• Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
King’s College London Featured Masters Courses
University of Reading Featured Masters Courses
University of Bedfordshire Featured Masters Courses
ETH Zürich Featured Masters Courses
"neuroinformatics"×
0 miles

Masters Degrees (Neuroinformatics)

We have 8 Masters Degrees (Neuroinformatics)

  • "neuroinformatics" ×
  • clear all
Showing 1 to 8 of 8
Order by 
This course provides specialist expertise in core neuroinformatics (such as computing and biology) focusing on the development of research skills. Read more

This course provides specialist expertise in core neuroinformatics (such as computing and biology) focusing on the development of research skills. It equips you with the skills to contribute to biologically realistic simulations of neural activity and developments. These are rapidly becoming the key focus of neuroinformatics research.

Newcastle is among the pioneers of neuroinformatics in the UK and hosted the £4m EPSRC-funded CARMEN project for managing and processing electrophysiology data. We are currently involved in a £10m EPSRC/Wellcome Trust-funded project. This is on implantable devices for epilepsy patients. We use computer simulations to inform about the stimulation location and protocol.

As the amount of data in the neurosciences increases, new tools for data storage and management are needed. These tools include cloud computing and workflows, as well as better descriptions of neuroscience data. Available data can inform computer simulations of neural dynamics and development. Parallel computing and new algorithms are needed in order to run large-scale simulations. There is high demand within academia as well as within industry involving healthcare informatics, brain-inspired computing, and brain-inspired hardware architectures.

The course is designed for students who have a good degree in the biological sciences (including medicine) or the physical sciences (computer science, mathematics, physics, engineering).

You will gain foundational skills in bioinformatics together with specialist skills such as computing programming, mathematics and molecular biology with a significant focus on the development of research skills.

We provide a unique, multidisciplinary experience that is essential for understanding neuroinformatics. The course draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, Biology, Cell and Molecular Biosciences and The Institute of Neuroscience. We also have strong links with the International Neuroinformatics Coordinating Facility (INCF).

Research is a large component of this course. The emphasis is on delivering the research training you will need in the future to effectively meet the demands of industry and academia. Newcastle's research in life sciences, computing and mathematics is internationally recognised.

The teaching staff are successful researchers in their field and publish regularly in highly-ranked systems neuroinformatics journals. Find out more about the neuroinformatics community at Newcastle University.

Graduates of this course may want to apply for PhD studies at the School of Computing Science. In the past, all graduates have continued their career as PhD students either at Newcastle University or elsewhere.

Our experienced and friendly staff are on hand to help you. You gain the experience of working in a team in an environment with the help, support and friendship of fellow students.

Project work

Your five month research project gives you real research experience in neuroinformatics. You will have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry lead projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:

-With a research group at Newcastle University

-With an industrial sponsor

-With a research institute

-At your place of work.

Delivery

The course is based in the School of Computing Science and taught jointly with the School of Mathematics and Statistics and the School of Biology, and the institutes of Cell and Molecular Biosciences, Genetic Medicine and Neuroscience.

We cater for students with a range of backgrounds, including Life Sciences, Computing Science, Mathematics and Engineering. Half of the course is taught and the remainder is dedicated to a research project. Our course structure is highly flexible. You can tailor your degree to your own skills and interests.

Semester one contains modules to build the basic grounding in, and understanding of, neuroinformatics theory and applications, together with necessary computational and numeric understanding to undertake more specialist modules next semester. Training in mathematics and statistics is also provided. Some of these modules are examined in January at the end of semester one.

Semester two begins with two modules that focus heavily on introducing subject-specific research skills. These two modules run sequentially, in a short but intensive mode that allows you time to focus on a single topic in depth. In the first semester two module, you will focus on learning about modelling of biochemical systems - essential material for understanding neural systems at a molecular level. The second module is selected from a number of options. There are up to four modules to choose from, allowing you to tailor the research training component of your degree to your preferences.

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies and access to a Linux based website that you can customise with PHP hosting services.



Read less
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Read more
Our Computer Science MPhil and PhD programme gives you an opportunity to make a unique contribution to computer science research. Your research will be supported by an experienced computer scientist within a research group and with the support of a team of advisers.

Research supervision is available under our six research areas, reflecting our strengths, capabilities and critical mass.

