• University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Sussex Featured Masters Courses
University of Leeds Featured Masters Courses
University of Birmingham Featured Masters Courses
"nanoscience"×
0 miles

Masters Degrees (Nanoscience)

  • "nanoscience" ×
  • clear all
Showing 1 to 15 of 55
Order by 
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

-◾The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
◾You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
◾You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Electronic devices
◾Introduction to research in nanoscience and nanotechnology
◾Micro- and nano-technology
◾Nanofabrication
◾Research methods and techniques
◾MSc project.

Optional courses

◾Applied optics
◾Cellular biophysics
◾Microwave electronic & optoelectronic devices
◾Microwave and mm wave circuit design
◾Microscopy and optics
◾Nano and atomic scale imaging
◾Semiconductor physics.

Projects

◾The programme builds towards an extended project, which is an integral part of the MSc programme: many projects are linked to industry or related to research in the school. Our contacts with industry and our research collaborations will make this a meaningful and valuable experience, giving you the opportunity to apply your newly learnt skills.
◾To complete the MSc degree you must undertake a project worth 60 credits that will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers your ability to apply them in industrially relevant problems.
◾MSc projects are associated with Glasgow's James Watt Nanofabrication Centre, one of Europe's premier research cleanrooms. Projects range from basic research into nanofabrication and nanocharacterisation, to development of systems in optoelectronics, microbiology and electronic devices which require such fabrication.
◾You can choose from a list of approximately 30 projects published yearly in Nanoscience and Nanotechnology.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾Over 250 international companies have undertaken commercial or collaborative work with the JWNC in the last 5 years and over 90 different universities from around the globe presently have collaborations with Glasgow in nanoscience and nanotechnology.
◾Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the nanofabrication industry.

Career prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.

Read less
This taught MSc course gives you a comprehensive overview of state-of-the-art research in nanoscience. It provides you with the opportunity to develop the skills necessary for this emerging area. Read more

Why this course?

This taught MSc course gives you a comprehensive overview of state-of-the-art research in nanoscience. It provides you with the opportunity to develop the skills necessary for this emerging area.

The course is mainly designed to equip you for a research-based career in industry but it can also serve as a way of progressing towards a PhD.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/nanoscience/

Who’s the course suitable for?

This course will be of interest to physical science graduates looking to work in the field of nanoscience. It’s also suitable for those with an industrial background as a further training opportunity and a way of gaining insights into topics at the forefront of academic research.

The course

This course explores the frontiers of science on the nanoscale. It provides a strong grounding in basic nanoscience before progressing to advanced topics.

Taught classes have been developed from the many years of nanoscience research at the University in areas such as:
- nanoscale imaging
- nanoparticle fabrication and functionalisation
- chemical physics
- computational modelling of the nanoworld

You’ll study

Two semesters of formal teaching are followed by a three-month intensive project.

- Research project
Following the taught classes, you’ll undertake a research intensive project in a relevant nanoscience topic.

The projects take place primarily in research labs located in the University’s physical science departments. There are some opportunities for relevant industrial placements.

Facilities

This course is run by the Department of Physics. The department’s facilities include:
- photophysics lab with world-leading instrumentation for fluorescence lifetime, spectra, microscopy, imaging and sensing
- a scanning electron microscopy suite for analysis of hard and soft matter
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- access to top-of-the-range facilities for high-performance computing
- industry standard cleanroom in the Institute of Photonics

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

- What kind of jobs do Strathclyde Physics graduates get?
To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. Read more
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. The programme provides innovative and novel training, and will support you in the next phase of your career. To date, all of our graduates have been successful in obtaining either a PhD place or full-time employment. Just over fifty per cent have taken up PhD places in Bristol, other leading UK universities or in top universities around the world.

The Bristol Centre for Functional Nanomaterials (BCFN) represents more than 100 academics from 15 departments in the faculties of science, engineering and biomedical sciences. This rich and diverse support network ensures your training and research is at the cutting edge and is truly interdisciplinary.

The structure of the programme, with two short training projects and one research project means that you will have direct contact with many different academics and areas of research. You will choose your extended research project after having explored BCFN's network of research.

The programme has been designed to provide feedback on both technical and professional skills, including research skills, presenting, writing, teamwork, creativity and entrepreneurship.

