• New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
"nmr"×
0 miles

Masters Degrees (Nmr)

  • "nmr" ×
  • clear all
Showing 1 to 15 of 54
Order by 
This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances. Read more

Why this course?

This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances.

You’re introduced to techniques for evaluating analytical data and validating analytical methods. You’ll also examine strategies for analytical research and development.

You’ll gain practical experience in a wide range of modern instrumentation and techniques.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/pharmaceuticalanalysis/

You’ll study

The course consists of four theory and two practical modules running between October and April followed by examinations.
If you pass all exams and wish to proceed to MSc then you’ll undertake a 10-week research project. This will be in the University or at an external company or organisation. You’ll submit a thesis at the end of August.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.
The course has access to the full range of analytical spectroscopic and chromatographic instrumentation including:
- Nuclear Magnetic Resonance (NMR)
- Ultra-Violet (UV)
- Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
- Mass Spectrometry (MS)
- High-Pressure Liquid Chromatography (HPLC)
- Gas Chromatography (GC)
- Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)

Teaching staff

- Dr David Watson, Course Leader
Dr Watson’s general research interests include:
- mass spectrometry-based metabolomics
- mass spectrometry imaging
- chromatographic retention mechanisms
- chemical profile and biological properties of propolis

- Dr Darren Edwards
Dr Edwards teaches at both undergraduate and postgraduate level in analytical chemistry, specifically:
- spectroscopy (UV/visible, AA, ICP, FP)
- chromatography (HPLC/TLC)
- bioanalysis and use of pharmacopeias

- Dr Iain D H Oswald
Dr Oswald is part of the team that teaches spectroscopic methods such as IR, spectrofluorimetry and circular dichroism. His research focuses on materials at high pressure and he has a general interest in the solid-state and polymorphism/co-crystallisation of materials.

- Dr Christine Dufes
Dr Dufes teaches Binding Assays on the MSc course. Her research interests are:
- Design and development of novel tumour-targeted anti-cancer therapeutic systems
- Design and development of novel therapeutic systems able to reach the brain after systemic administration, with the ultimate aim to facilitate drug delivery to brain tumours and neurodegenerative disorders.

- Dr RuAngelie Edrada-Ebel
Dr Edrada-Ebel teaches NMR spectroscopy and Mass Spectrometry in Pharmaceutical Analysis. Her research focuses on natural products chemistry of macro-organisms and micro-organisms from both the marine and the terrestrial habitat.

English language requirements

English language minimum IELTS 6.5.
We offer a range of English Language course for students who wish to improve their English. Module 3 is free of charge to all applicants and we strongly recommend all international students to take advantage of this free course.
We also offer comprehensive English language pre-sessional and foundation courses for students whose IELTS scores are below 6.5.
For students with IELTS of 6.0, an offer can be made conditional on completing Modules 2 and 3 of Pre-sessional English.
For students with IELTS of 5.5, an offer can be made conditional on completing Modules 1, 2 and 3 of Pre-sessional English.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course is taught by experts based in SIPBS. There’s also specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical and analytical industries and legislative bodies, including the European Pharmacopoeia.
Teaching of theory and applications is through lectures, tutorials and web-based learning. The material is further reinforced with practical sessions which provide you with hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through written and practical examinations and submission of a thesis (MSc students only).

Careers

Many of our graduates obtain positions in the pharmaceutical & chemical industries and some have continued into PhD research.

Previous graduates of the course include:
- a number of world-renowned academics
- the current Head of the United Nations Office on Drugs and Crime
- the previous Head of the European Pharmacopoeia Laboratory based in Strasbourg

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. Read more
Advance your knowledge of analytical chemistry, your practical skills and professional and organisation skills on this course. You learn the fundamentals of analytical chemistry and how it is applied to pharmaceutical, environmental and materials analyses. The course is taught by researchers with an international reputation in advanced analytical techniques, such as the application of mass spectrometry to the analysis of biological matrices. Tutors also have expertise in production and detection of nanoparticles and detection of pollutants, particularly in soil.

This course is suitable if you wish to increase your knowledge and skills and increase your competitiveness in the job market or pursue a PhD. It will also suit you if you work in a chemistry-related profession and are seeking to further your career prospects.
You gain experience and understanding of:
-Key techniques in separation sciences, including liquid and gas chromatography.
-Atomic and molecular spectroscopy, such as atomic absorption and emission, NMR and IR.
-Analytical technologies applied in process control and solving complex biological problems.

