• University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Manchester Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"nuclear"×
0 miles

Masters Degrees (Nuclear)

We have 218 Masters Degrees (Nuclear)

  • "nuclear" ×
  • clear all
Showing 1 to 15 of 218
Order by 
Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. Read more

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including power production, waste management, nuclear fuel production, etc. The Belgian Nuclear Higher Education Network (BNEN) combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre SCK-CEN.

What is the Master of Nuclear Engineering about? 

Nuclear technology plays a crucial role in a wide variety of contexts and sectors in Belgium, including:

  • power production
  • nuclear fuel production
  • radioelement production
  • engineering
  • accelerator design and fabrication
  • waste management
  • safety management
  • nuclear medicine
  • research

 The Belgium Nuclear Higher Education Network combines the expertise in nuclear education and research of six major Belgian universities (KU Leuven, UGent, VUB, UCL, ULG and ULB) with the Belgian Nuclear Research Centre. 

Structure

The current programme can be divided into three core blocks:

  • Introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, materials sciences and the principles of energy conversion through use of nuclear phenomena, supplemented by a core block of nuclear engineering applied to electricity generation and reactor use; theory of reactors and neutronics, thermal hydraulic phenomena during reactor operation, the nuclear fuel cycle and specific material-corrosion problems.
  • A block of elective courses that allow students to deepen certain topics of their choice.
  • A Master’s thesis.

The collaboration with SCK*CEN makes it possible to include actual use of facilities in the curriculum, supporting the development of skills and competences in a research environment. All subjects are taught by academics appointed by the partner universities, whereas the practical exercises and laboratory sessions are supervised by the experts of SCK*CEN. The Master’s thesis offers an opportunity for internship in industry or in a research laboratory.

All teaching activities take place on the premises of SCK*CEN. Courses are organised in English and in a modular way; teaching in blocks of one to three weeks for each module allows optimal time management for students and lecturers, facilitates registration for individual modules, and allows easy exchange with international students.

BNEN has served as a role model for the European Nuclear Education Network (ENEN) which now has become an association of over 60 members (universities, industry, regulators, research centres), aiming at facilitating mobility in Europe for students in nuclear engineering.

One particular aspect of the BNEN degree is that it automatically leads to the recognition as Class I Expert by the Federal Agency of Nuclear Control. In order to receive this accreditation the programme must at least offer 24 credits in Nuclear Safety and 12 credits in Radioprotection. 

Spotlight 

The Master of Science in Nuclear Engineering programme is an internationally oriented, interuniversity programme organised by BNEN in close collaboration with nuclear research centres and industry. The aim of the BNEN programme is to provide students with all the skills and scientific and technical background necessary to carry out duties at a high level of responsibility in order to ensure the safe and economical operation of nuclear power plants, the regulation and control of nuclear installations or to design new nuclear systems.

A major strength of the BNEN programme, as to its sustainability, is that it allows providing high quality academic education by experts from (or appointed by) the main Belgian universities at low individual cost and thus very efficiently harmonised/rationalised. In addition, the participation of the nuclear research centre SCK*CEN in the consortium provides superb realistic experimental facilities in a difficult (radioactive) environment at low cost for the universities.

A further fundamental strength of the programme can be found in the fact that a well-balanced curriculum is offered where the contents and format have been discussed at length with representatives of the major nuclear companies that are the first potential employers of the graduates. Objectives and programme outcomes were defined that encompass in depth disciplinary specific competences as well as, but in a less pronounced way, transferable skills and competences that are needed for an efficient integration of a graduate in a larger engineering team. There is a nearly complete overlap between objectives and realised competences in courses, electives, exercises and Master’s thesis. This can be ascribed to the following contributing factors:

  • There is a good balance between theory and practical skills. This is implemented through an appropriate diversity of didactic formats, including exercises and/or labs for nearly all courses.
  • There is a good balance between basic subjects and advanced subjects through elective course modules and topical days organized by SCK*CEN.
  • There is appropriate care for multidisciplinary scientific competences and for transferable skills through the importance given to the Master’s thesis.
  • The competences of the teaching staff (lecturers and assistants) with respect to the theoretical background are strong.
  • There is a good mix of junior and senior lecturers.
  • The education in programmes is backed by world-class research at the universities, the research center and the involvement of teachers working in international research institutes.
  • The involvement of several professors who have their principal employment in nuclear companies.
  • There is a large and dynamic group of young researchers involved in the course teaching (seminars), labs and exercises sessions and as mentors of Master’s theses.
  • Both the professors and the young researchers are very active in the major international research programmes and associations related to applications of nuclear phenomena.