Advanced Model-Based Engineering and Reasoning (AMBER)

The AMBER group aims to equip systems and software engineering practitioners with effective methods and tools for developing the most demanding computer systems. We do this by means of models with well-founded semantics. Such model-based engineering can help to detect optimal, or defective, designs long before commitment is made to implementations on real hardware.

Digital Interaction Group (DIG)

The Digital Interaction Group (DIG) is the leading academic research centre for human-computer interaction (HCI) and ubiquitous computing (Ubicomp) research outside of the USA. The group conducts research across a wide range of fundamental topics in HCI and Ubicomp, including:
-Interaction design methods, eg experience-centred and participatory design methods
-Interaction techniques and technologies
-Mobile and social computing
-Wearable computing
-Media computing
-Context-aware interaction
-Computational behaviour analysis

Applied research is conducted in partnership with the DIG’s many collaborators in domains including technology-enhanced learning, digital health, creative industries and sustainability. The group also hosts Newcastle University's cross-disciplinary EPSRC Centre for Doctoral Training in Digital Civics, which focusses on the use of digital technologies for innovation and delivery of community driven services. Each year the Centre awards 11 fully-funded four-year doctoral training studentships to Home/EU students.

Interdisciplinary Computing and Complex BioSystems (ICOS)

ICOS carries out research at the interface of computing science and complex biological systems. We seek to create the next generation of algorithms that provide innovative solutions to problems arising in natural or synthetic systems. We do this by leveraging our interdisciplinary expertise in machine intelligence, complex systems and computational biology and pursue collaborative activities with relevant stakeholders.

Scalable Computing

The Scalable Systems Group creates the enabling technology we need to deliver tomorrow's large-scale services. This includes work on:
-Scalable cloud computing
-Big data analytics
-Distributed algorithms
-Stochastic modelling
-Performance analysis
-Data provenance
-Concurrency
-Real-time simulation
-Video game technologies
-Green computing

Secure and Resilient Systems

The Secure and Resilient Systems group investigates fundamental concepts, development techniques, models, architectures and mechanisms that directly contribute to creating dependable and secure information systems, networks and infrastructures. We aim to target real-world challenges to the dependability and security of the next generation information systems, cyber-physical systems and critical infrastructures.

Teaching Innovation Group

The Teaching Innovation Group focusses on encouraging, fostering and pursuing innovation in teaching computing science. Through this group, your research will focus on pedagogy and you will apply your research to maximising the impact of innovative teaching practices, programmes and curricula in the School. Examples of innovation work within the group include:
-Teacher training and the national Computing at School initiative
-Outreach activities including visits to schools and hosting visits by schools
-Participation in national fora for teaching innovation
-Market research for new degree programmes
-Review of existing degree programmes
-Developing employability skills
-Maintaining links with industry
-Establishing teaching requirements for the move to Science Central

Research Excellence

Our research excellence in the School of Computing Science has been widely recognised through awards of large research grants. Recent examples include:
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Cloud Computing for Big Data Doctoral Training Centre
-Engineering and Physical Sciences Research Council (EPSRC), Centre for Doctoral Training in Digital Civics
-Wellcome Trust and Engineering and Physical Sciences Research Council (EPSRC) Research Grant: a £10m project to look at novel treatment for epilepsy, confirming our track record in Systems Neuroscience and Neuroinformatics.

Accreditation

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Read less
Informatics is the study of how natural and artificial systems store, process and communicate information. Read more

Informatics is the study of how natural and artificial systems store, process and communicate information.

Edinburgh has a long-standing tradition of world-class research and teaching in informatics, a discipline central to a new enlightenment in scholarship and learning, and critical to the future development of science, technology and society.

This is our most sought-after taught MSc. We offer a wide choice of courses, spanning established disciplines such as cognitive and computer science as well as emerging areas such as bioinformatics. The programme takes full advantage of our expertise in research and teaching, including specialisms unique to Edinburgh.

Programme structure

You follow two taught semesters of lectures, tutorials, project work and written assignments, after which you will learn research methods before individual supervision for your project and dissertation.

Compulsory courses:

  • Informatics Research Review
  • Informatics Project Proposal
  • Introduction to Java Programming (for students who do not already meet the programming requirements for the taught masters)
  • Dissertation

You will choose a ‘specialist area’ within the programme, which will determine the choice of your optional courses:

  • Analytical and Scientific Databases
  • Bioinformatics Systems and Synthetic Biology
  • Cognitive Science, Computer Systems, Software Engineering and High Performance Computing
  • Intelligent Robotics
  • Agents, Knowledge and Data
  • Machine Learning
  • Natural Language Understanding
  • Neural Computation and Neuroinformatics
  • Programming Languages
  • Theoretical Computer Science

There are 100 optional courses available to MSc Informatics students, including courses within specialist areas unique to the programme.