This is a multi-disciplinary course where you learn about various topics including statistics, laboratory quality assurance and control, environmental analysis and fundamentals of analytical instrumentation.

You also gain the transferable skills needed to continue developing your knowledge in science, such as data interpretation and analysis, experimental design and communication and presentation skills.

You complete a research project to develop your research skills and their application to real world situations. You are supported by a tutor who is an expert in analytical chemistry.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. This is supplemented by access to our research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers.

Professional recognition

This course is accredited by the Royal Society of Chemistry (RSC). Applicants should normally have a degree (bachelors or equivalent) in chemistry that is accredited by the RSC. Applicants whose first degree is not accredited by the RSC, or with overseas degrees or degrees in which chemistry is a minor component will be considered on a case by case basis on submission of their first degree transcript.

Candidates who do not meet the RSC criteria for accreditation will be awarded a non-accredited masters qualification on successful completion of the programme.

Applicants will be informed in writing at the start of the programme whether or not they possess an acceptable qualification and, if successful on the masters programme, will receive an RSC accredited degree. If you do not meet the RSC criteria for accreditation, you will be awarded a non-accredited masters after successfully completing the programme.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-analytical-chemistry

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September.

Course structure
The Masters (MSc) award is achieved by successfully completing 180 credits.

Core modules
-Quality issues, laboratory accreditation and the analytical approach (15 credits)
-Separation, detection and online techniques (15 credits)
-Surface analysis and related techniques (15 credits)
-Drug detection and analysis (15 credits)
-Methods for analysis of molecular structure (15 credits)
-Process analytical technology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits.
The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework including:
-Problem-solving exercises.
-Case studies.
-Reports from practical work.
-Research project assessment includes a written report and viva voce.

Read less
Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life. Read more

Research profile

Pursuing a research degree at the School of Chemistry could be one of the best experiences of your life.

In addition to gaining research skills, making friends, meeting eminent researchers and being part of the research community, a research degree will help you to develop invaluable transferable skills which you can apply to academic life or a variety of professions outside of academia.

The Chemistry/Biology Interface

This is a broad area, with particular strengths in the areas of protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of high throughput and combinatorial approaches. We also focus on biophysical chemistry, the development and application of physicochemical techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

Experimental & Theoretical Chemical Physics

This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectoscropy to molecular systems and the EaStCHEM surface science group, who study complex molecules on surfaces, probing the structure property-relationships employed in heterogeneous catalysis. A major feature is in Silico Scotland, a world-class research computing facility.

Synthesis

This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials Chemistry

The EaStCHEM Materials group is one of the largest in the UK. Areas of strength include the design, synthesis and characterisation of functional (for example magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices, porous solids, fundamental and applied electrochemistry polymer microarray technologies and technique development for materials and nanomaterials analysis.

Training and support

Students attend regular research talks, visiting speaker symposia, an annual residential meeting in the Scottish Highlands, and lecture courses on specialised techniques and safety. Students are encouraged to participate in transferable skills and computing courses, public awareness of science activities, undergraduate teaching and to represent the School at national and international conferences.

Facilities

Our facilities are among the best in the world, offering an outstanding range of capabilities. You’ll be working in recently refurbished laboratories that meet the highest possible standards, packed with state-of-the-art equipment for both analysis and synthesis.

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200-800 MHz; mass spectrometry utilises EI, ESI, APCI, MALDI and FAB instrumentation, including LC and GC interfaces. New combinatorial chemistry laboratories, equipped with a modern fermentation unit, are available. We have excellent facilities for the synthesis and characterisation of bio-molecules, including advanced mass spectrometry and NMR stopped-flow spectrometers, EPR, HPLC, FPLC, AA.

World-class facilities are available for small molecule and macromolecular X-ray diffraction, utilising both single crystal and powder methods. Application of diffraction methods at high pressures is a particular strength, and we enjoy strong links to central facilities for neutron, muon and synchrotron science in the UK and further afield. We are one of the world's leading centres for gas-phase electron diffraction.