Programme structure

Autumn and spring terms
-Communication and Management Skills (includes training on time management, decision making, project management, group working).
-Lecture courses on nanoscience and functional nanomaterials (graduate level training on key concepts and topics in nanoscience).
-Training in Advanced Tools for Nanoscience (through bespoke online modules, lectures and a special programme of hands-on practical training).
-Two training projects (one per term in months 1-3 and months 4-6).

Summer term
-Extended Research Project (months 6-12)
You can choose your training and research projects from a large number of project proposals, across the whole spectrum of Bristol Centre for Functional Nanomaterials research.

Careers

The combination of skills training and world-class nanoscience means that graduates of this programme have either started a PhD or successfully obtained full-time employment.

Read less
Nanoscience is the study of the fundamental and functional properties of matter on the nanoscale (~10-9m). The challenge for scientists is to understand the fascinating world of small length scales. Read more
Nanoscience is the study of the fundamental and functional properties of matter on the nanoscale (~10-9m). The challenge for scientists is to understand the fascinating world of small length scales.

The properties of matter on the nano scale often differ completely from macroscopic properties. Nature has already made good use nanoscale phenomena. How can scientists understand and exploit the new technological possibilities it offers?

Talented and Motivated Students

The Top Master Programme in Nanoscience is the best nanoscience programme in Europe and among the top 10 in the world. It aims to train the cutting edge scientists of the future. It offers a challenging programme for very talented and motivated students. It is strongly intertwined with research at the Zernike Institute: the courses are taught by top international scientists, and a large part of the programme consists of actually conducting high-level scientific research. Participants come from all over the world. A fellowship programme is available.

The Zernike Institute for Advanced Materials, which is responsible for the Top Master Programme in Nanoscience, is a leading international research centre in this new field. It belongs to the Times Higer Education Top 10 of best materials research institutes in the world. It unites around 300 leading researchers with backgrounds in physics, chemistry and biology.

Why in Groningen?

- Offered by the Zernike Institute which is ranked in the THES world's Top 10 institutes in Materials Science
- Working together with world-class scientists
- Best Master's degree programme in the Netherlands according to Dutch Higher Education Guide 2015
- Full scholarships for admitted students

Job perspectives

The programme is designed for people who want to pursue a career in scientific research. Such research takes place in universities, research institutions and large companies. Students who successfully complete the Top Master Programme in Nanoscience will, under certain conditions, be offered a PhD position within the Zernike Institute for Advanced Materials.

The programme is designed for people who want to pursue a career in scientific research at:
- universities
- research institutions
- large companies
- innovative start-up companies

Job examples

- PhD research position
- Consulting
- R&D positions at companies

Read less
This programme is designed to provide students with a comprehensive understanding of all aspects of nanoscience and its potential environmental and human health-related risk. Read more
This programme is designed to provide students with a comprehensive understanding of all aspects of nanoscience and its potential environmental and human health-related risk. It focuses on the fundamental and underpinning science but also discusses applications, synthesis and policy, and regulatory responses. The programme is research focused, with a large part devoted to an independent but supervised research project carried out in state-of-the-art-laboratories.

*This programme was previously known as MRes Human and Environmental Implications of Nanotechnology and Nanoscience.

Key features of the programme are:

- Coverage of nanoscience and its implications
- Focused teaching and learning modules
- Experimental, field based or modelling research project

The programme is a collaborative endeavour between the Environmental Health Science group in the School of Geography, Earth and Environmental Sciences and the School of Biosciences. Taught and research elements are undertaken concurrently.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. Read more
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. It is of particular interest for graduates in any of the branches of the experimental sciences and technologies (chemistry, chemical engineering, biochemistry, biotechnology, physics, quantum chemistry, biological chemistry, microbiology, etc.) and it clearly prepares them for future research.

The students will acquire the skills required for them to join universities, research institutes, industry and services with a strong sense of innovation, development and entrepreneurial vision.

Student Profile

The Master’s Degree is designed for candidates holding a bachelor’s degree in any of the branches of the experimental sciences and technologies: chemistry, chemical engineering, biochemistry, biotechnology, physics, materials, quantum chemistry, biological chemistry, microbiology, etc.). It clearly prepares students for future careers in research.