Career perspectives

Graduates possess the necessary skills and knowledge to carry out duties at a high level of responsibility in:

  • nuclear power plants
  • nuclear research reactors
  • nuclear regulatory organisations
  • nuclear engineering firms
  • nuclear fuel fabrication
  • nuclear waste treatment
  • radio-isotope production

In addition, the degree itself is an important part of the legal qualifications necessary to become a safety professional in a major nuclear installation.



Read less
The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. Read more

Mission and goals

The aim of the MSc programme in Nuclear Engineering is to prepare engineers with the skills necessary to design, build and operate power generation plants, radioactive waste treatment plants, systems using radiation for industrial and medical applications, etc. The educational programme, therefore, gives emphasis to topics referring to energy applications, i.e. fission and fusion plants, nuclear fuel, materials and safety. Topics applied also in non-energy applications are accounted for, as in medical and industrial applications of radiation, material physics, plasma physics and nanotechnologies with a strong link to the nuclear field.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Career opportunities

The graduates in Nuclear Engineering, thanks to the MSc multidisciplinary training, can easily be employed in the nuclear sector (e.g. industries operating in nuclear power plants design, construction and operation, in nuclear decommissioning and nuclear waste processing and disposal, in design and construction of radiation sources, in centers for nuclear fusion and high-energy physics), as well as in other areas such as the energy industry, the medical sector, the health, safety and environment sector (e.g. engineering companies, hospitals, consultancy and risk analysis firms) and also research centers and universities.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Nuclear_Engineering.pdf
In this Course emphasis is given to energetic applications, e.g. those referring to fission and fusion plants, the nuclear fuel, materials and safety. Also nonenergetic applications are accounted for, i.e. medical and industrial applications of radiation; radiation detection and measurements; nuclear electronics for radiation detection; radiochemistry; radiation protection and material physics, plasma physics and nanotechnologies with a strong link to their impact in the nuclear field. Graduates in Nuclear Engineering can find employment not only in the nuclear sector (industries operating in electro-nuclear power generation, nuclear plant dismantling, nuclear waste processing and disposal, design and construction of radiation sources, institutes and centers for nuclear fusion and high-energy physics), but also in other areas operating in the field of hightechnology, engineering companies, companies for industrial, medical and engineering advice, hospitals, companies for risk analysis, etc.

Subjects

1st year subjects
Fission reactor physics, nuclear measurements and instrumentation, nuclear plants, nuclear and industrial electronics, reliability safety and risk analysis, solid state physics.

2nd year subjects (subjects differentiated by three specializations)
- Nuclear plants
Nuclear technology and design, Applied Radiation Chemistry, Reliability, Safety and Risk Analysis A+B, Nuclear Material Physics. Fission Reactor Physics II + Radioactive Contaminants Transport, Statistical Physics.

- Nuclear Technology
Medical applications of radiation, Applied Radiation Chemistry, Nuclear technology and design, Reliability, Safety and Risk Analysis A+B, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

- Physics for Nuclear Systems
Subjects: Nuclear technology and design, Nuclear Material Physics, Medical applications of radiation, Applied Radiation Chemistry, Nuclear material physics, Fission Reactor Physics II + Radioactive Contaminants Transport.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/nuclear-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. Read more
The MPhil in Nuclear Energy, provided by the Department in collaboration with the Cambridge Nuclear Energy Centre, is a one year full-time nuclear technology and business masters for engineers, mathematicians and scientists who wish to make a difference to the problems of climate change and energy security by developing nuclear power generation. The combination of nuclear technology with nuclear policy and business makes the course highly relevant to the challenges of 21st century energy needs, whether in the UK or in countries across the globe.

The MPhil is part of the University of Cambridge's Strategic Energy Initiative in response to the prospect of a nuclear renaissance in the UK and around the world. The aim is to provide a masters-level degree course in Nuclear Energy which will combined nuclear science and technology topics with business, management and policy teaching. Students will be equipped with the skills and information essential to responsible leadership of the international global nuclear industry.

The course recognises that, though the prospects for nuclear energy are now better than they have been for twenty years, the nuclear sector is situated within in a wider market for energy technologies, and has no special right to be developed. The political, economic and social contexts for nuclear power are as important as the technical merits of the designs of reactors and systems. The course therefore has a multi-disciplinary emphasis, aiming to be true to the reality of policy-making and business decision-making.