Also available are instruments for magnetic and electronic characterisation of materials (SQUID), electron microscopy (SEM, TEM), force-probe microscopy, high-resolution FTRaman and FT-IR, XPS and thermal analysis. We have also recently installed a new 1,000- tonne pressure chamber, to be used for the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within the COSMIC Centre. Dedicated computational infrastructure is available, and we benefit from close links with the Edinburgh Parallel Computing Centre.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Gain the knowledge and practical skills needed to develop methods to determine the levels of active ingredients and contaminants in pharmaceutical preparations.

You learn the skills of an analyst and become familiar with the principles of modern instrumental analytical techniques, analytical methods and statistics. You learn how to conduct your tests according to regulations which demand that you work under a strict quality assurance and quality control regime.

Because we have designed the course in close consultation with the pharmaceutical industry, your training is excellent preparation for a career in the industry. In addition to giving input on course structure, industrial practitioners deliver lectures on a variety of topics which relate to industry. You can take modules individually for continuing professional development.

Your laboratory work is carried out in our teaching laboratories which are extensively equipped with the latest models of analytical instruments such as HPLCs and GCs. We also have excellent research facilities where you have access to more sophisticated equipment, such as NMR and a suite of various types of mass spectrometers, which are used in taught modules and research projects.

As a student, you:
-Gain knowledge and practical skills to operate commonly used analytical laboratory instruments.
-Become familiar with automated approaches to analysis and process analytical technology.
-Apply good experimental design techniques and use statistical methods for data evaluation.
-Develop your knowledge of validated analysis methods for determining chemical compounds and elements in a range of sample types.
-Understand the principles and practice of laboratory quality systems.
-Interpret mass spectra and nuclear magnetic resonance data.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-pharmaceutical-analysis

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. Starts September and January.

The Masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Quality issues, laboratory accreditation and the analytical approach (15 credits)
-Separation, detection and online techniques (15 credits)
-Pharmaceutical drug development (15 credits)
-Drug detection and analysis (15 credits)
-Methods for analysis of molecular structure (15 credits)
-Process analytical technology (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Assessment
Mostly by coursework including: problem solving exercises; case studies; practical laboratory work; written examinations. Research project assessment includes a written report and viva voce.

Read less
This course is designed to enable graduate students and forensic practitioners to develop the theoretical knowledge underpinning forensic document examination and provide intensive training and practical experience. Read more
This course is designed to enable graduate students and forensic practitioners to develop the theoretical knowledge underpinning forensic document examination and provide intensive training and practical experience. It covers the analysis of handwriting, signatures, questioned and fraudulent documents and provides training in the use of a range of highly specialised techniques, such as VSC, comparison microscopy, ESDA and Raman Spectroscopy.

LEARNING ENVIRONMENT AND ASSESSMENT

The dedicated laboratory for this course houses an ESDA and a VSC-5000 and this is where MSc students will take a wide range of practical classes, carry out simulated casework and conduct laboratory-based dissertation research projects. Students will also have access to a wide range of state-of-the-art analytical instrumentation within the Analytical Unit. The Unit houses gas chromatographs with pyrolysis injection capability and FID, MS and EC detectors, ion chromatographs and high performance liquid chromatographs with diode array fluorescence, MS and Differential refractometer detectors. The Unit also houses facilities for Atomic absorption, UV-Visible and Infrared spectroscopy, Raman spectroscopy, NMR spectrometry, Inductive coupled plasma mass spectrometry and Scanning Electron Microscopy With Energy Dispersive X-Ray Spectroscopy (SEM/EDAX).

Modules will be assessed through theory and practical examinations, and coursework (essays, moot courts, presentations and a dissertation). Students will be required to examine documents and equipment, produce case notes and reports.

Please note that Distance Learning students will be required to attend a two-week residential workshop at UCLan’s Preston campus during Semester 2. More information will be provided about this in Semester 1.

FURTHER INFORMATION

Modules are assessed through theoretical and practical examinations as well as coursework. Assessments include the examination of suspect documents and pieces of equipment from simulated cases and the production of formal case notes and expert reports, as well as essays, mock courtroom trials, group and individual presentations and a dissertation. Upon graduating from this course you will be well placed to gain employment in forensic science laboratories, police investigation teams, fraud departments in major government or private organisations, or to go on to further research in academia.

