• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Leeds Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Bath Spa University Featured Masters Courses
"nanoscience"×
0 miles

Masters Degrees (Nanoscience)

We have 55 Masters Degrees (Nanoscience)

  • "nanoscience" ×
  • clear all
Showing 1 to 15 of 55
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanoscience to Nanotechnology at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanoscience to Nanotechnology at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The Master's course in Nanoscience to Nanotechnology utilises facilities that include a state-of-the-art nanotechnology laboratory suite (500m2) housing cutting-edge fabrication and characterisation facilities.

Key Features of MSc in Nanoscience to Nanotechnology

The growth of nanotechnology is one of the most exciting developments in science and engineering in recent years. Much of the research in this field is interdisciplinary in nature, drawing expertise from different areas across the life science, physical science and engineering disciplines.

The MSc Nanoscience to Nanotechnology course covers the techniques necessary for scientific investigation at these very small dimensions, and the very latest research developments in this rapidly evolving area.

As a student on the MSc Nanoscience to Nanotechnology course, you be able to comprehend the fundamental principles of physics and engineering, which have consequences for nanotechnology, and to gain an understanding of how the general concepts of scientific research are transferred to engineering applications and products.

This MSc Nanoscience to Nanotechnology course will also enable you to apply appropriate techniques for designing, imaging and evaluating nanostructures, whilst gaining a knowledge of mathematic models and their application within a research project through interpreting quantitative and qualitative data.

As a student on the MSc Nanoscience to Nanotechnology course, you will cover a broad range of subject areas, from the latest semiconductor fabrication technology through to biological and medical applications, with the emphasis throughout on characterisation and control of materials on the nanoscale.

Modules

Modules on the Nanoscience to Nanotechnology course may include:

Colloid and Interface Science

Communication Skills for Research Engineers

Wide Band-gap Electronics

Research Dissertation

Strategic Project Planning

Probing at the Nanoscale

Soft Nanotechnology

Nanoscale Simulation

Nanoscale Structures and Devices

Bio-nanotechnology

Principles of Nanomedicine

Micro and Nano Electro-Mechanical Systems

Nanoscience to Nanotechnology Course Structure

The MSc inNanoscience to Nanotechnology is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Nanoscience to Nanotechnology scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Nanoscience to Nanotechnology programme are typically available one week prior to each semester.

Links with Industry

Work within the Multidisciplinary Nanotechnology Centre places a strong emphasis on the development of applications-driven research and the transfer of technology from the laboratory to the work place or health centre. Interaction with industry is therefore a key component of the Centre’s strategy and we have collaborated with major multinational companies such as Agilent, Boots and Sharp, as well as a number of smaller Welsh-based companies.

Careers

As a student on the MSc Nanoscience to Nanotechnology course, you will be provided with the qualities needed for employment in technology or higher research degrees requiring the exercise of initiatives, specialist knowledge, personal responsibility and decision making in complex and unpredictable contexts.

This MSc Nanoscience to Nanotechnology course is suitable for those who want to develop an understanding of the techniques available to fabricate and investigate nanoscale structures, and develop arguments and make judgements based on fundamental concepts of nanoscale engineering.

Facilities

The new home of the Nanoscience to Nanotechnology course is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quote

"I found that the MSc in Nanotechnology covered a broad range of topics. This really opened my mind to the potential possibilities of the field and to consider future careers in areas that I had not previously thought of. This course has allowed me to find the right area of research to continue to a PhD."

Chris Barnett, MSc Nanoscience to Nanotechnology



Read less
What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? . Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers. Read more

What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? 

Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers: i.e., one billionth of a meter). Important material properties such as the electrical, optical and mechanical are determined by the way molecules and atoms assemble into larger structures on the nanoscale. Nanotechnology is the application of this science in new nanomaterials and nano-concepts to create new components, systems and products. Nanotechnology is the key to unlocking the ability to design custom-made materials which possess any property we require. These newborn scientific disciplines are situated at the interface of physics, chemistry, material science, microelectronics, biochemistry and biotechnology. Consequently, control of the discipline requires an academic and multidisciplinary scientific education.