Career opportunities

Our graduates are well regarded by potential employers worldwide. Many go on to work in the technology industry as software engineers, IT consultants, programmers and developers, and may work with the software and hardware giants that have become household names. Others go on to further study and research. Recent graduates are now employed as software developers and engineers, programmers, games designers and analysts for companies including Airbus, Citigroup, NCR Corporation, BT and Skyscanner.



Read less
The Bioinformatics MSc combines foundational skills in bioinformatics with specialist skills in computing programming, molecular biology and research methods. Read more

The Bioinformatics MSc combines foundational skills in bioinformatics with specialist skills in computing programming, molecular biology and research methods. Our unique, interdisciplinary course draws together highly-rated teaching and research expertise from across the University, equipping you for a successful career in the bioinformatics industry or academia.

This interdisciplinary course is based in the School of Computing Science and taught jointly with the School of Biology, School of Mathematics and Statistics, Institute of Cell and Molecular Biosciences and the Institute of Genetic Medicine. It is designed for students from both biological science and computational backgrounds. Prior experience with computer programming is not required and we welcome applications from students with mathematical, engineering or other scientific backgrounds.

Our graduates have an excellent record of finding employment (around 90%). Recent examples have included:

-Bioinformatician at the Medical Research Council

-Technical consultant at Accenture

-Bioinformatics technician at Barcelona Supercomputing Centre.

Our course structure is highly flexible and you can tailor it to your own skills and interests. Half of the course is taught and the remainder is dedicated to a research project.

As research is a large component of this course, our emphasis is on delivering the research training you will need to meet the demands of industry and academia now and in the future. Our research in bioinformatics, life sciences, computing and mathematics is internationally recognised. We have an active research community, comprising several research groups and three research centres.

You will be taught by academics who are successful researchers in their field and publish regularly in highly-ranked bioinformatics journals. Our experienced and helpful staff will be happy to offer support with all aspects of your course from admissions to graduation and developing your career.

The course is part of a suite of related programmes that include:

-Synthetic Biology MSc

-Computational Neuroscience and Neuroinformatics MSc

-Computational Systems Biology MSc

All four courses share core modules. This creates a tight-knit cohort that has encouraged collaborations on projects undertaking interdisciplinary research.

Delivery

Semester one combines bioinformatics theory and application with the computational and modelling skills necessary to undertake more specialist modules in semester two. We provide training in mathematics and statistics and, for those without a biological first degree, we will also provide molecular biology training. Some of these modules are examined in January at the end of semester one.

Semester two begins with two modules that focus heavily on introducing subject-specific research skills. These two modules run sequentially, in a short but intensive mode that allows you time to focus on a single topic in depth. In the first of the second semester modules you learn how to analyse data arising from post-genomic studies such as microarray analysis, proteomic analysis and RNAseq. All of the semester two modules are examined by in-course assessment - there are no formal examinations in these modules.

Project work

Your five month project gives you an opportunity to develop your knowledge and skills in depth, and to work in a research or development team. You will have one-to-one supervision from an experienced member of staff, supported with supervision from industry partners as required.

The project can be carried out:

-With a research group at Newcastle University

-With an industrial sponsor

-With a research institute

-At your place of work.

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.



Read less
This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. Read more

This course provides specialist skills in core systems biology with a focus on the development of computational and mathematical research skills. It specialises in computational design, providing essential computing and engineering skills that allow you to develop software to program biological systems.

This interdisciplinary course is based in the School of Computing Science and taught jointly with the Faculty of Medical Sciences and the School of Mathematics and Statistics. The course is ideal for students aiming for careers in industry or academia. We cater for students with a range of backgrounds, including Life Sciences, Computing Science, Mathematics and Engineering.

Computational Systems Biology is focused on the study of organisms from a holistic perspective. Computational design of biological systems is essential for allowing the construction of complex and large biological systems.

We provide a unique, multidisciplinary experience essential for understanding systems biology. The course draws together the highly-rated teaching and research expertise of our Schools of Computing Science, Mathematics and Statistics, Biology, and Cell and Molecular Biosciences. The course also has strong links with Newcastle's Centre for Integrated Systems Biology of Ageing and Nutrition (CISBAN).