MSc Document Analysis is designed to enable graduate students and forensic practitioners to understand and develop the theoretical knowledge underpinning all aspects of forensic document examination and to develop skills in a variety of areas, which concern the processing, analysis, identification and interpretation of questioned documents. The course provides intensive training in all areas of forensic document analysis and provides extensive practical training in the areas of the analysis and identification of handwriting, signatures, printing apparatus and fraudulent documents. The course also provides you with training to act as an expert witness and presentation and communication skills.

You will study the principles underpinning the scientific analysis of handwriting and signatures together with the considerations involved when carrying out forensic casework. This course will also provide practical experience in the examination of printing equipment, typewriters, photocopiers and the identification of forged or counterfeit documents. You will be trained in a number of analytical techniques using highly specialised apparatus, such as the use of the video spectral comparator, a comparison microscope, ESDA (Electrostatic Detection Apparatus) and a Raman Spectrometer. In addition, the course will provide you with the opportunity to develop a large number of transferable skills.

Upon graduating from this course you will be well placed to gain employment in forensic science laboratories, police investigation teams and fraud departments in major government or private organisations, or to go on to further research in academia at doctoral level.

Read less
This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. Read more

About the course

This course is designed with industry in mind. We have also partnered with Engineering Materials and Physics to encompass the breadth of modern polymer science and technology. You’ll become the kind of high-calibre polymer science graduate needed to develop new products and processes in a variety of industries.

Through a combination of theory and practice, we’ll teach you about polymer synthesis, physics, characterisation and the latest developments in polymer research. When you design and conduct your own extended research project, you can look in more detail at the areas you’re most interested in and learn how to communicate your science to the chemical community.

Your future

Our graduates are highly valued in the chemical and pharmaceutical sector. They work all over the world for companies including AkzoNobel, Amgen, AstraZeneca, Corus, Dow Chemicals, GSK, Smith and Nephew and Syngenta. Many move on to PhD study, then careers in research or teaching.

Chemistry is vital to the way we live. It helps power industry and drive economic growth. Polymer science contributes to advances in everything from biology to engineering and medicine. As a researcher in industry or academia you could be involved in work that improves lives and changes the way we see the world.

Learn from world-class research

Top-quality research directly informs our teaching. The 2014 Research Excellence Framework (REF) rates 98 per cent of our work world-class or internationally excellent. You’ll learn about the very latest developments from experts in theory and spectroscopy, synthesis, analytical science, chemical biology and materials.

Labs, equipment and training

We’ll train you to use our modern analytical instrumentation. We have NMR spectroscopy, mass spectrometry, x-ray crystallography, polymer characterisation methods and advanced microscopy. We also have a team of technicians to assist with spectroscopic services. There are labs for molecular biology, protein chemistry, polymer/colloid synthesis and materials characterisation.

Core modules

Fundamental Polymer Chemistry; The Physics of Polymers; Biopolymers and Biomaterials; Polymer Characterisation and Analysis; Research and Presentation Skills and Polymer Laboratory Skills; Extended Research Project.

Examples of optional modules

Smart Polymers and Polymeric Materials; Polymers with Controlled Structures; Design and Manufacture of Composites; Polymer Fibre Composite Materials; Macromolecules at Interfaces and Structured Organic Films; Electronics and Photonics.

Teaching and assessment

We use a mixture of lectures, practicals, workshops and individual research projects. The optional modules in the second semester enable you to specialise in two specific areas of polymer science. You can also tailor your research project to your particular interests.

For all taught modules, written exams contribute 75 per cent towards your final grade. The other 25 per cent comes from continuous assessment, which might include essays on specialised topics or assessed workshops. You also produce a 15,000-word dissertation based on your research project.

Your research project

This can be based in an academic group at the University, or in industry. If it’s industry- based, the topic is usually suggested by the company you’re working with. You may be expected to liaise closely with the company to organise your project.

Read less
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Read more
The aim of the course is to provide experience in a wide range of laboratory techniques and enhance specialist knowledge in chemistry. Research projects may be chosen from any area of computational, physical, inorganic or organic chemistry.

Course components include:
• An advanced chemistry practical unit
• Two research projects in areas of choice
• Taught units in advanced chemistry
• Optional taught units in chemistry, biological sciences and management
• Modules in transferable skills, including scientific presentations and report writing.