This course is for students who have a good degree in Engineering or related science subject and who wish to gain the knowledge and skills to build a career in the nuclear and energy sectors. Secondary career paths might include nuclear proliferation prevention, radiological protection, nuclear governance, nuclear medicine and health physics. While the prime focus of the course is to equip students for roles in industry, there is a path towards research through preparation for a PhD programme. The modular open architecture of the course allows students to tailor the degree to suit their background, needs and preferences.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmne

Course detail

The course will equip its graduates with a wide range of skills and knowledge, enabling them to fully engage in the nuclear sector.

Graduates will have developed a knowledge and understanding of nuclear technology, policy, safety and allied business. They will have received a thorough technical grounding in nuclear power generation, beginning with fundamental concepts and extending to a range of specialist topics. They will also be equipped with an appreciation of the wider social, political and environmental contexts of electricity generation in the 21st century, with a firm grounding in considering issues such as climate change, energy policy and public acceptability.

The programme will cultivate intellectual skills allowing graduates to engage with the business, policy and technical issues that the development and deployment of nuclear energy poses. These include skills in the modelling, simulation and experimental evaluation of nuclear energy systems; critically evaluating and finding alternative solutions to technical problems; applying professional engineering judgment to balance technological, environmental, ethical, economic and public policy considerations; working within an organisation to manage change effectively and respond to changing demand; understanding business practice in the areas of technology management, transfer and exploitation.

The programme will also develop transferable skills enabling graduates to work and progress in teams within and across the nuclear sector, including the management of time and information, the preparation of formal reports in a variety of styles, the deployment of critical reasoning and independent thinking.

Finally, graduates will have research experience having planned, executed, and evaluated an original investigative piece of work through a major dissertation.

Format

The MPhil in Nuclear Energy is based in the Department of Engineering and is run in partnership with Cambridge Judge Business School and the Departments of Materials Science and Metallurgy, and Earth Sciences.

The programme consists of six compuslory courses in nuclear technology and business management, and four elective courses chosen from a broad range of technical and management courses. These elective courses enable the student to tailor the content of the programme to his career needs; they range from wholly management-oriented courses to technical courses in preparation for an engineering role or further research through a PhD. A long research project is required, with topics chosen from a list offered by members of staffed and Industry Club members, and linked to the principal areas of energy research in their respective departments and companies.

Students are also expected to attend field visits, a Distinguished Lecture Series and weekly seminars, and are able to benefit from research skills training offered by the Department.

Assessment

A large individual research project will be undertaken, which will be examined in two parts. The first part will include a report (of up to 4,000 words) and a five-minute oral presentation. The second part is assessed through the writing of a 15,000 word dissertation, including a fifteen minute oral presentation.

All students will be required to complete at least four items of coursework.

All students will take at least three written examinations, of 1.5 hours each.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

UK applicants are eligible to apply for scholarships of £7,000; these scholarships are funded by the MPhil's industrial partners.

To apply for a scholarship, eligible applicants must list the Nuclear Energy Scholarship in Section B(4) of the online GRADSAF form. People wishing to be considered for a scholarship must submit their application before the end of May 2016.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities. Read more

Organizing institutions

This interuniversity 'master after master' program (60 ECTS) is jointly organized by the Belgian Nuclear Higher Education Network (BNEN), a consortium of six Belgian universities: Vrije Universiteit Brussel, Katholieke Universiteit Leuven, Universiteit Gent, Université de Liège , Université Catholique de Louvain et Université Libre de Bruxelles and the Belgian Nuclear Research Centre (SCK-CEN). Students can enroll for this master program at each of the six partner universities. The program is built up of 31 ECTS of common compulsory courses, 9 ECTS of elective courses and a compulsory Master Thesis of 20 ECTS.

The primary objective of the programme is to educate young engineers in nuclear engineering and ts applications and to develop and maintain high-level nuclear competences in Belgium and abroad. BNEN catalyses networking between academia, research
centres, industry and other nuclear stakeholders. Courses are organised in English and in a modular way: teaching in blocks of one to three weeks for each course, allowing for optimal time management for professional students and facilitating registration for individual modules.
All courses take place at SCK•CEN, in Mol, Belgium. The lectures take place in a dedicated, brand-new classroom in the conference centre of SCK•CEN (Club-House), located in a wooded area and nearby the SCK•CEN restaurant and library services. SCK•CEN offers a variety of accommodation options: houses, villas, studios and dormitories. For more information visit: http://www.sckcen.be

About the programme

The one-year progamme was created in close collaboration with representatives of the utility companies and power plants and teaches students in all aspects of nuclear technology and its applications, creating nuclear engineering
experts in the broad sense. Exercises and hands-on sessions in the specialised laboratories of SCK•CEN complement the theoretical classes and strengthen the development of nuclear skills and attitudes in a research environment. Various technical visits
are organised to research and industrial nuclear facilities.
The programme can be divided into three core blocks:
ƒ- A set of introductory courses allowing refreshing or first contact with the basic notions of nuclear physics, material sciences and the
principles of energy production through use of nuclear phenomena.
ƒ- A core block of nuclear engineering applied to power generation and reactor use; theory of reactors and neutronics, thermal hydraulic problems encountered in reactor exploitation, the nuclear fuel cycle and the specific material corrosion problems.
-ƒ An applications block where safe and reliable operation of nuclear power plants and the legal and practical aspects of radiation protection and nuclear measurements are discussed.

