• Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Birmingham City University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"natural" AND "product"×
0 miles

Masters Degrees (Natural Product)

We have 51 Masters Degrees (Natural Product)

  • "natural" AND "product" ×
  • clear all
Showing 1 to 15 of 51
Order by 
The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. Read more

The UCL School of Pharmacy has an international reputation in natural drug discovery and the evaluation of drug leads from natural sources. This MSc has been designed in response to ever-increasing interest in the development and use of medicines derived from natural products.

About this degree

This programme aims to train students in the methods used to analyse and characterise medicinal natural products, to examine the safety and efficacy of currently used herbal medicines, analytical and bioassay methods, and the ethnopharmaceutical uses of plants from traditional systems of medicines.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (120 credits), and a research dissertation (60 credits).

Core modules

  • Analytical Techniques in Phytochemistry
  • Biodiversity and Medicines
  • Medicinal Natural Products
  • Natural Products Discovery
  • Formulation of Natural Products and Cosmeceuticals

Optional modules

  • There are no optional modules for this programme.

Dissertation/report

All students undertake a four-month research project in the third term which culminates in a dissertation. Topics range from natural product isolation and characterisation, synthesis, analysis, and a survey of medicinal products used in the community.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and laboratory-based practical classes. Assessment is through a combination of written examinations, coursework and practical assignments, and the research project and oral presentation.

Further information on modules and degree structure is available on the department website: Medicinal Natural Products and Phytochemistry MSc

Careers

Recent graduates of this programme have progressed to careers in herbal, phytopharmaceutical or health food sectors. Some are involved in drug discovery while others pursue a PhD in the UK or overseas.

Why study this degree at UCL?

The programme provides a broad overview of natural product science, the impact of natural products as medicines, their analysis and their place in various societies.

Specifically the programme covers herbal medicines in healthcare and their safety and efficacy, with examples of natural products as medicines. There will also be lectures on the analysis of natural products and their place in the drug discovery process.

A visit to an industrial manufacturer of herbal medicinal products will take place.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries. Read more

The Drug Sciences MRes is for graduates wishing to pursue a career in research. The programme provides a flexible opportunity for high-level research-based training and acquiring a range of academic skills that will prepare students for PhD-level study or a career in biotech and pharmaceutical industries.

About this degree

This programme includes taught and research components and runs for 12 months. The research project begins immediately when students join their chosen laboratory. Project work continues throughout the whole year. The taught component is tailored to individual research programmes. Students select the appropriate modules for their chosen research discipline. There is also core training in research methods and transferable skills.

Students undertake modules to the value of 180 credits.

The programme consists of both a taught component (30 credits) and a larger research component (150 credits). The taught component will be drawn from a range of specialist options taught by the School of Pharmacy. Students will study either one 30-credit or two 15-credit modules. Not all modules will be available every year.

Core modules

  • Dissertation

Optional modules

Students select either one or two modules from a wide range including:

  • Medicinal Natural Products
  • New Drug Targets in the CNS
  • Anticancer Personalised Medicines
  • Modern Aspects of Drug Discovery
  • Analysis and Quality Control
  • Preformulation
  • Formulation of Small Molecules
  • Personalised Medicines
  • Natural Product Discovery, Pharmacogeonomics
  • Adverse Drug Reactions and Biomarkers
  • Advanced Structure Based Drug Design
  • Pharmaceutical Biotechnology
  • Clinical Pharmaceutics
  • Nanomedicines
  • Polymers in Drug Delivery
  • Formulation of Natural Products and Cosmeceuticals
  • Developmental Neurobioloy
  • Neurobiology of Degeneration and Repair
  • Cognitive Systems Neuroscience
  • Systems and Circuit Neuroscience

Dissertation/report

All students undertake a programme of full-time research equivalent to approximately 10 months' duration. This research will be written up as a dissertation at the end of the period of study.

Teaching and learning

The programme is delivered through a combination of lectures and seminars, laboratory work, participation in the research training programme. Assessment is through written examination, research dissertation, oral presentation and viva voce examination.

Further information on modules and degree structure is available on the department website: Drug Sciences MRes

Careers

Graduates of this programme can expect to become proficient research scientists equipped for a career in research, in the pharmaceutical industry, or with a government regulatory body.

Why study this degree at UCL?

This MRes in Drug Sciences is conducted primarily as an in-depth and novel research project at the forefront of research in the area of medical and pharmaceutical sciences within the internationally recognised UCL School of Pharmacy.