Why study Chemistry with us?

- Outstanding facilities: X-ray powder diffraction, single crystal X-ray diffraction, Mass spectrometry, NMR (250/300/400/500 MHz, multinuclear facility)
- Programmes accredited by the Royal Society of Chemistry
- Outstanding publications, substantial grant income from research councils and industrial partners has resulted in a strong demand for our postgraduates and postdoctoral workers

What will I learn?

The MRes is a self-contained qualification, and graduates will be well-suited for posts in all sectors of the chemical industry, including the pharmaceutical industry and government institutions.

Students who complete a MRes degree will be well qualified to proceed to a three-year PhD programme or the MRes can be studied as the first year of our Integrated PhD programme. They should have a competitive edge in relation to undergraduate students applying for doctoral studies.

Career Opportunities

Career opportunities
Recent Bath graduates have gone on to employment or postdoctoral research in the UK, USA (Princeton, Harvard and Yale), the Netherlands, France, Luxembourg, Norway, Brunei and New Zealand.

Employers include the NIST Center for Neutron Research, Tocris, EPSRC and the Royal Society of Chemistry.

Find out more about the department here - http://www.bath.ac.uk/chemistry/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
The aim of the course is to provide experience and training in the chemical aspects of the drug discovery process, and involves a combination of lecture-based units, research training and a research project. Read more
The aim of the course is to provide experience and training in the chemical aspects of the drug discovery process, and involves a combination of lecture-based units, research training and a research project.

The course is ideal for someone considering a career in the pharmaceutical industry, or as a stepping stone to a PhD in a related area.

Why study chemistry with us?

- programmes accredited by the Royal Society of Chemistry
- outstanding publications, substantial grant income from research councils and industrial partners has resulted in a strong demand for our postgraduates and postdoctoral workers
- outstanding facilities: X-ray powder diffraction, single crystal X-ray diffraction, Mass spectrometry, NMR (250/300/400/500 MHz, multinuclear facility)

Visit the website - http://www.bath.ac.uk/science/graduate-school/taught-programmes/msc-chemistry-drug-discovery/

At a glance

Our drug discovery postgraduate course gives students an understanding of the development of new drugs; from the cellular processes that are important to target, through to the synthesis of new medicinal compounds. You will be given advanced training in our teaching laboratories, which will lead to your individual Masters Drug Discovery research project.

The course is made up of three semesters over 12 months. Over this time students cover 90 credits worth of units, which include 12 credits of optional units per semester.

The first two semesters consist of taught material, including Advanced Practical Laboratories, with exams at the end of each semester.

The third semester is focused on the student’s practical project which is carried out in our research labs.

Career Opportunities

Career opportunities
Recent Bath graduates have gone on to employment or postdoctoral research in the UK, USA (Princeton, Harvard and Yale), the Netherlands, France, Luxembourg, Norway, Brunei and New Zealand.

Employers include the NIST Center for Neutron Research, Tocris, EPSRC and the Royal Society of Chemistry.

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Find out about the department here - http://www.bath.ac.uk/chemistry/

Read less
Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Read more

Interdisciplinary approach

Our Chemistry Master's programme provides you with an exceptional toolbox for your future. The programme is closely associated with the research Institute for Molecules and Materials (IMM). Its mission is to fundamentally understand, design and control the functioning of molecules and materials. The institute is a centre of excellence that trains the next generation of leaders in science and entrepreneurship. Research in the IMM ranges from condensed matter science to chemical biology, and builds on novel theoretical, synthetic and spectroscopic methods. Our goal is to explore new roads proceeding from synthesis and growth to design and architecture of molecular constructs and materials with specific, desired properties. The cooperation of chemists and physicists, and increasingly biologists, in one research institute is unique worldwide. It is the secret of IMM's success and its many scientific breakthroughs.

