nonexistent among newly graduated physicists.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Particle Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Theoretical Particle Physics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Theoretical Particle Physics enables students to pursue a one year individual programme of research. The Theoretical Particle Physics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of Theoretical Particle Physics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more

The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

  • Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
  • You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
  • You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
  • With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
  • This programme has a September and January intake*. 

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include

  • Advanced data analysis
  • Detection and analysis of ionising radiation
  • Environmental radioactivity
  • Imaging and detectors
  • Nuclear power reactors
  • Research skills
  • Extended project

Optional courses include

  • Advanced electromagnetic theory
  • Computational physics laboratory
  • Dynamics, electrodynamics and relativity
  • Energy and environment
  • Medical imaging
  • Nuclear and particle physics
  • Nuclear physics
  • Relativistic quantum fields
  • Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.



Read less
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. Read more
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. The combination of nuclear technology with nuclear policy and business makes the course highly relevant to the challenges of 21st century energy needs, whether in the UK or in countries across the globe.

The MPhil is part of the University of Cambridge's Strategic Energy Initiative in response to the prospect of a nuclear renaissance in the UK and around the world. The aim is to provide a masters-level degree course in Nuclear Energy which will combined nuclear science and technology topics with business, management and policy teaching. Students will be equipped with the skills and information essential to responsible leadership of the international global nuclear industry.

The course recognises that, though the prospects for nuclear energy are now better than they have been for twenty years, the nuclear sector is situated within in a wider market for energy technologies, and has no special right to be developed. The political, economic and social contexts for nuclear power are as important as the technical merits of the designs of reactors and systems. The course therefore has a multi-disciplinary emphasis, aiming to be true to the reality of policy-making and business decision-making.

This course is for students who have a good degree in Engineering or related science subject and who wish to gain the knowledge and skills to build a career in the nuclear and energy sectors. Secondary career paths might include nuclear proliferation prevention, radiological protection, nuclear governance, nuclear medicine and health physics. While the prime focus of the course is to equip students for roles in industry, there is a path towards research through preparation for a PhD programme. The modular open architecture of the course allows students to tailor the degree to suit their background, needs and preferences.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmne

Course detail

The course will equip its graduates with a wide range of skills and knowledge, enabling them to fully engage in the nuclear sector.

Graduates will have developed a knowledge and understanding of nuclear technology, policy, safety and allied business. They will have received a thorough technical grounding in nuclear power generation, beginning with fundamental concepts and extending to a range of specialist topics. They will also be equipped with an appreciation of the wider social, political and environmental contexts of electricity generation in the 21st century, with a firm grounding in considering issues such as climate change, energy policy and public acceptability.

The programme will cultivate intellectual skills allowing graduates to engage with the business, policy and technical issues that the development and deployment of nuclear energy poses. These include skills in the modelling, simulation and experimental evaluation of nuclear energy systems; critically evaluating and finding alternative solutions to technical problems; applying professional engineering judgment to balance technological, environmental, ethical, economic and public policy considerations; working within an organisation to manage change effectively and respond to changing demand; understanding business practice in the areas of technology management, transfer and exploitation.

The programme will also develop transferable skills enabling graduates to work and progress in teams within and across the nuclear sector, including the management of time and information, the preparation of formal reports in a variety of styles, the deployment of critical reasoning and independent thinking.

Finally, graduates will have research experience having planned, executed, and evaluated an original investigative piece of work through a major dissertation.

Format

The MPhil in Nuclear Energy is based in the Department of Engineering and is run in partnership with Cambridge Judge Business School and the Departments of Materials Science and Metallurgy, and Earth Sciences.

The programme consists of six compuslory courses in nuclear technology and business management, and four elective courses chosen from a broad range of technical and management courses. These elective courses enable the student to tailor the content of the programme to his career needs; they range from wholly management-oriented courses to technical courses in preparation for an engineering role or further research through a PhD. A long research project is required, with topics chosen from a list offered by members of staffed and Industry Club members, and linked to the principal areas of energy research in their respective departments and companies.

Students are also expected to attend field visits, a Distinguished Lecture Series and weekly seminars, and are able to benefit from research skills training offered by the Department.

Assessment

A large individual research project will be undertaken, which will be examined in two parts. The first part will include a report (of up to 4,000 words) and a five-minute oral presentation. The second part is assessed through the writing of a 15,000 word dissertation, including a fifteen minute oral presentation.

All students will be required to complete at least four items of coursework.

All students will take at least three written examinations, of 1.5 hours each.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

UK applicants are eligible to apply for scholarships of £7,000; these scholarships are funded by the MPhil's industrial partners.

To apply for a scholarship, eligible applicants must list the Nuclear Energy Scholarship in Section B(4) of the online GRADSAF form. People wishing to be considered for a scholarship must submit their application before the end of May 2016.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Quantum Fields & String at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Quantum Fields & String at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Quantum Fields and String enables students to pursue a one year individual programme of research. The Quantum Fields & String programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the MSc by Research in Quantum Fields and String you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as world-leading or internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the Quantum Fields and String programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Cold Atoms and Quantum Optics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Cold Atoms and Quantum Optics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Cold Atoms and Quantum Optics enables students to pursue a one year individual programme of research. The Cold Atoms and Quantum Optics programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Cold Atoms and Quantum Optics programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate Cold Atoms and Quantum Optics student in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Lattice Gauge Theory at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Lattice Gauge Theory at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Lattice Gauge Theory enables students to pursue a one year individual programme of research. The Lattice Gauge Theory programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of Lattice Gauge Theory programme in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

AMQP Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

PPT Group

The Particle Physics Theory Group has fourteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Clinical Science (Medical Physics) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science

• Medical Imaging

• Nuclear Medicine and Diagnostic Imaging

• Radiation Protection

• Radiotherapy Physics

• Research Methods

• Advanced Radiotherapy

• Specialist Radiotherapy

• Advanced Radiation Safety

• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.