Scholarships

BNEN grants are available for full-time students.

Curriculum

http://www.vub.ac.be/en/study/nuclear-engineering/programme

Nuclear energy: introduction 3 ECTS credits
Introduction to nuclear physics 3 ECTS
Nuclear materials I 3 ECTS
Nuclear fuel cycle and applied radiochemistry 3 ECTS
Nuclear materials II 3 ECTS
Nuclear reactor theory 8 ECTS
Nuclear thermal hydraulics 6 ECTS
Radiation protection and nuclear measurements 6 ECTS
Operation and control 3 ECTS
Reliability and safety 3 ECTS
Advanced courses 4 ECTS
Master thesis 15 ECTS
Total 60 ECTS

Read less
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. Read more
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. This environment of collaboration with key industrial partners enriches your learning experience and exposes you to the scientific and engineering challenges facing nuclear energy today.

The programme offers you the opportunity to gain skills and experience highly sought after by the nuclear industry. As you learn about five key themes of nuclear science and engineering from experts in the field you will develop skills in problem-solving, team-building, communication and scientific writing.

During the challenge project element of the programme you will join a multi-disciplinary team in approaching a genuine industry problem. The challenge is set by industry partners, who will act as your industrial supervisors, provide guidance on your work and attend your final presentation. Previous industry partners include Sellafield, EDF Energy and the Culham Centre for Fusion Energy.

This area of scientific study demands state-of-the-art facilities, and the programme gives you access to a suite of multi-million pound, cutting-edge analytical equipment, supported by dedicated technicians. Facilities include profiling systems, x-ray microscopes, a 200-acre site focused on robotics and device sensor development, and the largest earthquake simulator in the UK.

Programme structure

The five key themes that run through the programme are: the nuclear cycle; nuclear reactor materials and design; nuclear structural integrity; nuclear professionalism and nuclear systems; infrastructure, hazards and risk.

Teaching consists of core lecture-based units in science and engineering:
-Fundamentals of Nuclear Science
-Nuclear Reactor Engineering
-Nuclear Material Behaviour
-Nuclear Reactor Physics
-Nuclear Fuel Cycle

The Research Skills and Group Project units help develop the skills needed to work in this area, including industry-focused workshops, an industry-set challenge and a major individual research project, for which the practical work takes place over the summer.

Careers

Graduates will leave equipped with a familiarity with the nuclear industry and its unique safety culture, and they will be prepared to enter the industry or continue towards further research in academia.

Read less
IN BRIEF. Receive guidance and tuition from respected nuclear medicine professionals. Enjoy access to managed practical sessions in internationally renowned nuclear medicine facilities. Read more

IN BRIEF:

  • Receive guidance and tuition from respected nuclear medicine professionals
  • Enjoy access to managed practical sessions in internationally renowned nuclear medicine facilities
  • Gain a qualification that's professionally accredited by the Society of Radiographers
  • Part-time study option

COURSE SUMMARY

As a healthcare professional, this course offers you a valuable multidisciplinary opportunity to participate in continuing professional development.

During your time with us, you'll tackle five compulsory modules that will develop a deep understanding of the theory of nuclear medicine imaging. Practically, it will allow you develop skills in nuclear medicine that will allow you to practice competently and deal with complex and challenging situations

The course takes a blended approach to learning where you have blocks of attendance at Universtiy for lectures, tutorials and workshops. Supporting these learning activities are online learning through our virtual learning environment (BlackBoard).

The opportunity to come to university and meet your peers is important as it helps develop a sense of community and you are able to support each other through the programme. The time at university is highly valued by students.

You must have a UK-based clinical placement before commencing the course and spend a minimum of 3 days per week in clinical practice (excluding annual leave and weeks at the University). We can advise on this should you not have a placement but please note we cannot arrange it for you. Please contact the programme leader for advice

COURSE DETAILS

This course is made up of five compulsory modules which integrate theory with the clinical application and practice of nuclear medicine. There is a clinical practice requirement for the duration of the PgDip and you will be required to work closely with a nominated clinical supervisor.