Specialisations within the Master's in Chemistry

The Master's programme in Chemistry offers you three specialisations:
- Chemistry for Life
- Molecular Chemistry
- Physical Chemistry

Top scientists

The funding we have received for our research reflects the achievements we have made. Prof. dr. Wilhelm Huck received an ERC Grant for his research on chemical reactions in extremely small drops of water. The ultimate goal is to build a synthetic cell for this. We need to understand how complex networks function in confined spaces and how the physical environment of the cell impacts on enzymatic reactions. Prof. dr. Roeland Nolte received an ERC to do research on the development of supramolecular catalysts and materials using nature as a guide. Prof. dr. Jan van Hest received funding from the Gravitation programme for his work on self-repairing materials, materials that continually adapt to their environment. This includes the idea of how the body repairs its cells and ensures that the right substances reach the right places at the right time. They want to gain fundamental understanding of the complexity of that dynamic.

The Nijmegen approach

The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the people that you will meet, working, exploring and studying there. It is no wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

Quality label

For the third time in a row, this programme was rated number one in the category Chemistry in the Netherlands by the Keuzegids Masters 2015 (Guide to Master's programmes).

Career prospects

Most of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes have many vacancies for PhD projects every year. Our graduates also find work as researchers and managers in industry, in business and in research institutes.

Our approach to this field

"The Republic has no need of chemists and savants", were the words with which Antoine Lavoisier, one of the founders of modern chemistry, ended up on the guillotine during the French revolution. Fortunately these days the importance of chemistry for the benefit of a sustainable society is well-recognised. As such, chemistry has been designated a key area by the Dutch "innovatieplatform". So there will be many chemistry-related innovation initiatives in both industry and academia. This will be substantiated by a steering committee formed by the Association of Dutch Chemical Industries (VNCI) and the Chemical Science division of the Netherlands' Organisation for Scientific Research (NWO/CW). These developments demand a continuous influx of well-trained chemists.

An integrated Chemistry programme was set up at the University of Nijmegen in 1962. The current Master's degree programme in Chemistry derives from the integrated programme that was established in 1999.

Radboud University Nijmegen aims to provide a Master's degree programme in Chemistry at an internationally recognised level. The programme is based on the research themes that exist within the Research Institute for Molecules and Materials (IMM) and to a somewhat lesser extent, the Radboud Institute for Molecular Life Sciences (RIMLS). In recent years, the IMM has focused on chemistry research in the areas of organic chemistry (synthetic, bio-organic, supramolecular and materials), nuclear magnetic resonance (solid state NMR and biophysical chemistry), and solid state chemistry. Furthermore, increasing research interaction with biology and physics groups has emerged to offer ample opportunities for new research and education. Based on this research, modern, high quality education can be provided within the Master's degree programme.

See the website http://www.ru.nl/masters/chemistry

Read less
Working at the interface of chemistry, biology and physics. New insights emerge at the point where disciplines come together and, in order to understand how things work, it is important to study them from all angles. Read more

Overview

Working at the interface of chemistry, biology and physics
New insights emerge at the point where disciplines come together and, in order to understand how things work, it is important to study them from all angles. This is the approach we have chosen in teaching Science. As a Master's student you will find yourself at the interface of biology, chemistry and physics as you work to discover the secrets behind man, molecule and materials.

See the website http://www.ru.nl/masters/science

Career prospects

Most of our graduates continue to do a PhD, either in Nijmegen or elsewhere. Our institutes have various vacancies every year. Graduates also find employment as researchers and managers in industry, in the commercial sector and in research institutes.

Our research in this field

Top research and facilities
The programme is closely linked to two internationally recognised Nijmegen institutes:
- Institute for Molecules and Materials
- Donders Institute for Brain, Cognition and Behaviour.

Both have state-of the-art research facilities capable of identifying the characteristics of molecules, materials and the human brain. There are:
- the magnets in the High Field Magnet Laboratory (HFML),
- the NMR and MRI facilities,
- the free electron laser
- the NanoLab.

Little wonder that these institutes and facilities attract top scientists from all over the world. As a Master's student in Natural Sciences you will find yourself in a dynamic research environment working alongside scientists who are leaders in their field.

- Great freedom and personal tutor
The programme offers you considerable freedom to follow your own interests. At the beginning of the programme you will select one study area from the three options available: physical chemistry, biophysics or chemical biology. Within this area you can choose from several specialisations ranging from material science to neural networks and from neurobiology to organic chemistry and nanoscience.
You will complete your main internship within one of the Nijmegen research groups. Here you will have a personal supervisor, with whom you decide on your subjects and research programme. Your second internship will be with a different research group or related to your variant.