Thus students gain research experience and training in their chosen research laboratory and also importantly, they have the opportunity to interact with expert researchers in all aspects of the drug discovery and delivery process.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: School of Pharmacy

87% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Read more

Program Overview

Oceanographers investigate both fundamental and applied problems relating to the physics, mathematics, biology, chemistry, and geology of the sea, often working across traditional academic disciplines. Research carried out both independently and in collaboration with federal government laboratories occurs in many different oceanographic regimes, including coastal BC fjords, the inland sea of the Strait of Georgia, open ocean regions of the Subarctic Pacific, and many other locations, including the Arctic and Antarctic Oceans. The types of problems that can be studied include fundamental questions about the flow of stratified fluids at scales ranging from tens of meters to thousands of kilometers, applied research in estuaries, coastal, and deep-ocean processes, general ocean circulation and climate change issues, marine chemistry, geochemistry, and biogeochemistry, natural product chemistry, marine viruses, fisheries oceanography, plankton ecology and physiology, and primary production of the sea. The Department is well equipped to carry out research in the field (using either its own boat or larger vessels in the oceanographic fleet), at the laboratory bench, and in the numerical heart of a computer. Most problems involve aspects of all three.

Students in Oceanography may select courses, depending on their interest, from the following areas of specialization:
- biological oceanography
- marine chemistry and geochemistry
- physical oceanography and atmospheric sciences

Students are encouraged to broaden their knowledge by taking courses outside their area of specialization. Courses related to Oceanography are also offered in the Departments of Botany, Chemistry, Civil Engineering, Geography, Physics and Astronomy, and Zoology.

Oceanography students normally begin their studies in September but may sometimes arrange to start their thesis/dissertation work in the summer before their first Winter Session. A student wishing to do graduate work in Oceanography should first discuss the proposed program with appropriate faculty in the Department of Earth, Ocean and Atmospheric Sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Oceanography
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?. Read more
How can you design an electronic toll collection system? How can a production plant minimize production costs without compromising on quality and safety? How can you design a complex consumer product?

These are typical questions that a graduate of the Master's programme Industrial Engineering and Management (IEM) can address. In a progressively technological society, IEM engineers will increasingly become leaders of technological innovation and design.

A Student of the Master's degree programme Industrial Engineering and Management (IEM) learns how to deal with practical problems in businesses. A focus lies on how to find solutions to problems while taking on a technical and scientific design perspective. The general aim of the IEM Master's programme is to train engineers to acquire a thorough overview of all primary and secondary business processes, especially with respect to the design of a technological product or process.

More than its nearest competitors, the IEM Master's degree programme of the University of Groningen focuses on technology. About 65% of the curriculum is dedicated to engineering and technology, and about 35% focuses on management and business. You can choose between two specialisations:

* PTL: Production Technology and Logistics

* PPT: Product and Process Technology

Why in Groningen?

- Integration of technology and management
- Strongly embedded in a specific technology of your choice

Job perspectives

Career opportunities are abundant for Industrial Engineering and Management(IEM)engineers. Career-market analyses consistently show that there is a strong need for professionals with a combined technical and managerial background.

- IEM engineers with a Production Technology and Logistics (PTL) specialization
IEM engineers with a PTL specialization can start a career as a product manager, involved in the development of new innovative products within the tight boundaries of technical, market and product-related constraints.

-Product and Process Technology (PPT) specialized IEM engineers
PPT-specialized IEM engineers can become members of product and process design teams or for example begin a career as a production manager in industrial companies.

Job examples

- Product manager
- Product developer
- Production manager
- Process designer

Read less
The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career. Read more

The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

Graduates of this programme are expected to understand the whole process of converting fibrous materials into the end product and to be able to identify and analyse the appropriate material and production route for a specific end product. You will also have developed the expertise and skill to conduct quality evaluation of textile products.

The complete MSc programme is made up of taught course units and a research dissertation. The taught course units are delivered through a combination of lectures and practical laboratory work.

Special features

The Masters programme in Technical Textiles enables you to develop a high level of understanding of the advanced Technical Textiles sector, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

After successfully completing the programme, you will have gained a thorough grounding and understanding of the whole process of converting fibrous polymeric materials to the end product. This successful delivery to the Technical Textiles sector involves materials performance, Computer Aided Design (CAD), 2D/3D product design and specification, sustainability, effective supply chains and an understanding of diverse product sectors such as textile composites, protective wear, filtration, sportswear, medical textiles and the integration of electronics into textile structures.

Coursework and assessment

You will be assessed by a combination of exams and coursework. The coursework supports the development of your transferable skills such as literature review and report writing. You will complete your MSc programme with a dissertation project. Your dissertation is an opportunity to apply your learning on a five-month technical textiles project. It also enables you to further develop your knowledge and skill in your chosen field. Your choice of topic, in consultation with your personal tutor, will range in purpose from investigatory and problem-solving work, through studies of state-of-the-art technology and current practice, to experimental and analytical research.

Course unit details

 The taught units are:

  • Textile Materials and Performance Evaluation
  • Yarn Technology
  • Applied Manufacturing Processes
  • Advanced Manufacturing Techniques
  • Technical Textiles
  • Advanced Coloration and Performance Evaluation

Textile Materials and Performance Evaluation

This programme unit provides a wide range of topics in textile materials science, performance enhancement and testing that are fundamental for effective functioning in a technical capacity within any textiles or materials related organisation. 