In the Master of Science in Nanoscience, Nanotechnology and Nanoengineering, you will learn the basics of physics, biology and chemistry on the nanometer scale; these courses will be complemented by courses in technology and engineering to ensure practical know-how. The programme is strongly research oriented, and is largely based on the research of centres like imec (Interuniversity Microelectronics Center), the Leuven Nanocenter and INPAC (Institute for Nanoscale Physics and Chemistry) at the Faculty of Science, all global research leaders in nanoscience, nanotechnology and nanoengineering. In your Master’s thesis, you will have the opportunity to work in the exciting research programmes of these institutes.

The objective of the Master of Science in Nanoscience, Nanotechnology and Nano engineering is to provide top quality multidisciplinary tertiary education in nanoscience as well as in the use of nanotechnologies for systems and sensors on the macro-scale.

Structure

Students follow a set of introductory courses to give them a common starting basis, a compulsory common block of core programme courses to give them the necessary multidisciplinary background of nanoscience, nanotechnology and nanoengineering, and a selection of programme courses to provide some non-technical skills. The students also select their specialisation option for which they choose a set of compulsory specific programme courses, a number of elective broadening programme courses and do their Master’s thesis research project.

  1. The fundamental courses (max 15 credits, 6 courses) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s education. These are necessary in order to prepare students from different backgrounds for the core programme courses and the specialisation programme courses of the Master’s.
  2. The general interest courses (9-12 credits) are imparting non-technical skills to the students in domains such as management, economics, languages, quality management, ethics, psychology, etc.
  3. The core courses (39 credits, 8 courses) contain first of all 6 compulsory courses focusing on the thorough basic education within the main disciplines of the Master’s: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. These core programme courses deliver the basic competences (knowledge, skills and attitudes) to prepare the students for their specialisation in one of the subdisciplines of the Master. Next all students also have to follow one out of two available practical courses where they learn to carry out some practical experimental work, which takes place in small teams. Also part of the core courses is the Lecture Series on Nanoscience, Nanotechnology and Nanoengineering, which is a series of seminars (14-18 per year) on various topics related to nanoscience, nanotechnology and nanoengineering, given by national and international guest speakers.
  4. The specific courses (21 credits) are compulsory programme courses of the specialisation option. These programme courses are deepening the student’s competences in one of the specialising disciplines of the Master’s programme and prepare them also for the thesis work.
  5. The broadening courses (9-27 credits) allow the students to choose additional progamme courses, either from their own or from the other options of the Master’s, which allow them to broaden their scope beyond the chosen specialisation. They can also choose to do an industrial internship on a nanoscience, nanotechnology or nanoengineering related topic at a nanotechnology company or research institute.
  6. The Master’s thesis (24 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The student is assigned a relevant research project and work in close collaboration with PhD students, postdocs and professors. The research project is spread over the two semesters of the second Master’s year, and is finalised with a written Master’s thesis report, a publishable summary paper and a public presentation.

 You can also follow a similar programme in the frame of an interuniversity programme, the Erasmus Mundus Master of Science in Nanoscience and Nanotechnology.

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in this Master's programme.

Thus, graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?. Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. Read more

What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?

Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. The partner institutions are:

  • KU Leuven, Belgium (Coordinator)
  • Chalmers, Tekniska Högskola, Sweden
  • Université Grenoble Alpes, France
  • Technische Universität Dresden, Germany

The word Nanoscience refers to the study, manipulation and engineering of matter, particles and structures on the nanometer scale (one millionth of a millimeter, the scale of atoms and molecules). Important properties of materials, such as the electrical, optical, thermal and mechanical properties, are determined by the way molecules and atoms assemble on the nanoscale into larger structures. Moreover, on a nanometer scale, structures’ properties are often different then on a macro scale because quantum mechanical effects become important.

Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronic components, new types of ‘smart’ medicines and sensors, and even interfaces between electronics and biological systems.