COURSE STRUCTURE

The PGDip runs over one year making use of the three trimesters. The dissertation module continues in year 2 if you wish to continue. There is the option of retuning to complete the MSc after a break in your studies. You are advised to discuss with the programme leader the best option for you.

The course structure provides you the chance to exit with the following awards:

  • Postgraduate Diploma: five modules over one year
  • Master's: five modules plus a dissertation over a total of 19 months

TEACHING

Your learning will be delivered through lectures, seminars, onlnie learning and group work.

You'll receive support from course tutors over email and via our virtual learning environment, Blackboard, where you can access discussion boards, online lectures, podcasts, videos and other learning materials.

ASSESSMENT

Fundamentals of Nuclear Medicine

  • Description and justification of a quality control procedure for a gamma camera (50%)
  • Critique and justification of a clinical imaging protocol (50%)

Advanced concepts of Nuclear Medicine

  • Case Study written in a style suitable for publication (100%

Scientific Principles of Hybrid Imaging in Nuclear Medicine

  • Electronic exam (2 hours) (100%)

Clinically based practices in Nuclear Medicine

  • Objective structured clinical examination (30%)
  • Portfolio of clinical learning and experience (70%)

Statistics and Research Methods in nuclear medicine

  • Portfolio of learning (100%)

Your learning will be delivered through lectures, seminars, onlnie learning and group work.

You'll receive support from course tutors over email and via our virtual learning environment, Blackboard, where you can access discussion boards, online lectures, podcasts, videos and other learning materials.

FACILITIES

During the scientific principles of hybrid imaging module you will have access to the University’s CT scanner where you will be able to undertake practical workshops.

We have an extensive collection of anatomical and physics phantoms and dosimetry equipment that is available to students undertaking the dissertation module.

CAREER PROSPECTS

This course will equip you with the skills and knowledge that will qualify you for additional roles and responsibilities, which, in turn will enhance your career opportunities. You will have the knowledge and skills to be able to work in any nuclear medicine department. You will have developed knowledge and skills in research and will be able to evaluate critically published literature and use this to inform practice. You will have skills in creating and disseminating original.

Graduates of this programme have gained senior positions in clinical departments, industry and in education and research.

LINKS WITH INDUSTRY

The programme team is made up of academic and clinical staff form a range of professional backgrounds including radiographers, clinical technologists, physicists, radiologists and nuclear medicine physicians. Staff have a wealth of experience in practice and research to ensure the course content is current.

We have strong links with industry especially in the North West, for example, during the SPECT and Fundamentals module there will be practical session at the Nuclear Medicine Department in the Christie Hospital and the Central Manchester Nuclear Medicine Department. Likewise during the Hybrid Imaging module there will be a practical session at the Central Manchester Nuclear Medicine Department.



Read less
Why Surrey?. At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries. Read more

Why Surrey?

At the University of Surrey, our MSc in Nuclear Science and Applications is a new and innovative programme, taught by a combination of world-leading nuclear physics academics and leading experts from the UK’s nuclear industries.

Programme overview

Drawing upon our existing expertise and supported by our MSc in Radiation and Environmental Protection, one of UK’s longest running programmes in its field, our programme will give you a thorough grounding in nuclear science and its applications. This new programmes differs from our existing MSc in Radiation and Environmental Protection as both the group project and the summer dissertation project will be on nuclear science and application topics.

The substantial practical element of this programme enables you to relate taught material to real-world applications. Formal lectures are complemented with work in specialist radiation laboratories that were recently refurbished as part of a £1m upgrade to our facilities.

Here you will work with a wide range of radioactive sources and radiation detectors. There is also an extended project in the spring and an eleven-week MSc dissertation project in the summer and students will have the opportunity to complete their dissertation on a topic specialising in nuclear research.

Programme structure

This programme is studied full-time over one academic year. Part-time students study over two academic years, within which the workload is evenly distributed.

The course consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that modules may be subject to teaching availability and/or student demand.

Research-led teaching

The programme material is taught by a combination of academics from the Department of Physics at Surrey and specialists provided by industrial partners. The Surrey academics are part of the Centre for Nuclear and Radiation Physics which houses the largest academic nuclear physics research group in the UK.

In addition to the formal lectures for taught modules, the programme provides a wide range of experimental hands-on training. This includes an eight-week radiation physics laboratory which takes place in the specialist radiation laboratories within the Department of Physics at the University of Surrey.