  • Nature of man-made and natural fibres.
  • Characteristics of fabrics and fabric mechanical properties. Yarn and Nonwovens Technology
  • Principles and applications of KES-FB and FAST fabric evaluation systems. Comfort in garment microclimates.
  • Dimensional stability, surface modification techniques, oil/water repellency, waterproofing, coating, lamination, flame retardants and smart materials.
  • Microscopy and surface analysis.

Yarn and Nonwovens Technology

This programme unit introduces the technologies of producing yarns and nonwovens from staple fibres and continuous filaments and provides knowledge in the quality and quality control aspects of yarn production. 

  • Fibre preparation, ring and other modern spinning technologies, texturing, yarn quality control, fancy yarns, composite yarns and yarn preparation.
  • Nonwovens web forming technology including dry laying, air laying, wet laying, spun-bonding, melt-blowing. Nonwovens consolidation/bonding technologies; mechanical and chemical bonding; thermal bonding; applications of nonwoven products.

Applied Manufacturing Processes

This programme unit provides a working knowledge of the weaving, knitting and joining processes, types of machinery used, types of fabric structures and associated properties of the product fabrics.

  • Fundamentals of weaving. Shuttle and shuttleless looms; multi-phase weaving machines and other modern developments in weaving technology; warp preparation; technical weaving and braiding.
  • Classification and analysis of knitting techniques and knitting cycles; patterning and shaping; flat bed, circular, Tricot and Raschel knitting machines; modern knitting techniques; cycle of high-speed circular knitting machines; machine performance; yarn performance and properties in knitting; quality and the dimensions stability of the fabric.
  • Fabric joining techniques.

Fundamental Technology and Concepts for Industrial Manufacture

This programme unit provides a working knowledge of concepts of `production for profit', `economy of scale', the importance of the Supply Chain in Textile manufacturing, the importance of pre-competitive research, Design of Experiments(DoE), prototyping and technology transfer and the basics concepts of textile engineering & machine mechanics.

  • The fundamentals of engineering & machine mechanics in order to deal with the Technical Textiles end users in Aerospace, Automotive and other industries, sustainability and recycling issues in manufacturing and design.
  • The nature of the global traditional and technical textiles industry and concepts relating to successful manufacturing and supply chain. Nature of engineering & chemical industry as opposed to the textile industry. Certification requirements (e.g. Aerospace, Automotive, Healthcare, Sportswear), product development in real industrial context, Design of Experiments, quality & inspection, product lifecycles, Sustainable Design. The nature of the research and production environment, individual and team R&D activities.

Technical Textiles - Industrial Applications

This programme unit introduces industrial applications for technical textiles and covers the production and application of textile composites, architectural textiles, geotextiles, automotive textiles, and industrial filtration.

  • Composites: Basic concepts, classification, manufacturing techniques-from fibre to composite, textile composites, composite applications, reuse & recycling; geotextiles: basic classification, main functions of a geotextiles, applications; Architectural textiles, concepts of tensegrity structures.
  • Automotive Textiles: requirements on automotive textiles including tyre cords, air bags, seat belts and seat fabrics, carpets, trims.
  • Principles of filtration, industrial filtration in textile, chemical, food and metallurgical applications.

Technical Textiles - Personal Environment

This programme unit introduces the production and use of technical textiles in human related areas including medical, smart, protective, sportswear, space applications.

  • Medical textile materials and structures; application of compression bandage technology for medical care; integrating electronic sensors into medical textiles; knitted electro-textiles.
  • Protective Textiles: Bullet proof, stab proof vests. Impact protection: impact mechanism and cellular textile composites. Ballistics and body armour.
  • Technical clothing, sportswear, spacewear, sailing equipment.
  • Medical and Smart Textiles

Accrediting organisations

Accredited by the Institute of Minerals, Materials and Mining (IOM 3 ) as meeting the Further Learning requirements for registration as a Chartered Engineer.



Read less
Are you interested in working with cutting-edge technology at the forefront of language processing?. MA Computational Linguistics is a course run by a leading research group at the University of Wolverhampton. Read more

Are you interested in working with cutting-edge technology at the forefront of language processing?

MA Computational Linguistics is a course run by a leading research group at the University of Wolverhampton. As a Masters student on this course, you will be part of our Research Institute of Information and Language Processing (RIILP), an independent, research-driven University unit specialising in Linguistics and Natural Language Processing.

As the name suggests, Computational Linguistics (sometimes called Natural Language Processing) is the use of computers to study language. On the course, you will be able to study:

• How to use Python and the well-established NLTK library to process natural language texts;

• How to analyse real language usage;

• How to automatically translate text using computer programs;

• The use of computers to study features of language;

• Translation tools such as translation memory systems;

• Computer techniques for automatically classifying natural language texts;

• Understand how Siri, Amazon Echo and Google Home etc. work;

• How to design an experiment that will thoroughly test your research questions.

You will be mentored through this programme by experienced and leading academics from the field. Join our research group today to become part of this team of leading researchers and academics and create your path to a career in computers and language!

What happens on the course?