Structure

In the first stage of the programme all students study at the coordinating institution, where they take a set of fundamental courses (max 12 credits) to give them a common starting basis, general interest courses (6-9 credits), a compulsory common block of core courses (36 credits), and already a profiling block of elective courses (min 6 credits) which prepares them for their specialisation area. In the second stage the students take a compulsory set of specialising courses (15 credits), depending on their chosen specialisation area, combined with a set of elective broadening courses (15 credits), and do their Master’s thesis research project (30 credits). Chalmers offers the second year specialisation options of Nanophysics and Nanoelectronics. TU Dresden offers the options Biophysics and Nanoelectronics, and JFU Grenoble offers the options Nanophysics, Nanochemistry and Nanobiotechnology.

 The programme contains the following educational modules:

  1. The fundamental courses (max. 12 credits) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s. If a student does not need any or all of the fundamental courses, he/she may use the remaining credits to take more elective courses from the broadening course modules.
  2.  The general interest courses (6-9 credits) are imparting non-technical skills to the students, in domains such as management, economics, languages, quality management, ethics, psychology, etc. A Dutch language and culture course is compulsory for all the students.
  3.  The core courses (36 credits) contain first of all five compulsory courses focusing on the thorough basic education within the main disciplines of the Master: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. All students also have to take one out of two available practical courses where they learn to carry out some practical experimental work, which takes places in small teams. Also part of the Core courses is the Lecture Series on Nanoscience and Nanotechnology, which is a serie of seminars (14-18 per year) on various topics related to nanoscience and nanotechnology, given by national and international guest speakers.
  4. The specific courses (min. 21 credits) are courses of the specialising option aimed to deepen the student’s competences. The students can choose 6-18 credits elective profiling programme units in the first year at the KU Leuven from three course modules. Then in the second year university the students take 15 credits compulsory courses at their second year location on their selected specialisation. They can also choose to do an industrial internship on a nanoscience or nanotechnology related topic at a nanotechnology company or research institute.
  5. The broadening courses (15 credits) are courses from the other options of the Master’s programme, which allow the students to broaden their scope beyond the chosen specialisation. Students can choose from a large set of program units offered at the second year university.
  6. The Master’s thesis (30 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The research project always takes place at the second year partner university and is finalised with a written thesis report and a public presentation. Each Master’s thesis has a promotor from the local university and a promotor from KU Leuven.

 The EMM-Nano programme is truly integrated, with a strong research backbone and an important international scope. The objective of the programme is to provide a top quality multidisciplinary education in nanoscience and nanotechnology. 

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in the EMM-Nano programme.

Thus, EMM-Nano graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

-◾The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
◾You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
◾You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Electronic devices
◾Introduction to research in nanoscience and nanotechnology
◾Micro- and nano-technology
◾Nanofabrication
◾Research methods and techniques
◾MSc project.

Optional courses

◾Applied optics
◾Cellular biophysics
◾Microwave electronic & optoelectronic devices
◾Microwave and mm wave circuit design
◾Microscopy and optics
◾Nano and atomic scale imaging
◾Semiconductor physics.

Projects

◾The programme builds towards an extended project, which is an integral part of the MSc programme: many projects are linked to industry or related to research in the school. Our contacts with industry and our research collaborations will make this a meaningful and valuable experience, giving you the opportunity to apply your newly learnt skills.
◾To complete the MSc degree you must undertake a project worth 60 credits that will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers your ability to apply them in industrially relevant problems.
◾MSc projects are associated with Glasgow's James Watt Nanofabrication Centre, one of Europe's premier research cleanrooms. Projects range from basic research into nanofabrication and nanocharacterisation, to development of systems in optoelectronics, microbiology and electronic devices which require such fabrication.
◾You can choose from a list of approximately 30 projects published yearly in Nanoscience and Nanotechnology.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾Over 250 international companies have undertaken commercial or collaborative work with the JWNC in the last 5 years and over 90 different universities from around the globe presently have collaborations with Glasgow in nanoscience and nanotechnology.
◾Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the nanofabrication industry.

Career prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.

Read less
This taught MSc course gives you a comprehensive overview of state-of-the-art research in nanoscience. It provides you with the opportunity to develop the skills necessary for this emerging area. Read more

Why this course?

This taught MSc course gives you a comprehensive overview of state-of-the-art research in nanoscience. It provides you with the opportunity to develop the skills necessary for this emerging area.