These were recently refurbished as part of a £1 million upgrade to the departmental teaching infrastructure. Within the Department, we also have a common room and a departmental library, which contains copies of earlier MSc dissertations.

As well as the laboratory training, you will also undertake a research group project at the beginning of the Spring semester as a precursor to the eleven-week research dissertation project which makes up the final part of the MSc.

There are many opportunities for the summer dissertation project to be taken in an external industrial environment.

Careers

Completion of this programme will result in strong job opportunities in the nuclear industry, a growing international industry.

The programme will also naturally lead into further study, such as completion of a PhD.

Educational aims of the programme

The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.

The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context.

This is achieved by the development of the participants’ understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme Learning Outcomes

Knowledge and understanding

  • A systematic understanding of Nuclear Science and Applications in an academic and professional context together with a critical awareness of current problems and / or new insights
  • A comprehensive understanding of techniques applicable to their own research project in Nuclear Science and / or its application
  • Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects
  • An ability to evaluate and objectively interpret experimental data pertaining to radiation detection
  • Familiarity with generic issues in management and safety and their application to nuclear science and applications in a professional context

Intellectual / cognitive skills

  • The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context
  • The ability to evaluate critically current research and advanced scholarship in the discipline of nuclear science
  • The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non- specialist audiences

Professional practical skills

  • The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively
  • The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources
  • Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes

Key / transferable skills

  • Identify and resolve problems arising from lectures and experimental work
  • Make effective use of resources and interaction with others to enhance and motivate self-study
  • Make use of sources of material for development of learning and research such as journals, books and the internet
  • Take responsibility for personal and professional development


Read less
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area. Read more
Supported by the Royal Academy of Engineering, this MSc in Civil Engineering Structures (Nuclear Power Plants) is the only accredited course in the UK in this critical area.

Who is it for?

This course is for students interested in the structural aspects of nuclear power plants and the broader field of nuclear energy.

Objectives

In this programme, you will study how to design, evaluate, and analyse structural systems, with a special focus on Nuclear Power Plants. You will learn all the principles used for the design of buildings, bridges, special structures and in particular nuclear containment structures.

The emphasis on nuclear structures is a response to the skill shortage reported by employers working in this sector. The UK has recently committed to a long-term nuclear new-build programme that is forecast to generate more than 40,000 jobs, yet no specialised training is available in this area. The programme will therefore provide you with a degree that distinguishes you in the market.

The programme is offered on a one-year full-time or two-year part time basis to allow you maximum flexibility.

Teaching and learning

The course is taught by staff from the School of Mathematics, Computer Science and Engineering with some contribution from industrial experts. Teaching is mainly in the form of lectures, but case studies and IT sessions and seminars are also used where appropriate. Modules are shared between two ten-week teaching terms running October-December and January-March. Although work for the MSc dissertation commences during the second term, most of the research work is carried out during the summer months.

The duration of full-time study is 12 months. A part-time route is also available, where students spend two years completing this programme, in which students attend lectures for up to two days each week

Assessment of theoretical modules is based on a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. Design-oriented modules are normally assessed by coursework only, where students work both in groups and individually on challenging projects that are varied each year. For the MSc dissertation, students are required to attend a viva following submission of the final report.

In order to pass your programme, you should complete successfully or be exempted from the relevant modules and assessments and will therefore acquire the required number of credits.

The pass mark for each module is 50%. You need to attain a 50% mark for all assessment components.

Modules

There are seven core modules to be taken, plus one elective module, in addition to the research skills module and the dissertation. The number and credits required to gain an award are identified below.

For the following modules: EPM717, EPM711, EPM712, EPM707, EPM720, EPM718, coursework assignments will require you to apply the theory you have learned to specialised problems relating to the field of nuclear power plants. You are required to answer these problems to satisfy the coursework assessment for these modules.

Core modules
-EPM790: Introduction to Nuclear Energy (10 credits)
-EPM717: Advanced Analysis and Stability of Structures (20 credits)
-EPM704: Dynamics of Structures (15 credits)
-EPM711: Design of Concrete Structures (15 credits)
-EPM712: Design of Steel and Composite Structures (15 credits)
-EPM791: Design of Nuclear Structures and Foundations (15 credits)
-EPM707: Finite Element Methods (15 credits)
-EPM697: Research Skills (15 credits)
-EPM698: Dissertation (45 credits)

Elective modules
-EPM720: Earthquake Analysis of Structures (15 credits)
-EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)

Career prospects

This programme is for students interested in the structural aspects of nuclear power plants. Your career will take you to the broader field of nuclear energy. The types of roles we would expect our graduates to achieve are: an on-site engineer or as a design office engineer, building designing or constructing new plants or evaluating and maintaining existing plants or decommissioning plants at the end of their life cycle. You could also go to the research arena conducting innovative research in the area of nuclear science at research labs or in academia.