MA Computational Linguistics, when studied full-time, comprises of three semesters worth 60 credits each. Three modules will be studied in both Semester One and Semester Two. During the third semester, students will undertake their research project and complete a 15,000 word dissertation on any aspect of Computational Linguistics.

The course covers all aspects of Computational Linguistics in-line with current and leading work in research and industry, and is divided into the following taught modules:

1. Computer programming in Python

The students will be taught the Python computer programming language, which is specially designed for dealing with natural language texts.

2. Corpus Linguistics in R

Corpus Linguistics involves storing large amounts of text on the computer for linguistic analysis. R is a programming language used to study the statistics of language.

3. Machine translation and other natural language processing applications

The automatic translation of text using statistics. The members of the Research Group will each speak on their own research areas throughout the module.

4. Computational Linguistics

The use of computers to study language at all levels, such as relations between words, part of speech tagging, syntactic parsing and anaphora resolution.

5. Translation tools for professional translators

Using computer tools to speed up many aspects of translation, such as product manuals, film scripts, medical texts, video games and simultaneous interpreting.

6. Machine learning for language processing

Computer techniques for automatically classifying natural language texts, for NLP tasks such as making summaries of text automatically.

7. Research methods and professional skills

You will learn how to design an experiment to thoroughly test your research questions.

Translation Tools for Professional Translators is an elective module that may be chosen in the Second Semester to replace another taught module for those students who are interested in pursuing careers in Translation.

You will be expected to dedicate 9 hours per week to lectures and a proportionate amount of time to self-study and tutorials with your supervisor.

Opportunities:

- You will be taught by leading researchers in the field: our teaching staff at the Research Institute of Information and Language Processing (RIILP) are engaged in high-quality research, as evidenced by the latest RAE 2008 and REF 2014 results.

- We offer an exciting programme of invited lectures and research seminars, attended by both students and staff;

- The institute has a wide network of contacts in academia and in the industry from which you will be able to benefit.

The knowledge and skills developed in the course will be assessed in a variety of ways. Assessments will include writing assignments on given topics, reports on practical work carried out in the class, portfolios, projects, oral presentations, and tests.

The culmination of the study programme will be your 15,000-word dissertation, which will allow you to carry out an in-depth study of a chosen topic within the areas of corpus linguistics, language teaching, lexicography, or translation.

Career path

Graduates of this course will be well-placed to continue their academic/research careers by applying for PhD positions within RIILP or at other leading centres for language and information processing. This degree will also enable graduates to access research and development positions within the language processing and human language technology industries, as well as in related areas such as translation, software development and information and communication technologies, depending on their specific module choices and dissertation topic. It should be noted that computer programming is a skill that is increasingly sought after by many companies from technological backgrounds and skills gained from this course will place graduates in a good position to take up such posts. Past graduates from this course have also gone on to successful careers specifically within the computer programming industry.

What skills will you gain?

The practical sessions include working with tools and software and developing programs based on the material taught in the lectures, allowing you to apply the technical skills you are learning. Some of the tasks are group based, feeding into the collaboration aspect of blended learning which enhances team-working skills, and some are done individually. Through portfolio building, you will be able to share your learning with other students. You will also be able to enhance your employability by sharing your online portfolio with prospective employers. Some assessments will require you to present your work to the rest of the class, enabling you to develop your presentation skills, which are useful in both academia and industry. Other transferrable skills are the abilities to structure your thoughts, present your ideas clearly in writing and prepare texts for a wider audience. You will acquire these skills through assessed report and essay writing, and most of all through writing your dissertation.



Read less
Degree. Master of Science with a major in Energy and Environmental Engineering. The Sustainability Engineering and Management master’s programme deals with the multifaceted challenge of developing products, services and technical systems that contribute to increased resource-effectiveness and sustainability. Read more

Degree: Master of Science with a major in Energy and Environmental Engineering

The Sustainability Engineering and Management master’s programme deals with the multifaceted challenge of developing products, services and technical systems that contribute to increased resource-effectiveness and sustainability.

It is well-known that economic development and human welfare depend on the availability of raw materials and energy. However, the exploitation of such natural resources has many environmental implications such as climate change, resource scarcity and the uncontrolled dispersal of hazardous substances. In times of global environmental problems and concerns about the long-term availability of natural resources such as metals and minerals, incentives for using materials and energy in more intelligent and efficient ways are increasing among governments, companies and other organisations.

McKinsey, one of the largest management consultancy firms in the world, has emphasised the urgent need for a resource revolution. The aim is to address the anticipated economic and political implications of resource scarcity, steadily increasing pollution levels from primary production and the uneven distribution of natural resources among regions. Companies are thus facing the challenge of delivering increasing amounts of products and services, while at the same time preventing the depletion of natural resources, cutting costs and contributing to a sustainable society.

Combined research perspectives

This master’s programme offers a unique knowledge profile and aims to train future engineers who can contribute to such a societal transition towards the more efficient use of natural resources. More specifically, you will learn how to combine a multidisciplinary system perspective with skills in modern environmental and energy engineering. With this proactive and holistic approach, environmental problems can often be significantly limited or prevented, without jeopardising human well-being.