The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.



Read less
This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities. Read more

Organizing institutions

This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities: Vrije Universiteit Brussel, Katholieke Universiteit Leuven, Universiteit Gent, Université de Liège , Université Catholique de Louvain et Université Libre de Bruxelles and the Belgian Nuclear Research Centre (SCK-CEN). Students can enroll for this master program at each of the six partner universities. The program is built up of 31 ECTS of common compulsory courses, 9 ECTS of elective courses and a compulsory Master Thesis of 20 ECTS.

The primary objective of the programme is to educate young engineers in nuclear engineering and ts applications and to develop and maintain high-level nuclear competences in Belgium and abroad. BNEN catalyses networking between academia, research
centres, industry and other nuclear stakeholders. Courses are organised in English and in a modular way: teaching in blocks of one to three weeks for each course, allowing for optimal time management for professional students and facilitating registration for individual modules.
All courses take place at SCK•CEN, in Mol, Belgium. The lectures take place in a dedicated, brand-new classroom in the conference centre of SCK•CEN (Club-House), located in a wooded area and nearby the SCK•CEN restaurant and library services. SCK•CEN offers a variety of accommodation options: houses, villas, studios and dormitories. For more information visit: http://www.sckcen.be

About the programme

The one-year progamme was created in close collaboration with representatives of the utility companies and power plants and teaches students in all aspects of nuclear technology and its applications, creating nuclear engineering
experts in the broad sense. Exercises and hands-on sessions in the specialised laboratories of SCK•CEN complement the theoretical classes and strengthen the development of nuclear skills and attitudes in a research environment. Various technical visits
are organised to research and industrial nuclear facilities.
The programme can be divided into three core blocks:
ƒ- A set of introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, material sciences and the
principles of energy production through use of nuclear phenomena.
ƒ- A core block of nuclear engineering applied to power generation and reactor use; theory of reactors and neutronics, thermal hydraulic problems encountered in reactor exploitation, the nuclear fuel cycle and the specific material corrosion problems.
-ƒ An applications block where safe and reliable operation of nuclear power plants and the legal and practical aspects of radiation protection and nuclear measurements are discussed.

Scholarships

BNEN grants are available for full-time students.

Curriculum

http://www.vub.ac.be/en/study/nuclear-engineering/programme

Nuclear energy: introduction 3 ECTS credits
Introduction to nuclear physics 3 ECTS
Nuclear materials I 3 ECTS
Nuclear fuel cycle and applied radiochemistry 3 ECTS
Nuclear materials II 3 ECTS
Nuclear reactor theory 8 ECTS
Nuclear thermal hydraulics 6 ECTS
Radiation protection and nuclear measurements 6 ECTS
Operation and control 3 ECTS
Reliability and safety 3 ECTS
Advanced courses 4 ECTS
Master thesis 15 ECTS
Total 60 ECTS

Read less
The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. Read more

The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. The experiments are typically large collaborations working at international laboratories using highly sophisticated detectors. These detector technologies also find applications in medical physics and other forms of position sensing. The computational aspects deal with large data sets and use machine learning and other advanced techniques in data science. Theoretical nuclear and particle physics aims to interpret the experimental results in terms of mathematical models of the structure and evolution of the physical world.

Programme structure

Taught Courses

The taught element of the programme includes two compulsory courses and a minimum of three specialist courses which will bring you to an advanced level in the required subject material. You will also have the opportunity to select courses from a range of options depending on your interests and career ambitions.

Dissertation

Following the taught component of the programme, you will undertake a three-month research project leading to a dissertation. You will be based within one of the projects of the Institute for Particle and Nuclear Physics as part of an international collaboration, and may have the opportunity to visit a leading research laboratory.

Learning outcomes

By engaging with and completing the MSc in Particle & Nuclear Physics, graduates will acquire core knowledge of current experiments in nuclear and particle physics and gain a theoretical understanding of nuclear and particle physics.

The programme aims to develop research and problem solving skills, with graduates gaining the skills to apply advanced data analysis techniques to large data sets, critically assess research activities and design future experiments.

Career opportunities

This programme provides an exposure to frontier activities in experimental nuclear and particle physics and develops general transferable skills related to data analysis, research and communication.

This provides a platform for employment in research, science-based industry, medical physics, education and a wide spectrum of professions that call for numeracy and data analysis skills.



Read less
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Read more

This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

About this degree

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice. 

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits).

A Postgraduate Diploma of eight modules (120 credits) is offered.

A Postgraduate Certificate of four modules (60 credits) is offered.

Core modules

  • Ionising Radiation Physics: Interactions and Dosimetry
  • Imaging with Ionising Radiation
  • MRI and Biomedical Optics
  • Ultrasound in Medicine
  • Treatment with Ionising Radiation
  • Clinical Practice
  • MSc Research Project
  • Medical Device Enterprise Scenario

Optional modules

Students choose one of the following:

  • Computing in Medicine
  • Applications of Biomedical Engineering
  • Programming Foundations for Medical Image Analysis

Dissertation/report

All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a report of up to 10,000 words, a poster and an oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Further information on modules and degree structure is available on the department website: Physics and Engineering in Medicine: Radiation Physics MSc

Funding

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a result of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the healthcare sector in hospitals or industry, both within the UK and abroad. 

Employability

Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is also available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development. 



Read less

Show 10 15 30 per page



Cookie Policy    X