Read less
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. Read more
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. It gives healthcare professionals currently involved in Nuclear Medicine practice the opportunity to develop and enhance their skills and understanding of this rapidly evolving subject and its application.

Key benefits

This course is accredited by the Society and College of Radiographers (SCoR).

Course detail

The MSc Nuclear Medicine course provides the educational and research foundations required to evaluate current working practice and understand the opportunities currently available in nuclear medicine and molecular imaging environments. As a result, peer learning is a big part of this course's value to individuals and employers. In addition to developing skills directly linked to clinical practice, you will also have the opportunity to contribute to the nuclear medicine knowledge base through research and publication.

This course is designed in conjunction with a number of clinical experts, and our partnership with clinical software provider Hermes Medical Solutions. This means it produces competent and professional practitioners with the skills needed to optimise and promote this imaging modality in current models of patient care.

Year 1 Postgraduate Certificate

• Fundamental Clinical Skills in Nuclear Medicine
• Science and Instrumentation in Current Nuclear Medicine Practice
• Cross-sectional Anatomy for the Nuclear Medicine Practitioner

Year 2 Postgraduate Diploma

• Enhancing Nuclear Medicine Practice
• Current Applications of Hybrid Imaging Practice
• Evidencing Work Based Learning

Year 3 MSc

• Health and Social Care Research: Methods and Methodology
• Research Dissertation

Format

The course is mostly distance-based, with only three contact days per year. This approach is highly popular for employers and employees in nuclear medicine, and is supported by a range of clinical experts alongside the UWE academic team. It's designed to give you the knowledge and skills needed to practice in a safe and competent manner, and a comprehensive education and research base to evaluate and inform current and future practice. There are many opportunities for inter-professional collaboration and shared learning, and you'll learn in practical settings how nuclear medicine contributes to patient management.

Assessment

Assessment methods include written assignments, case studies, online interactions and clinical portfolios.

Careers / Further study

You must be currently practicing nuclear medicine the routes available on this course are designed to help you complement existing skills and knowledge with a view to career progression.

Our links with software providers, and nuclear medicine practitioners and employers, are excellent, and this course is designed to benefit you and your employer by enhancing your ability to contribute to current thinking and practice.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Our Nuclear Medicine. Science & Practice course will give you the skills to deliver safe, high-quality nuclear medicine services based on training in a strong scientific and academic framework in an approved structured service environment. . Read more

Our Nuclear Medicine: Science & Practice course will give you the skills to deliver safe, high-quality nuclear medicine services based on training in a strong scientific and academic framework in an approved structured service environment. 

Key benefits

  • GMC approved course for nuclear medicine training in the uk
  • Conveniently based in central London
  • All learning materials, including audio-recorded lectures, are accessible online via King’s E-learning and Teaching Service (KEATS) to support distance learning.
  • Contact with experts and key opinion leaders from across the UK.
  • Close links with leading London Medical Schools and nuclear medicine departments.

Description

This course draws on professional expertise from many disciplines. Our lectures will instruct you in clinical practice, radiopharmaceutical, scientific and regulatory issues in nuclear medicine, as well as providing a solid foundation in diagnostic nuclear oncology and radionuclide therapy. The course features practical components, ranging from clinical observations, audit, physics and radiopharmacy experiments and original research.

This course will develop your skills so that you can provide safe, high-quality nuclear medicine services.

Course purpose

This programme develops skills for the provision of safe, high-quality nuclear medicine services by offering nuclear medicine training with a strong scientific and academic framework in an approved structured service environment.

Course format and assessment

Teaching

If you are an MSc student, you will have 222 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

If you are a PG Dip student, you will have 174 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

If you are a PG Cert student, you will have 120 hours of lectures. The amount of time you will spend on work placement will typically be around 60 days each year. We expect you to undertake 10 hours of self-study each week.

Typically, one credit equates to 10 hours of work.

Assessment

We will assess you through a variety of methods, including:

  • Unseen written exams
  • Coursework
  • Practical Logbooks
  • Written Thesis 

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change.

Extra information

This course is primarily taught at the King’s College London St Thomas’ Campus. All teaching materials are accessible on line via the KEATs eLearning platform to support distance learning and revision. Lectures are delivered at St Thomas’ Hospital with a short mini module at Great Ormond Street Hospital. Work placements are usually undertaken in the students’ own institution (UK students) or in major London Teaching hospitals.  