The course is mainly designed to equip you for a research-based career in industry but it can also serve as a way of progressing towards a PhD.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/nanoscience/

Who’s the course suitable for?

This course will be of interest to physical science graduates looking to work in the field of nanoscience. It’s also suitable for those with an industrial background as a further training opportunity and a way of gaining insights into topics at the forefront of academic research.

The course

This course explores the frontiers of science on the nanoscale. It provides a strong grounding in basic nanoscience before progressing to advanced topics.

Taught classes have been developed from the many years of nanoscience research at the University in areas such as:
- nanoscale imaging
- nanoparticle fabrication and functionalisation
- chemical physics
- computational modelling of the nanoworld

You’ll study

Two semesters of formal teaching are followed by a three-month intensive project.

- Research project
Following the taught classes, you’ll undertake a research intensive project in a relevant nanoscience topic.

The projects take place primarily in research labs located in the University’s physical science departments. There are some opportunities for relevant industrial placements.

Facilities

This course is run by the Department of Physics. The department’s facilities include:
- photophysics lab with world-leading instrumentation for fluorescence lifetime, spectra, microscopy, imaging and sensing
- a scanning electron microscopy suite for analysis of hard and soft matter
- the Ultrafast Chemical Physics lab with state-of-the-art femtosecond laser systems for multi-dimensional IR spectroscopy
- access to top-of-the-range facilities for high-performance computing
- industry standard cleanroom in the Institute of Photonics

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Careers

- What kind of jobs do Strathclyde Physics graduates get?
To answer this question we contacted some of our Physics graduates from all courses to find out what jobs they have. They are working across the world in a number of different roles including:
- Medical Physicist
- Senior Engineer
- Professor
- Systems Engineer
- Treasury Analyst
- Patent Attorney
- Software Engineer
- Teacher
- Spacecraft Project Manager
- Defence Scientist
- Procurement Manager
- Oscar winner

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. Read more
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. The programme provides innovative and novel training, and will support you in the next phase of your career. To date, all of our graduates have been successful in obtaining either a PhD place or full-time employment. Just over fifty per cent have taken up PhD places in Bristol, other leading UK universities or in top universities around the world.

The Bristol Centre for Functional Nanomaterials (BCFN) represents more than 100 academics from 15 departments in the faculties of science, engineering and biomedical sciences. This rich and diverse support network ensures your training and research is at the cutting edge and is truly interdisciplinary.

The structure of the programme, with two short training projects and one research project means that you will have direct contact with many different academics and areas of research. You will choose your extended research project after having explored BCFN's network of research.

The programme has been designed to provide feedback on both technical and professional skills, including research skills, presenting, writing, teamwork, creativity and entrepreneurship.

Programme structure

Autumn and spring terms
-Communication and Management Skills (includes training on time management, decision making, project management, group working).
-Lecture courses on nanoscience and functional nanomaterials (graduate level training on key concepts and topics in nanoscience).
-Training in Advanced Tools for Nanoscience (through bespoke online modules, lectures and a special programme of hands-on practical training).
-Two training projects (one per term in months 1-3 and months 4-6).

Summer term
-Extended Research Project (months 6-12)
You can choose your training and research projects from a large number of project proposals, across the whole spectrum of Bristol Centre for Functional Nanomaterials research.

Careers

The combination of skills training and world-class nanoscience means that graduates of this programme have either started a PhD or successfully obtained full-time employment.

Read less
Nanoscience is the study of the fundamental and functional properties of matter on the nanoscale (~10-9m). The challenge for scientists is to understand the fascinating world of small length scales. Read more
Nanoscience is the study of the fundamental and functional properties of matter on the nanoscale (~10-9m). The challenge for scientists is to understand the fascinating world of small length scales.

The properties of matter on the nano scale often differ completely from macroscopic properties. Nature has already made good use nanoscale phenomena. How can scientists understand and exploit the new technological possibilities it offers?