The programme combines the perspectives of two research groups – Energy Systems and Environmental Technology and Management – at the Department of Management and Engineering. These groups deal with system solutions and state-of-the-art research in areas like renewable energy and biofuels, energy efficiency, waste management, urban and landfill mining, corporate environmental management and integrated product-service offerings. Several renewable energy solutions have already been implemented in the region, which means that you will have the opportunity to see how such environmental technology works in practice. Moreover, there is a national research excellence centre on biogas production and utilisation located at the university, which involves a wide network of academic, industry-related and public actors.

Innovation courses included

The first semester features introductory courses in environmental engineering and energy systems, and courses in traditional engineering topics such as product development and project management. The second and third semesters involve specialisation in concepts, strategies and methods for achieving more efficient use of materials and energy, at business, inter-business and societal levels. These semesters also include courses on the development and implementation of sustainability concepts and strategies such as innovative entrepreneurship and innovation management.

Examples of courses within the programme are: Energy Systems, Large Technical Systems and the Environment, Energy Systems Analysis, Innovative Entrepreneurship, Biofuels for Transportation, Industrial Ecology, Management Systems and Sustainability, Innovation Management and Resource-Efficient Products.

The programme concludes with a degree project (30 ECTS) in the final semester.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
Within the travel and tourism industry, there is an increasing focus on the need to adopt responsible business practices that improve the quality of life for communities and conserve the environment and local cultures. Read more

Within the travel and tourism industry, there is an increasing focus on the need to adopt responsible business practices that improve the quality of life for communities and conserve the environment and local cultures. This course helps meet the resulting demand for managers with the ability to implement responsible tourism strategies within marketing, operations and product development.

You will explore domestic and international tourism and you will understand that the principles of responsible tourism are as applicable to the Yorkshire Dales as they are to The Gambia. In addition to developing your subject knowledge, you will learn how to plan, implement and evaluate responsible tourism policies and practices.

This is the only responsible tourism course in the world certified by the UNWTO.TedQual programme established by the United Nations World Tourism Organization. It is taught by staff with first-hand experience in tourism management, research and consultancy, who will share their global expertise with you.

Research Excellence Framework 2014

Research Excellence Framework 2014: 59% of our research submitted was assessed as world leading or internationally excellent.

Course Benefits

To support your studies, you will be assigned a personal industry mentor. Our mentors are experienced tourism professionals and have all graduated from this masters course, so they understand your journey. Your mentor could assist you in a number of possible ways, including discussing career pursuits, giving advice on work placements, helping to improve your CV and providing tips on assignments, course material and work / life balance. We have over 20 mentors from areas as diverse as the Gambia Travel Foundation Programme, TUI UK & Ireland and VisitEngland, so we will attempt to match you with an appropriate mentor.

Our teaching is grounded in industry consultancy and research. The quality of our research is evident in the outstanding results achieved in the Research Assessment Exercise completed in 2014 in which Leeds Beckett came second in the country for sport and exercise science, leisure and tourism.

Staff teaching this course have played a leading role in the responsible tourism and hospitality movement through research and development work with the industry and government which enables our students to also play an important role in this sector. Lucy McCombes is a certified Travelife auditor and Dr Simon Woodward is chair of the ICOMOS-UK Cultural Tourism Committee and a Trustee of the Landscape Research Centre.

PG Cert

Modules

  • Responsible Tourism Theory & Practice
  • Tourism for Local Economic Development & Poverty Reduction
  • Natural Resource & Environmental Management
  • Communities, Culture & Heritage
  • Marketing Responsible Tourism
  • Ethical Tourism Business Management
  • Tourism Destination Management: Planning & Policy
  • Online Marketing - Strategies & Tools

PG Dip

Core modules

  • Responsible Tourism Theory & Practice (Core for part-time & distance learners only)

Option modules

  • Tourism for Local Economic Development & Poverty Reduction
  • Natural Resource & Environmental Management
  • Communities, Culture & Heritage
  • Marketing Responsible Tourism
  • Ethical Tourism Business Management
  • Tourism Destination Management: Planning & Policy
  • Online Marketing - Strategies & Tools

MSc

Core Modules

  • Responsible Tourism Theory & Practice (distance learning only)
  • Tourism Destination Management: Planning & Policy
  • Marketing Responsible Tourism
  • Communities, Culture & Heritage
  • Tourism for Local Economic Development & Poverty Reduction
  • Natural Resource & Environmental Management
  • Masters Research Methods
  • Masters Research Project

Option Modules

  • Ethical Tourism Business Management (full-time only)
  • Online Marketing: Strategies & Tools (full-time only)

Job Prospects

You will enhance your ability to operate effectively at a strategic level within conservation organisations and in both the public and private sectors, and you will have expertise and confidence to devise , implement and manage responsible tourism programmes. Graduates have gone on to work as sustainability and product managers for tour operators and have also taken senior managerial positions in government departments and with international non-governmental organisations.