Career prospects

Students continue to work in a range of nuclear medicine services.



Read less
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation. Read more
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation.

The University of Birmingham has a long and established track record of research and education in the nuclear sector, including reactor technology, metallurgy and materials, decommissioning and waste management, dating back to the earliest days of the nuclear industry. The University runs one of the longest-standing Masters level courses in the nuclear sector (over 50 years), in the Physics and Technology of Nuclear Reactors (PTNR). The University has extensive links to the nuclear industry and regulators both within the UK and internationally, including National Nuclear Labs, Japan Atomic Energy Agency, Idaho National Labs, NAGRA, British Energy, AMEC, Serco, HSE (NII), Atkins, Babcock Marine, Westinghouse, UKAEA, EDF, E.ON and RWE NPower.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more
The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

◾Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
◾You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
◾You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
◾With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include
◾Advanced data analysis
◾Detection and analysis of ionising radiation
◾Environmental radioactivity
◾Imaging and detectors
◾Nuclear power reactors
◾Research skills
◾Extended project

Optional courses include
◾Advanced electromagnetic theory
◾Advanced nuclear physics
◾Computational physics laboratory
◾Dynamics, electrodynamics and relativity
◾Energy and environment
◾Medical imaging
◾Nuclear and particle physics
◾Relativistic quantum fields
◾Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

For further information on the content of individual courses please see Honours and Masters level courses.

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.

Read less
Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up. Read more

About the course

Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up.

You’ll be based in the department’s world-leading NucleUS Immobilisation Science Laboratory, and will take eight modules on the nuclear fuel cycle. Topics include reactor materials and nuclear waste management with each module including one week at one of our partner universities.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Sample modules

Processing, Storage and Disposal of Nuclear Waste; Nuclear Fuel Cycle; Reactor Physics and Criticality; Risk Management.

Read less
This masters degree course is for students with science-based backgrounds, such as undergraduate degrees in Geosciences, Chemistry, Physics and Engineering, who are interested in a career in the Nuclear industry. Read more
This masters degree course is for students with science-based backgrounds, such as undergraduate degrees in Geosciences, Chemistry, Physics and Engineering, who are interested in a career in the Nuclear industry.

The course covers a wide range of the skills required to work in the nuclear industry and is co-taught with the academic staff from the Schools of Physics and Chemistry.

The University of Birmingham has a long and established track record of research and education in the nuclear sector, including reactor technology, metallurgy and materials, decommissioning and waste management, dating back to the earliest days of the nuclear industry. The University runs one of the longest-standing Masters level courses in the nuclear sector (over 50 years), in the Physics and Technology of Nuclear Reactors (PTNR). The University has extensive links to the nuclear industry and regulators both within the UK and internationally, including National Nuclear Labs, Japan Atomic Energy Agency, Idaho National Labs, NAGRA, British Energy, AMEC, Serco, HSE (NII), Atkins, Babcock Marine, Westinghouse, UKAEA, EDF, E.ON and RWE NPower.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. Read more

The study of Particle and Nuclear Physics brings together advanced experimental techniques, computational techniques, and theoretical understanding. The experiments are typically large collaborations working at international laboratories using highly sophisticated detectors. These detector technologies also find applications in medical physics and other forms of position sensing. The computational aspects deal with large data sets and use machine learning and other advanced techniques in data science. Theoretical nuclear and particle physics aims to interpret the experimental results in terms of mathematical models of the structure and evolution of the physical world.

Programme structure

The taught element of the programme includes compulsory courses which will bring students to an advanced level in the required subject material. Following the taught component, students will undertake a three-month research project leading to a dissertation. They will be based within one of the projects of the Institute for Particle and Nuclear Physics as part of an international collaboration. The Institute for Particle and Nuclear Physics is a member of experiments at CERN, the Sanford Underground Research Facility (USA), Fermilab (USA) and J-PARC (Japan) as well as other leading international accelerator facilities across the world.

Learning outcomes

By engaging with and completing the MSc in Particle & Nuclear Physics, graduates will acquire core knowledge of current experiments in nuclear and particle physics and gain a theoretical understanding of nuclear and particle physics.

The programme aims to develop research and problem solving skills, with graduates gaining the skills to apply advanced data analysis techniques to large data sets, critically assess research activities and design future experiments.

Career opportunities

This programme provides an exposure to frontier activities in experimental nuclear and particle physics and develops general transferable skills related to data analysis, research and communication.

This provides a platform for employment in research, science-based industry, medical physics, education and a wide spectrum of professions that call for numeracy and data analysis skills.



Read less

Show 10 15 30 per page



Cookie Policy    X