Talented and Motivated Students

The Top Master Programme in Nanoscience is the best nanoscience programme in Europe and among the top 10 in the world. It aims to train the cutting edge scientists of the future. It offers a challenging programme for very talented and motivated students. It is strongly intertwined with research at the Zernike Institute: the courses are taught by top international scientists, and a large part of the programme consists of actually conducting high-level scientific research. Participants come from all over the world. A fellowship programme is available.

The Zernike Institute for Advanced Materials, which is responsible for the Top Master Programme in Nanoscience, is a leading international research centre in this new field. It belongs to the Times Higer Education Top 10 of best materials research institutes in the world. It unites around 300 leading researchers with backgrounds in physics, chemistry and biology.

Why in Groningen?

- Offered by the Zernike Institute which is ranked in the THES world's Top 10 institutes in Materials Science
- Working together with world-class scientists
- Best Master's degree programme in the Netherlands according to Dutch Higher Education Guide 2015
- Full scholarships for admitted students

Job perspectives

The programme is designed for people who want to pursue a career in scientific research. Such research takes place in universities, research institutions and large companies. Students who successfully complete the Top Master Programme in Nanoscience will, under certain conditions, be offered a PhD position within the Zernike Institute for Advanced Materials.

The programme is designed for people who want to pursue a career in scientific research at:
- universities
- research institutions
- large companies
- innovative start-up companies

Job examples

- PhD research position
- Consulting
- R&D positions at companies

Read less
This programme is designed to provide students with a comprehensive understanding of all aspects of nanoscience and its potential environmental and human health-related risk. Read more
This programme is designed to provide students with a comprehensive understanding of all aspects of nanoscience and its potential environmental and human health-related risk. It focuses on the fundamental and underpinning science but also discusses applications, synthesis and policy, and regulatory responses. The programme is research focused, with a large part devoted to an independent but supervised research project carried out in state-of-the-art-laboratories.

*This programme was previously known as MRes Human and Environmental Implications of Nanotechnology and Nanoscience.

Key features of the programme are:

- Coverage of nanoscience and its implications
- Focused teaching and learning modules
- Experimental, field based or modelling research project

The programme is a collaborative endeavour between the Environmental Health Science group in the School of Geography, Earth and Environmental Sciences and the School of Biosciences. Taught and research elements are undertaken concurrently.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. Read more
The aim of this programme is to train new professionals in the field of nanotechnology, materials and chemical engineering. It is of particular interest for graduates in any of the branches of the experimental sciences and technologies (chemistry, chemical engineering, biochemistry, biotechnology, physics, quantum chemistry, biological chemistry, microbiology, etc.) and it clearly prepares them for future research.

The students will acquire the skills required for them to join universities, research institutes, industry and services with a strong sense of innovation, development and entrepreneurial vision.

Student Profile

The Master’s Degree is designed for candidates holding a bachelor’s degree in any of the branches of the experimental sciences and technologies: chemistry, chemical engineering, biochemistry, biotechnology, physics, materials, quantum chemistry, biological chemistry, microbiology, etc.). It clearly prepares students for future careers in research.

Career Opportunities

Graduates in the University Master's Degree in Nanoscience, Materials and Processes: Chemical Technology at the Frontier are capable of working in:
-Research at universities and research institutes. The master's degree is a requirement for being admitted to a PhD programme and the key to a future career as a researcher.
-Research, development and innovation in industries based on new scientific and technical knowledge (biotechnology, microelectronics, telecommunications, energy storage, new materials, etc.) and traditional industries (chemical, pharmaceutical, biomedical, ceramics, textiles, etc.) interested in innovation.
-Management, control and strategic planning of nanotechnological techniques, products and processes in the electronics industry, telecommunications, biomedicine, biotechnology, pharmacology, etc.

Read less
The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology. Read more

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Nanotechnology at Surrey

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

Technical characteristics of the pathway

The Programme in Nanotechnology and Nanoelectronic Devicesaims to provide a high-quality qualification in the most important aspects of the nanotechnologies, with a particular emphasis on nanoelectronics and nanoelectronic devices.

After an introduction to the basic aspects of quantum physics and nano-engineering relevant to modern nanoelectronics, students can tailor their specific learning experience through study of device-oriented elective modules, as suits their career aspirations.