Our course is designed for students from both biological and computational backgrounds. Prior experience with computers or computer programming is not required. Students with mathematical, engineering or other scientific backgrounds are also welcome to apply.

The course is part of a suite of related programmes that also include:

-Bioinformatics MSc

-Synthetic Biology MSc

-Computational Neuroscience and Neuroinformatics MSc

All four programmes share core modules, creating a tight-knit cohort. This encourages collaborations on projects undertaking interdisciplinary research.

Project work

Your five month research project gives you a real opportunity to develop your knowledge and skills in depth in Systems Biology. You have the opportunity to work closely with a leading research team in the School and there are opportunities to work on industry lead projects. You will have one-to-one supervision from an experienced member of the faculty, supported with supervision from associated senior researchers and industry partners as required.

The project can be carried out:

-With a research group at Newcastle University

-With an industrial sponsor

-With a research institute

-At your place of work

Placements

Students have a unique opportunity to complete a work placement with one of our industrial partners as part of their projects.

Previous students have found placements with organisations including:

-NHS Business Services Authority

-Waterstons

-Metropolitan Police

-Accenture

-IBM

-Network Rail

-Nissan

-GSK

Accreditation

We have a policy of seeking British Computer Society (BCS) accreditation for all of our degrees, so you can be assured that you will graduate with a degree that meets the standards set out by the IT industry. Studying a BCS-accredited degree provides the foundation for professional membership of the BCS on graduation and is the first step to becoming a chartered IT professional.

The School of Computing Science at Newcastle University is an accredited and a recognised Partner in the Network of Teaching Excellence in Computer Science.

Facilities

Facilities

You will have dedicated computing facilities in the School of Computing. You will have access to the latest tools for system analysis and development. For certain projects, special facilities for networking can be set up.

You will enjoy access to specialist IT facilities to support your studies, including:

  • a dedicated virtual Linux workstation
  • a dedicated virtual Windows workstation
  • high specification computers only for postgrduates
  • over 300 PC's running Windows, 120 just for postgraduates
  • over 300 Raspberry Pi devices 
  • high-performance supercomputers
  • the latest Windows operating system and development tools
  • 27" monitors with high resolution (2560X1440) display
  • high-capacity database servers
  • motion capture facilities
  • 3D printing facilities

You will have access to a Linux based website that you can customise with PHP hosting services.

We have moved to the new £58m purpose-built Urban Sciences Building. Our new building offers fantastic new facilities for our students and academic community. The building is part of Science Central, a £350 million project bringing together:

  • academia
  • the public sector
  • communities
  • business and industry.


Read less
This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Read more

This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Bioinformatics is a discipline at the interface between biology, computing and statistics and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and graphical presentation - all of which form a core part of modern biology.

Why this programme

  • Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical elective courses in semester 2 and in a summer research project.
  • You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
  • Bioinformatics and the 'omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
  • Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
  • The semester 2 courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organising and implementing appropriate analysis pipelines.
  • You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics. Our College has carried out internationally-leading research in functional genomics and systems biology.
  • Some of the teaching and research scenarios you’ll be exposed to reflect the activities of 'Glasgow Polyomics', a world-class omics facility set up within the university in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its' scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
  • In addition, we have several world-renowned research centres at the University, such as the Wellcome Centre for Molecular Parasitology, the MRC-University of Glasgow Centre for Virus Research and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
  • You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area, systems biology.

‘Polyomics’ is an intrinsically systems-level approach involving the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure

  • core material of 60 credits in semester 1, made up of 10, 15 and 20 credit courses.
  • optional material of 60 credits in semester 2: students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
  • Project of 60 credits over 14 weeks embedded in a research group over the summer.

Additional information about the programme can be found in the Bioinformatics MSc Programme Structure 2017-18.

Please note: students undertaking the three month PgCert will also be required to take two exams in March/April.

Career prospects

Most of our graduates embark on a University or Institute-based research career path, here in the UK or abroad, using the skills they've acquired on our programme. These skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science.

A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - eg computing biology jobs in biotechnology, biosciences, neuroinformatics and the pharma industries.

Some of our graduates have entered science-related careers in scientific publishing or education. Others have gone into computing-related jobs in non-bioscience industry or the public sector.