- The Nijmegen approach
The first thing you will notice as you enter our Faculty of Science is the open atmosphere. This is reflected by the light and transparent building and the open minded spirit of the working, exploring and studying people that you will meet there. No wonder students from all over the world have been attracted to Nijmegen. You study in small groups, in direct and open contact with members of the staff. In addition, Nijmegen has excellent student facilities, such as high-tech laboratories, libraries and study ‘landscapes'.

Studying by the ‘Nijmegen approach' is a way of living. We will equip you with tools which are valuable for the rest of your life. You will be challenged to become aware of your intrinsic motivation. In other words, what is your passion in life? With this question in mind we will guide you to translate your passion into a personal Master's programme.

- Quality Label
This programme was recently rated number three in the Netherlands in the Keuzegids Masters 2014 (Guide to Master's programmes)

See the website http://www.ru.nl/masters/science

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Ireland has experienced massive growth across the Biotechnology sector including Food, Environmental and Pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 world pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, Bristol-Myers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here.
The MSc in Biotechnology and Business is an exciting programme designed for non-business graduates who want to become managers or entrepreneurs in complex business environments in technology and science-based fields. The MSc in Biotechnology and Business provides you with a solid knowledge of techniques used in modern biotechnology including hands-on experience of bioprocessing. You will also receive a comprehensive business education. You will learn to identify and solve business problems
in local and international settings, enhance your communication and leadership skills, and improve your ability for independent thinking and developing creative solutions. The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Key Fact

The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Course Content and Structure

90 credits 70 credits 20 credits
taught masters taught modules group business plan research project
You will spend 50% of your time studying biotechnology and 50% of your time studying business. You may choose optional biotechnology modules to ensure that you specialise in your area of interest.
Depending on your chosen subjects you will also gain experimental and theoretical knowledge in the following topics:
• Drug Discovery
• Medical Device Technology
• Biomedical Diagnostics
• Regulatory Affairs
• Bioprocessing
• Marketing Management
• Corporate Finance
• Entrepreneurship
• Business plan development
• Biotechnology Case Study

Career Opportunities

This advanced graduate degree in Biotechnology and Business has been developed in consultation with employers and therefore will be recognised and valued by them. A key feature is the opportunity to carry out a business development plan which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation.
Prospective employers include: Abbott; Allergan; Alpha Technologies;
Amgen; Avonmore Foods; Baxter Healthcare; Beckman Coulter; Biotrin International
Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon
Clinical Research; ImmunoGen Inc.; Janssen Pharmaceutical Ltd.; Johnson & Johnson Ltd.;
Kerry Group Plc.; Medtronic; Merck Sharp & Dohme; Olympus Diagnostica; Quintiles;
Quest International; Sandoz.; Seroba Kernel; Serology Ltd.

Facilities and Resources

The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting-edge core technologies including the premier Mass Spectrometry resource in the country, NMR spectroscopy, real-time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
This course in Industrial Physical Biochemistry provides graduates with an advanced knowledge and understanding of physical biochemistry, with particular relevance to industry. Read more
This course in Industrial Physical Biochemistry provides graduates with an advanced knowledge and understanding of physical biochemistry, with particular relevance to industry. Focusing upon technical knowledge and practical skills, the course is ideal for those wishing to pursue careers in research or develop a leading career in the field of physical biochemistry.

Specialist facilities in the School relevant to Industrial Physical Biochemistry include analytical ultracentrifugation, light scattering, protein and carbohydrate biochemistry, and access to Surface Plasmon Resonance, Atomic Force Microscopy, Fluorescence, X-ray crystallography and NMR facilities.

Computing facilities within the School are excellent. Advice on mathematical analysis, statistical design and computer programming is provided.

You will undertake a taught module (Fundamentals of Biomolecular Science) during the autumn semester with lectures, tutorials and a practical. The research module takes place from the start of the course (late September) until the end of August the following year. This is an opportunity to complete a major piece of independent research under the supervision of a member of academic staff. The project can be undertaken wholly or partially in an industrial company’s laboratory in any field of physical biochemistry. There are also two generic training modules.

