• University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"neuroinflammation"×
0 miles

Masters Degrees (Neuroinflammation)

We have 4 Masters Degrees (Neuroinflammation)

  • "neuroinflammation" ×
  • clear all
Showing 1 to 4 of 4
Order by 
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. Read more
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. The integration of cognitive brain imaging with neuroscience will play a central part in discovering how the brain functions in health and disease in the 21st century, as illustrated by the Human Brain Project in Europe and The Brain Initiative in the USA. The taught Brain Sciences Degree will help you gain interdisciplinary knowledge “from molecules to mind” and enable you to develop research skills in cognitive brain imaging, fundamental neuroscience and brain disorders.

Why this programme

◾You will study the Brain Science Degree in an Institute that strives to understand the brain at multiple levels of function, from cells to cognition using approaches ranging from molecular, cellular and systems level investigations to brain imaging o
◾Lectures will be given by staff who are international research leaders and who publish cutting edge research at the forefront of brain sciences.
◾You will attend seminars on a wide range of topics given by eminent external speakers visiting the Institute from around the world as part of our Current Research Topics course.
◾You will carry out a research project working in labs equipped with technology and expertise at the forefront of brain science research, including: ◾3 Tesla fMRI system to image human brain function
◾Magnetoencephalography and electroencephalography to study neural activity
◾Transcranial magnetic stimulation for non-invasive brain stimulation
◾7 Tesla experimental MRI scanner for studying models of disease
◾Confocal microscopy for high resolution cellular imaging
◾Models of disease for pharmcolgical, gene and stem cell therapies

◾You will receive in depth training in research design and statistical analysis
◾The brain science programme allows student choice and flexibility. Through your choice of optional taught courses you can develop in-depth specialist knowledge to enhance further academic research as well as transferable skills for a career outside academia.
◾You will join a vibrant community of masters students from other programmes and for your research project you will be based in laboratories alongside PhD students, postdocs and senior researchers.
◾Through the range of teaching methods and assessments used you will gain skills in critical appraisal, independent working, presentations, writing scientific documents and time management.

Programme structure

The programme will consist of compulsory taught courses, selected optional courses and a research project spread over 11-12 months.

Core courses and Research Project

◾Fundamentals for neuroscience research
◾Cognitive brain imaging
◾Statistics and research design
◾Current research topics in brain sciences
◾Neuroscience: animal models of disease and function
◾Designing a research project
◾Brain sciences research project

Optional courses

◾Introduction to Matlab for biologists
◾Neuroscience: in vivo models
◾In vitro and analytical approaches in neuroscience
◾Bioimaging for life sciences
◾Current trends and challenges in biomedical research and health
◾Technology transfer and commercialisation of biomedical research
◾Neuroinflammation

Teaching and Learning Methods

Taught courses are delivered by lectures, tutorials, problem-based learning and computer-based sessions supplemented by a wide range of electronic resources for independent or group study. You will use the primary scientific literature as an information resource and through project work will develop skills in team-working, experimental design and data interpretation. Through assessment of coursework you will gain skills in oral and written communication.

Career prospects

The University of Glasgow MSc in Brain Sciences provides you with many career opportunities.

Research: MSc students can enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in academic settings.

Industry: Other options include going on to work in a wide range of commercial sectors including the pharmaceutical or biotechnological industries and scientific publishing.

Read less
Lead academic 2016. Dr Thomas Jenkins. Read more

About the course

Lead academic 2016: Dr Thomas Jenkins

This course, offering practical clinical exposure, enables you to apply the fundamentals of neuroanatomy and physiology to better understand the clinical features of patients with neurological disease and learn how insights from the laboratory are translated into benefits for patients.

In small group teaching sessions and clinics, you’ll have the opportunity to apply theoretical knowledge to patients with neurological disease. In the final term you may take a research option (Route A) or a Clinical Neurology Experiential Learning Module (Route B).