  • Responsible Tourism Adviser
  • Sustainable Product Manager
  • Charity Development Consultant
  • Sustainable Destinations Manager


Read less
Schumpeter for the 21st century. Conducting business in an entrepreneurial way and having the capacity for innovation are the most important competitive factors in many business sectors today. Read more

Schumpeter for the 21st century

Conducting business in an entrepreneurial way and having the capacity for innovation are the most important competitive factors in many business sectors today. To this end, the Austrian-born economist, Joseph Schumpeter, created the term "creative destruction": The stronger incessantly pushes the weaker. The existing economic structure is altered through innovation. Companies failing to rise to this challenge disappear from the market place. However, anyone determining the rules of the game as an innovator, not only generates wealth and social benefits, but may also achieve a temporary monopoly profit.

Innovations are not just the rare, trailblazing "break-throughs". Value is alos generated from companies by creative product improvements, altered processes, new markets and more intelligent organizational syltes. Entrepreneurial opportunities are constantly arising in technologies and markets, and many ideas are just waiting for their commercial implementation. The ability to make use of them will become a key qualification for executives and managers. It is particularly at the interface between economics and technology that there lies a great deal of unexplored potential.

The Program

The Professional MBA Entrepreneurship & Innovation provides the appropriate skills and techniques, and thereby teaches entrepreneurial thinking and acting. The lecturers are internationally renowned experts. The organizers, the TU Wien and the Vienna University of Economics and Business (WU), represent the link between technological excellence and business competence. This Professional MBA is an important step in the transfer of cutting-edge knowledge and management skills at the highest international level.

In this program, innovation is understood as the process through which knowledge and creativity lead to product or service changes. Entrepreneurship is then the process through which knowledge and creativity generate new ways of delivering these products and services, either through a new organization or through reformation of an existing enterprise.

Contents

The Professional MBA Program comprises of general economic science modules and specialist in-depth modules. The basic modules of economic science raise all of the participants to a common level of sound, fundamental economic knowledge and serve as quality assurance for knowledge that has already been acquired.

  • Managing People and Organizations
  • Strategy and Innovation
  • Managerial Economics and Decision Analysis
  • Accounting and Finance
  • Marketing and Markets
  • Operations and IT
  • Leadership and Ethics

In the second year, the professional specialization and immersion in the subject matter take place. The final part of the MBA Program serves for the consolidation and integration of what has been learned, as well as the writing of a practically-orientated Master's Thesis.

  • Sources of Innovation
  • Strategy of Innovation
  • Marketing of Innovation
  • Organization of Innovation
  • Financing and Controlling of Innovation
  • Entrepreneurial Leadership
  • Master's Thesis

For further information on the contents on the general as well as specialization modules, please visit https://www.tu-wu-innovation.at/program/curriculum/

Field study

To provide the participants with some special insights into the Amercian way of doing business and pushing innovation, a field trip to the Boston area is also an essential part of this MBA program. The schedule will include lectures at the MIT Sloan School of Management and the Harvard Business School as well as meetings with venture capitalists, business angels, founders of start-ups and much more. For futher information on the field trips, please visit https://www.tu-wu-innovation.at/program/field_study/

Target Group

The Professional MBA Program is aiming mainly at people operating at the gateway between technology and economy and those who want to operate in this area in the future:

  • Employees of companies or self-employed that have placed or tend to place themselves as innovation leaders
  • Engineers, Natural Scientists and Economists working in the fields of product marketing and product controlling with leadership experience
  • Employees who have made the first steps in their career and want to be prepared to take over an interdisciplinary, innovation oriented management position

Potential founders with technological background



Read less
The two year MSc programme Biosystems Engineering is for students with an (agricultural) engineering background on bachelor level that are interested to pursue a MSc degree in a field where the interaction between technology and biology plays an important role. Read more

MSc Biosystems Engineering

The two year MSc programme Biosystems Engineering is for students with an (agricultural) engineering background on bachelor level that are interested to pursue a MSc degree in a field where the interaction between technology and biology plays an important role.

Programme summary

During the master Biosystems Engineering, students are educated in finding innovative solutions. The programme combines knowledge of technology, living systems, natural and social sciences with integrated thinking using a systems approach. Solutions can be applied to either the field of food or nonfood agricultural production. During the programme, you develop independence and creativity while acquiring skills that enable you to analyse problems and work as part of an interdisciplinary team. Biosystems Engineering is a tailor-made, thesis oriented programme based on the specific interests and competencies of the student.

Thesis tracks

Farm Technology
This topic consists of four main themes, namely automation for bioproduction, greenhouse technology, livestock technology and soil technology. All these topics have the shared goal of designing systems in which technology is applied to the demands of plants, animals, humans and the environment. Examples of such applications include precision agriculture, conservation tillage, fully automated greenhouses and environmentally friendly animal husbandry systems that also promote animal welfare.

Systems and Control
Production processes and various kinds of machinery have to be optimised to run as efficiently as possible; and with the least amount of possible environmental impact. To achieve this, computer models and simulations are developed and improved. Examples include designing control systems for a solar-powered greenhouse to include a closed water cycle and designing a tomato-harvesting robot.