Read less
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments. Read more
As a student on this programme, you will have access to our main Chemistry Research Laboratory which has undergone a £2m refurbishment, in addition to our suite of state-of-the-art instruments including ICP-MS, NMR spectrometers, Raman microscopes, powder XRD, LC-MS and GC-MS instruments.

PROGRAMME OVERVIEW

With an increase in the number of undergraduate degrees offering the MChem qualification, our Chemistry MRes allows BSc graduates to become equally competitive by studying for an enhanced qualification that will set them apart throughout their career.

Our MRes qualification is also a convenient entry point into the UK academic system for overseas students, and many of our MRes graduates go on to successfully complete a PhD.

Our academics are at the forefront of their field, having recently discovered a method for the rapid detection of drugs from a fingerprint; and a naturally sourced, environmentally safe chemical for the treatment of an important agricultural pathogen.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year. It consists of three taught modules and a research project, which contributes 75 per cent of the final credits to the degree and includes the laboratory based research, library work, COSHH, record keeping and writing the dissertation.

We would normally expect the laboratory based part of the project to be, on average, two to three full days per week during the teaching semesters and five days per week during non-teaching times (for example, over the Christmas, Easter and summer breaks).

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Management, Communication and IT Skills
-Advanced Spectroscopy
-Biomolecules and Medicinal Chemistry
-Advanced Topics in Organic Chemistry
-Advanced Topics in Inorganic Chemistry
-Advanced Topics in Physical Chemistry
-Advanced Polymer Materials and Nanotechnology
-Advanced Medicinal Chemistry
-Advanced Methods in Forensics
-MRes Research Project

EDUCATIONAL AIMS OF THE PROGRAMME

-The aim of the MRes is training in the more laboratory-based aspects of chemical research
-The objectives and learning outcomes/skills are that the student will be able to: assess, plan, carry out, analyse, interpret and disseminate (all with appropriate training and supervision) a significant piece of chemistry research to an extent that results in a satisfactory assessment of a dissertation and viva
-In addition, competence in related (non-laboratory based) aspects of research training will be assessed via examination (formal exam and/or coursework) of lecture/workshop-based modules
-A knowledge of discipline-related aspects of professional training including data analysis, literature searching and reporting and presentation techniques

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-Knowledge and understanding of the scientific method
-Knowledge and understanding of research ethos and strategy
-Knowledge and understanding of advanced communication skills
-Knowledge and understanding of reporting of technical concepts
-Knowledge and understanding of critical analysis
-Knowledge and understanding of advanced aspects of chemistry including subjects at the frontiers of the discipline
-Knowledge and understanding of advanced principles in a research led area of chemistry
-Knowledge and understanding of Health and Safety legislation
-Knowledge and understanding of statistics for data analysis
-Knowledge and understanding of the principles of experimental design

Intellectual / cognitive skills
-The ability to plan and carry out an advance research project
-The ability to analyse and solve problems of technical nature under consideration of various constraints
-The ability to make effective and efficient decisions in an environment of conflicting interests
-The ability to think strategically
-The ability to synthesise and critically evaluate the work of others
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-The ability to self-reflect to improve behaviour

Professional practical skills
-Assessment of the research literature
-Risk assess experiments / procedures
-Design and set up experiments using the most appropriate methods
-Carry out laboratory work safely
-Deal safely with unexpected events / results
-Apply prior knowledge to new situations

Key / transferable skills
-Planning
-Organisation
-Independent working
-Apply prior knowledge to unfamiliar problem
-Using initiative
-Time-management
-Personal development planning
-Use of word processor, spreadsheet, presentation, graphical software packages
-Management of data
-Effective literature / patent searching

RESEARCH

The Chemistry programme is run within the Faculty of Engineering and Physical Sciences and the cross-faculty Surrey Materials Institute (SMI). Staff in the Department of Chemistry have expertise which includes all aspects of chemistry:
-Inorganic
-Medicinal
-Physical
-Physical organic
-Materials
-Polymers
-Nanotechnology
-Analytical

You will receive a thorough education in advanced aspects of chemistry, but also undertake independent research via a project, guided by a dedicated and experienced supervisor.

Projects are available across a range of topics in chemistry, and may extend into areas of biology, forensics or materials science. Past MRes students have continued to further (PhD) education and to posts in research in industry.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less

Show 10 15 30 per page



Cookie Policy    X