Students opting for Route A will choose from a range of clinical research projects based at SITraN or within the Royal Hallamshire Hospital. Students opting for Route B will attend additional specialist clinics with patient-centred teaching from experts in the field who will emphasise recent advances in clinical practice.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

During the autumn and spring terms, you’ll take four taught modules worth 30 credits each: Applied Neuroanatomy and Clinical Neuroscience; Cerebrovascular Disease and Disorders of Consciousness; Neuroinflammation (CNS) and diseases of the PNS; Neurodegeneration.

Complementing the taught modules is a comprehensive programme of clinical demonstrations, integrated learning activities, themed clinics and neuro-anatomy dissection (autumn term) where students will be able to apply the taught theory and further substantiate their understanding of the topic area being studied.

Examples of optional modules

Either a research project (Route A) or a Clinical Neurology Experiential Learning Module (CNELM) (Route B) worth 60 credits is completed in the summer term.

Teaching and assessment

The taught component of the MSc is delivered through lectures, seminars, tutorials, practical demonstrations and student-led group work. Each of the 30-credit modules is assessed using a formal examination (15 credits) and ongoing assessments during the module (15 credits), including essays and oral presentations.

The research project (Route A) is assessed from the written dissertation and research presentation examination. The CNELM (Route B) is assessed by means of a portfolio (30 credits) and a 6,000-word dissertation (30 credits) on an aspect of the sub-speciality chosen for the module. The portfolio will contain a reflective log, anonymised details of cases seen, and work-based assessments.

Read less
Lead academic 2016. Dr Julie Simpson. This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy. Read more

About the course

Lead academic 2016: Dr Julie Simpson

This course combines taught modules on the fundamental aspects of the major nervous system diseases, with the development of practical laboratory skills encompassing histopathology, molecular pathology and microscopy.

You’ll be trained to use tissue samples in neuroscience research aimed at understanding the pathophysiology of nervous system diseases and you’ll discover how laboratory breakthroughs have been translated into clinical benefits.

The course will be taught by scientists and consultant neuropathologists who are experts in their fields. You’ll get the opportunity to carry out neuroanatomy dissection and you’ll work with leading research groups during the research project.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Neuro-anatomy; Basic Principles of Pathology and Histopathology; Molecular Neuroscience; Ethics and Public Awareness of Science; Pathology and Modelling of Neurodegenerative Disease; Neuroinflammation, Neuro-Oncology and Neurovascular Disease; Literature Review and Critical Analysis of Science; Research Project.

Teaching and assessment

The taught component of the MSc is delivered through practical laboratory classes and demonstrations, lectures, seminars and tutorials. Assessment is primarily through written assignments and coursework, along with practical laboratory assessments, spotter exams, presentations and debates. The research project is assessed by a thesis and oral presentation.

Read less
This programme will offer you the opportunity to get actively involved in two neuroscience research projects, through your research placements. Read more
This programme will offer you the opportunity to get actively involved in two neuroscience research projects, through your research placements. This will allow you to join first class research groups and gain first-hand experience of the day-to-day operation of neuroscience laboratory. Neuroscience research at the University of Manchester is rather diverse, spanning from the molecular processes of neuroinflammation, to neurodegenerative disease, the neuronal clocks responsible for the circadian rhythms, to the theoretical and experimental study of how networks of neurons implement brain functions such as sensory processing and motor control. You will also benefit from being exposed to the Neuroscience Research Seminars, in which internationally renowned experts present their recent findings.

This is a research focused master's course. We do not teach Neuroscience using a traditional lecture-based format; instead we use an interactive approach where you learn through seminars, workshops, small group tutorials and during your research placements.

Career opportunities

MSc graduates acquire a vast array of subject specific and transferable skills and gain extensive laboratory research experience. The University of Manchester has a strong record of placing students in PhD programmes at Manchester and other universities and several of our graduates have pursued research careers in industry.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X