Key to the Programme is the cross-linking of current research themes in interdisciplinary areas such as photonics and biology, through the use of nanoelectronic devices as the interface at the nanoscale level.

The Programme has strong links to current research in the University's Advanced Technology Institute; this Institute includes academic staff from both the EE and the Physics Departments.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation. Read more

About the course

The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation.

You will experience the unique combination of a foundation semester in the general area of science and engineering of materials, followed by a nanoscience and nanotechnology specific semester to result in an unrivalled comprehensive nanomaterials expertise.

The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via options, 
and a major project.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Bionanomaterials; Nanoscale Magnetic Materials and Devices; Nanostructures and Nanostructuring; Nanomaterials; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development

Examples of optional modules

Heat and Materials; Bio-photonics and Bio-imaging

Read less
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics. Read more
The Department gives MSc students an opportunity to study and perform a research project under the supervision of recognized experts and to acquire specialist knowledge of one or a few topics at the cutting edge of contemporary physics.

The project will be devoted to one of several topical areas of modern physics including high-temperature superconductivity, terahertz semiconductor and superconductor electronics, quantum computing and quantum metamaterials, physics of extreme conditions and astrophysics.

Core study areas currently include mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience and a research project.

Optional study areas currently include characterisation techniques in solid state physics, quantum information, advanced characterisation techniques, quantum computing, and physics of complex systems.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2

Optional Modules:
- Characterisation Techniques in Solid State Physics
- Fundamentals of Quantum Information
- Matlab as a Scientific Programming Language
- Advanced Characterisation Techniques
- Quantum Computing
- Physics of Complex systems

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/advanced-physics/

Read less
We have a long history of internationally recognized research in the study and development of new materials. Read more
We have a long history of internationally recognized research in the study and development of new materials. This course gives the possibility of working with and learning from expert researchers in the physics of materials in a friendly and vibrant research atmosphere provided by the international team of scientists at the Department of Physics.

This programme contains a combination of supervised research work, development of research skills and taught material. The programme involves a set of taught modules and an experimental or theoretical research project.

The theme of the project will be dedicated to one of the topical areas in physics of materials including graphene-based materials, thin film materials, shape memory compounds or nanomaterials or experimental study of properties of materials.

Core study areas mathematical methods for interdisciplinary sciences, research methods in physics, superconductivity and nanoscience, characterisation techniques in solid state physics, and a research project.

Optional study areas include polymer properties, polymer science, advanced characterisation techniques, simulation of advanced materials and processes, and materials modelling.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Programme modules

Compulsory Modules:
- Mathematical Methods for Interdisciplinary Sciences
- Research Methods in Physics
- Superconductivity and Nanoscience
- Research Project Part 1
- Research Project Part 2
- Characterisation Techniques in Solid State Physics

Optional Modules:
- Polymer Properties
- Polymer Science
- Advanced Characterisation Techniques
- Simulation of Advanced Materials and Processes
- Materials Modelling

Learning and teaching

Knowledge and understanding are acquired through lectures, tutorials, problem classes and guided independent study. Assessment in taught modules is by a combination of examination and coursework. The MSc includes a significant research project completed through guided independent study with a research supervisor.

Careers and further study

The aim of the course is to equip students with key skills they need for employment in industry, public service or academic research.

Why choose physics at Loughborough?

We are a community of approximately 170 undergraduates, 30 postgraduates, 16 full-time academic staff, seven support staff, and several visiting and part-time academic staff.

Our large research student population and wide international links make the Department a great place to work.

- Research
Our research strengths are in the areas of condensed matter and materials, with a good balance between theory and experiment.
The quality of our researchers is recognised internationally and we publish in highly ranked physics journals; one of our former Visiting Professors, Alexei Abrikosov, was awarded the 2003 Nobel Prize in Physics.