Career Opportunities

Graduates in the University Master's Degree in Nanoscience, Materials and Processes: Chemical Technology at the Frontier are capable of working in:
-Research at universities and research institutes. The master's degree is a requirement for being admitted to a PhD programme and the key to a future career as a researcher.
-Research, development and innovation in industries based on new scientific and technical knowledge (biotechnology, microelectronics, telecommunications, energy storage, new materials, etc.) and traditional industries (chemical, pharmaceutical, biomedical, ceramics, textiles, etc.) interested in innovation.
-Management, control and strategic planning of nanotechnological techniques, products and processes in the electronics industry, telecommunications, biomedicine, biotechnology, pharmacology, etc.

Read less
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage. Read more
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage.

You will gain specialised skills through an individual research project within our research groups, using state-of-the-art equipment and facilities.

PROGRAMME OVERVIEW

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Molecular Electronics
-RF Systems and Circuit Design
-Nanofabrication and Characterisation
-Energy Economics and Technology
-Semiconductor Devices and Optoelectronics
-Microwave Engineering
-Nanoelectronics and Devices
-Nanophotonics Principles and Engineering
-Renewable Energy Technology
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

NANOTECHNOLOGY AT SURREY

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning – know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin Nanoscience and nanotechnology for renewable systems
-Engineering problem solving - be able to analyse problems within the field of nanoscience and nanotechnology and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within Nanoscience, nanotechnology and nanoelectronics for renewable energy
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research and development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability.
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:

Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:

Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:
Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:
Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation. Read more

About the course

The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation.

You will experience the unique combination of a foundation semester in the general area of science and engineering of materials, followed by a nanoscience and nanotechnology specific semester to result in an unrivalled comprehensive nanomaterials expertise.

The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via options, 
and a major project.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Bionanomaterials; Nanoscale Magnetic Materials and Devices; Nanostructures and Nanostructuring; Nanomaterials; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development

Examples of optional modules

Heat and Materials; Bio-photonics and Bio-imaging

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
Many future applications within electronics, telecommunication, information systems, medicine, and natural or artificial biosystems build upon progress in nanoscale technologies. Read more
Many future applications within electronics, telecommunication, information systems, medicine, and natural or artificial biosystems build upon progress in nanoscale technologies. On the nanoscale, new physical, chemical, and biological properties become important, and research often takes place on the borders between these disciplines. Proficiency in theoretical and practical aspects of these fields will therefore be important both within the industry and the academia. The nanotechnology programme is based on both physics and chemistry and will give you a thorough, yet advanced knowledge of the nanoscale system properties.

Programme description

Besides equipping you with a solid theoretical background in the physics, chemistry and technology of nanoscale systems the programme will also provide you with unique competencies, such as knowledge of the innovative possibilities of nanotechnology and ample hands-on experience in experimental techniques. You will be working in the MC2 cleanroom environment (one of few cleanrooms worldwide to allow Master's level student projects in the facilities) and other modern laboratories for both manufacturing and analysis, already during your first year. You will have the possibility to continue working in the laboratories as part of your Master's thesis.

Science on the nanoscale is typically carried out either in a “bottom-up” approach, where functional nanostructures are formed through molecular interactions, or by nanostructuring in a “top-down” approach. The core curriculum consists of a handful of compulsory courses that create a solid basis for both approaches. The programme also includes several semi-compulsory courses, creating a number of possible tracks within the program, as well as a number of courses that can be chosen to provide you with a deeper knowledge of your choice of area within nanotechnology. The conclusion of the programme consists of a thesis based on a half- or full-year research work carried out with some of the researchers in the area, either within our departments or with industrial partners.

The research conducted comprises three profile areas:
Nanophysics research, with a top-down perspective, includes studies of engineered nanosystems such as quantum computers, nanoelectronics and spintronics, applications and fundamental science of carbon nanotubes and graphene, nanosensors for bioanalytics and measurement technologies, and nano-optics with applications in, e.g. efficient solar energy production.

Nanochemistry, with a bottom-up focus, targets the ultimate miniaturization of electronics and photonics, molecular electronics, and the development of molecular methods to create nanodevices.

The Nanobiophysics activity, which forms a bridge between the other two and focuses on nanofluidics, soft matter nanotechnology, DNA-based self-assembly and biomimetic material science.

As a unique feature of the programme you will become part of this research and have access to our cleanroom and other world-class facilities for labs and group projects.

The Master’s Programme in Nanotechnology is tailored towards students aiming at international careers in the field of nanoscience and nanotechnology, both in fundamental nanoscience and in the design and creation of components on the nanoscale.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X