Information Technology
Information and communication play a vital role in our society. It is necessary to acquire, use and store data and information to optimise production processes and quality in production chains. This requires the design and management of business information systems, software engineering, designing databases and modelling and simulation.

Environmental Technology
Environmental technology revolves around closing cycles and reusing waste products and by-products. Processes have to be designed in such a way that they either reuse waste or separate it into distinct and reusable components. Examples include the production of compost, the generation of green energy or the design of environmentally friendly animal husbandry systems and greenhouses.

AgroLogistics
The goals of agrologistics are to get the right product in the right quantity and quality at the right time and to the right place as efficiently as possible while fulfilling the requirements of the stakeholders (such as government legislation and regulations). This requires the design of effective, innovative logistics concepts in agrifood chains and networks. Examples are the design of greenhouses developed for optimal logistics or designing a dairy production process with minimal storage costs.

Biobased Technology
The importance of biobased economy is increasing. Energy savings and the use of renewable energy are directions for achieving an environmentally sustainable industrial society. Biomass of plants, organisms and biomass available can be turned into a spectrum of marketable products and energy. In this track, you learn more about process engineering, biological recycling technology, biorefinery and how to abstract a real system into a physical model and analyse the physical model using dedicated software.

Your future career

Most graduates are employed in the agrofood sector, or related sectors of industry and trade, from local to international companies. They are project leaders, product managers, technical experts, sales specialists or managers at many kinds of companies including designers of agricultural buildings (animal husbandry systems, greenhouses) and bioenergy production systems. Others find jobs with IT companies (climate control computers, automated information systems) or firms in the agro-food chain that produce, store, process, distribute and market agricultural products. In the service sector or at governments, graduates enter careers as consultants, information officers or policymakers in the fields of technology and sustainable agricultural production, while others enter research careers at institutes or universities.

Alumnus Patrick Honcoop.
"I am working as a product manager at 365 FarmNet in Germany. 365FarmNet supports farmers to manage their whole agrarian holding with just one software application. I am responsible for the content of the software. I am the link between the farmers, the agrarian holdings and the software developers. I really enjoy these dynamics and variety within my function. Just like during my studies, when we visited farmers, companies and fairs during courses and excursions organised by the study association."

Related programmes:
MSc Animal Sciences
MSc Plant Sciences
MSc Geo-information Science
MSc Geographical Information Management and Applications
MSc Organic Agriculture

Read less
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research. Read more
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research.

This course is designed to enhance your career in the medical or pharmaceutical biotechnology sectors in a variety of research, product and technology development and leadership roles.

Medical Biotechnology will equip you with broad theoretical knowledge and critical understanding of advanced principles in biotechnology. You'll also gain the practical skills required to underpin a career within a business or research environment.

See the website http://www.napier.ac.uk/en/Courses/MSc-Medical-Biotechnology-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in cell technology, bioprocessing and molecular analysis and how these approaches are applied in areas of specific relevance to medical and pharmaceutical applications such as drug design and discovery, immunology and microbial infection.

You’ll explore and critically evaluate the technologies driving discovery and modification of natural compounds for use in medicine; the relationship between progress in our understanding of disease and the development of diagnostics and treatments; as well as the application of theoretical concepts to the use of biological systems for production of drugs.

Business and entrepreneurship are also a core feature of this programme. You’ll address themes that influence the success of any biotechnology venture such as intellectual property, bioethics, sustainability and public perception through the development of a novel business concept.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices such as mammalian cell culture and fermentation. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or bio-industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Cell technology
• Business and bioethics
• Research skills
• Biotechnology and drug discovery
• Molecular pathogenesis of microbial infection
• Research project

One optional module from
• Advanced immunology
• Current practice in drug development
• Molecular pharmacology and toxicology

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Within the life sciences, biotechnology is the most rapidly growing sector and it is predicted that the global expansion in this field will be a key driver in the world economy.

This programme provides opportunities for laboratory-based or research management and product development work in a variety of industries ranging from multi-national companies to smaller biotechnology enterprises in the medical, pharmaceutical, nutraceutical and biochemical sectors.

Opportunities may also exist in contract research companies and service providers to the biotechnology sector, in addition to research institutes and local government.

Successful completion of the MSc programme provides a sound platform for further study in a research setting; graduates will be qualified to continue to PhD studies in the bio-molecular sciences.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?. Read more
How can I make a flexible and cheap solar cell out of organic molecules? Can I build a car engine on a molecular level? How do I make a colour television that can be folded up?

You will encounter such questions in the Master's degree programme in Chemistry at the University of Groningen.

The programme is embedded in an internationally respected research environment; it is related to the Zernike Institute of Advanced Materials and to the Stratingh Institute. Both are officially recognized as national centres of leading research in materials science.