Read less
The Institute for Adaptive and Neural Computation (IANC) is a world-leading institute dedicated to the theoretical and empirical study of adaptive processes in both artificial and biological systems. Read more

The Institute for Adaptive and Neural Computation (IANC) is a world-leading institute dedicated to the theoretical and empirical study of adaptive processes in both artificial and biological systems. We are one of the UK’s largest and most prestigious academic teams in these fields.

We foster world-class interdisciplinary and collaborative research bringing together a range of disciplines.

Our research falls into three areas:

  • machine learning
  • computational neuroscience
  • computational biology

In machine learning we develop probabilistic methods that find patterns and structure in data, and apply them to scientific and technological problems. Applications include areas as diverse as astronomy, health sciences and computing.

In computational neuroscience and neuroinformatics we study how the brain processes information, and analyse and interpret data from neuroscientific experiments

The focus in the computational biology area is to develop computational strategies to store, analyse and model a variety of biological data (from protein measurements to insect behavioural data).

Training and support

You carry out your research within a research group under the guidance of a supervisor. You will be expected to attend seminars and meetings of relevant research groups and may also attend lectures that are relevant to your research topic. Periodic reviews of your progress will be conducted to assist with research planning.

A programme of transferable skills courses facilitates broader professional development in a wide range of topics, from writing and presentation skills to entrepreneurship and career strategies.

The School of Informatics holds a Silver Athena SWAN award, in recognition of our commitment to advance the representation of women in science, mathematics, engineering and technology. The School is deploying a range of strategies to help female staff and students of all stages in their careers and we seek regular feedback from our research community on our performance.

Facilities

The award-winning Informatics Forum is an international research facility for computing and related areas. It houses more than 400 research staff and students, providing office, meeting and social spaces.

It also contains two robotics labs, an instrumented multimedia room, eye-tracking and motion capture systems, and a full recording studio amongst other research facilities. Its spectacular atrium plays host to many events, from industry showcases and student hackathons to major research conferences.

Nearby teaching facilities include computer and teaching labs with more than 250 machines, 24-hour access to IT facilities for students, and comprehensive support provided by dedicated computing staff.

Among our entrepreneurial initiatives is Informatics Ventures, set up in 2008 to support globally ambitious software companies in Scotland and nurture a technology cluster to rival Boston, Pittsburgh, Kyoto and Silicon Valley.

Career opportunities

The research you will undertake at ANC is perfectly suited to a career in academia, where you’ll be able to use your knowledge to advance this important field. Some graduates take their skills into commercial research posts, and find success in creating systems that can be used in everyday applications.



Read less
Cognitive Science is a discipline in growing demand, and Edinburgh is a widely recognised leader in this area, with particular strengths in natural language, speech technology, robotics and learning, neural computation and the philosophy of the mind. Read more

Cognitive Science is a discipline in growing demand, and Edinburgh is a widely recognised leader in this area, with particular strengths in natural language, speech technology, robotics and learning, neural computation and the philosophy of the mind.

You will gain a thorough grounding in neural computation, formal logic, computational and theoretical linguistics, cognitive psychology and natural language processing, and through a vast range of option courses you will develop your own interests in this fascinating field.

Programme structure

You follow two taught semesters of lectures, tutorials, project work and written assignments, after which you will learn research methods before individual supervision for your project and dissertation.

You will choose a ‘specialist area’ within the programme, which will determine the choice of your optional courses. The specialist areas are:

  • Cognitive Science
  • Natural Language Processing
  • Neural Computation and Neuroinformatics

Compulsory courses:

  • Informatics Research Review
  • Informatics Project Proposal
  • Introduction to Java Programming (for students who do not already meet the programming requirements for the taught masters)
  • Dissertation

There are several optional courses to choose from, such as:

  • Accelerated Natural Language Processing
  • Computational Cognitive Neuroscience
  • Human-Computer Interaction
  • Machine Learning and Pattern Recognition
  • Natural Language Understanding
  • Neural Computation
  • Text Technologies for Data Science
  • Bioinformatics

Career opportunities

This programme will give you a deep understanding of the expanding domain of cognitive science through formal study and experiments. It is excellent preparation for a rewarding academic or professional career. The quality and reputation of the University, the School of Informatics and this programme will enhance your standing with many types of employer. Recent graduates are now working as software engineers, analysts and language scientists for companies such as British Telecom and Intel.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X