- Career Prospects
100% of our graduates were in employment and/or further study six months after graduating. They have gone on to work with companies such as BT, Nikon Metrology, Prysmian Group, Rutherford Appleton Laboratory ISIS and Smart Manufacturing Technology.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/physics/physics-materials/

Read less
The Master’s Programme in Micro- & Nanotechnology Enterprise is an exciting opportunity in which world-leading scientists and successful entrepreneurs are… Read more
The Master’s Programme in Micro- & Nanotechnology Enterprise is an exciting opportunity in which world-leading scientists and successful entrepreneurs are brought together to deliver a one-year Master’s degree combining an in-depth multidisciplinary scientific programme with a global perspective on the commercial opportunities and business practice necessary for the successful exploitation in the rapidly developing fields of nanotechnology and micro-electromechanical systems (MEMS).

The programme is intended for those with a good first degree in the physical sciences and engineering who wish to develop research skills and a commercial awareness in micro- and nanotechnology. It combines cutting-edge science with business practice skills, giving students knowledge and experience of a range of disciplines. This should enable students graduating from the course to evaluate the scientific importance and technological potential of new developments in the field of the field of Micro and Nanotechnology and provides an unparalleled educational experience for entrepreneurs in these fields.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/pcmmmpmne

Course detail

Students will:

- be able to develop a discipline-specific terminology to describe and discuss relevant aspects of Micro and Nanotechnology, as well as Business;
- be able to develop their scientific writing skills through lab reports, literature survey, project dissertation, and scientific communication skills through oral presentations;
- be able to develop independence and critical thinking, as well as project management skills;
- have the opportunity develop team project skills.

Format

The programme is modular in structure and lasts ten months. It is envisaged that students attend all modules, which consist of no more than 16 hours of lectures per module with additional discussion groups and personal study time. The students will be examined on all core modules and may select which elective modules they are examined on. The modules are taught in the first two terms and will be followed by formal examinations. The modules are drawn from Science and Technology, Business Management and Innovation strands and so cover the many complexities involved in the processes of discovery and exploitation.

Written or oral feedback is provided after completion of assessed course work. In addition students must sit a mock exam at the beginning of the Lent Term; detailed individual feedback is provided by the Course Directors, who are also available for consultation throughout the academic year.

Assessment

A dissertation of not more than 15,000 words in length (including tables, figure legends and appendices, but excluding bibliography) on a major project, involving (i) in-depth scientific research (following a literature survey in the same scientific field), or (ii) an in-depth case study concerned with a topic in science, business, ethics, law or policy (related to the topic covered during the literature survey). The assessment will include a viva voce examination.

No more than eight essays, each of not more than 3,000 words in length, covering the fields of science, ethics, law, and policy, and the interface of micro- and nanoscience and business.

A literature survey report of not more than 5000 words in length on a scientific topic, to be followed by either a major research project in the same field, or a business, ethics, law, or policy-related case study, concerning the scientific topic.

Course work, which may include written work, group work, and class participation.

Two unseen written examination papers, which may cover all core and elective scientific subjects prescribed in the syllabus.

Five practical assessments.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
Research profile. The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD. Read more

Research profile

The MSc by Research in Integrative Neuroscience is a one-year, full-time research programme covering all levels of modern neuroscience, which makes it an ideal programme to prepare you for a PhD.

We include molecular, cellular, systems, regenerative, cognitive, clinical and computational neuroscience. We also allow you to choose your specialty right from the start, allowing you to shape your learning around your interests and career goals.

Programme structure

You start with a taught component in the first 12 weeks, and attend ‘themed weeks’ which run in parallel with elective courses.

Elective courses include:

  • Developmental Neurobiology
  • Neural Circuits
  • Neurodegeneration and Regeneration

The elective courses run during the first 12 weeks on two half days per week. These will give you a deeper insight into the concepts and methodology of a specific field of interest.

For your research you can choose available projects or contact principal investigators from more than 120 groups in the Edinburgh Neuroscience community to develop your own project, which can range from psychology to nanoscience.

You can decide to do two consecutive projects to gain a strong overview of research areas, or do a longer project to get a more in-depth laboratory experience in one field.

Career opportunities

This programme is designed to help you in your research career. Over 90% of students on the MSc by Research in Integrative Neuroscience have positive next destinations, including PhD, research or clinical career paths.



Read less

Show 10 15 30 per page



Cookie Policy    X