With a cross-disciplinary approach, this programme will study the following fields of chemistry:

- Molecular Science
This area develops the understanding of molecular aspects and applies it to the fields of nanotechnology, supramolecular chemistry, synthetic chemistry, catalysis and the chemistry of life sciences.

- Chemical Physics
This field studies the physical and chemical properties of atoms, molecules and condensed matter through experimental techniques and theoretical methods. You can choose between theoretical chemistry and solid state chemistry.

- Polymer Science
This domain helps you to gain a deeper understanding of the physical and chemical structure and properties of polymer. It focuses on the development of thin films, surfaces and biomaterials.

Why in Groningen?

- Research programme of chemistry is embedded in leading research institute in Materials Science
- Chemistry field in Groningen has CHE Excellence Label
- Cross-disciplinary approach

Job perspectives

This degree programme in Chemistry is primarily meant for students who want to become researchers. Some graduates will, after obtaining their Master's degree, continue with a PhD project, either in Groningen or elsewhere. Some find jobs all over Europe in major companies, including DSM, Akzo Nobel, Corus or Philips.

Nevertheless, many chemists who are trained as researchers find jobs that are less research-oriented. This is because the programme also pays attention to communication skills, teamwork, presentation techniques and IT skills. During their training as researchers in chemistry, students develop general competences that make them highly versatile and widely employable. In practice chemistry graduates can be found in consulting agencies, commercial functions, product research and development, product management or teaching.

Job examples

- PhD research project
- Work for a major multinational such as Akzo Nobel or Philps
- Consulting agencies
- Product management or commercial positions

Read less
Become a sustainable engineering expert, learning to use energy and resources so that the natural environment meets the needs of future generations. Read more
Become a sustainable engineering expert, learning to use energy and resources so that the natural environment meets the needs of future generations.

You might already be in industry and are looking to develop your engineering skills for career progression, or you could be keen to further your studies before entering the profession.

Our course enables you to understand sustainability in which ever area of engineering you wish to specialise, from simulation, modelling and eco engineering, to sustainable systems design and green computing technologies, to name just a few.

Our aim is simple - to provide you with a learning experience that helps you to achieve the career you want. That's why our course is made up of option modules - it's an opportunity to tailor the course so that it reflects engineering sustainability issues that are most important to you.

Innovation will be at the heart of your studies, developing your ability to find sustainable solutions to engineering problems anywhere in the world, and equipping you with the skills to design and construct sustainable systems.

- Research Excellence Framework 2014: our University demonstrated strength in five emerging areas of research which it entered into the assessment for the first time, including computer science.

Visit the website http://courses.leedsbeckett.ac.uk/sustainableengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Bursting with creative solutions to sustainable challenges, your engineering skills will be in demand around the world and across many industries.

If you're currently in a junior management or technical role, you will gain the expertise to progress your career to focus more on the processes and management of environmentally sustainable engineering.

- Engineer
- Environmental surveyor and analyst
- Automation consultant
- Project manager

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will have access to a range of impressive facilities, including FlexSim Discrete simulation software, Dimension Rapid Prototyping machine, ARM development boards, concrete beam production testing, structural element testing and hydraulics equipment, to name just a few.

To meet the government objective of cutting greenhouse gas emissions by four fifths by 2050, UK businesses are increasingly looking for professionals who are experts in how energy is used in buildings. The research findings of the Leeds Sustainability Institute at our University will feed into your course and ensure what you learn reflects the latest, cutting-edge developments in sustainable engineering so you can catch the eye of such employers.

In addition to this, you'll benefit from our strong connections with business leaders and sustainability experts, many of whom provide guest talks to our students.

If you're already working in industry you will also benefit from assignments that allow you to focus on your own place of work, enabling you to apply what you learn straight away in your current role.

Modules

Work Based Learning (option module)
Provides a foundation upon which to develop engineering skills and protocols through a work based or work simulated environment.

Final project
Carry out an in-depth research project, presented in a dissertation, into an area of sustainable engineering.

ICT and Environment (option module)
Examine the environmental impact of Information and Communications Technology (ICT) in an industrial / commercial setting.

Project Management (option module)
Develop the ability to initiate, plan, execute, manage and sign off a project.

Simulation and Modelling (option module)
Use discreet event simulation and 3D modelling techniques to construct virtual factories that use automated systems.

Sustainable Systems Design (option module)
Review current trends in building services systems design, focusing upon design approaches, sustainability considerations, electrical systems and lighting design.

Engineering Systems Control (option module)
Study real time control issues using the latest PLC controls and emulation software.

Lean and Agile Engineering (option module)
Analyse how organisations respond to rapidly changing markets, unknown or changing product requirements.

Green Computing Technologies (option module)
Investigate, identify and evaluate technologies to minimise the energy consumption and environmental impacts of computing resources.

Sustainable Buildings (option module)
Enhance your knowledge of building and system performance in resolution of carbon reduction and achieving long-term sustainability.

Eco Engineering (option module)
Explore the environmental issues for the life cycle of a product, from raw materials to the final recycling.

Facilities

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less

Show 10 15 30 per page



Cookie Policy    X