• University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Imperial College London Featured Masters Courses
Ulster University Featured Masters Courses
Northumbria University Featured Masters Courses
"nanomedicine"×
0 miles

Masters Degrees (Nanomedicine)

  • "nanomedicine" ×
  • clear all
Showing 1 to 11 of 11
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Nanomedicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Nanomedicine at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Recent years have witnessed an unprecedented growth in research in the area of nanoscience. There is increasing optimism that nanotechnology applied to medicine will bring significant advances in the diagnosis treatment and prevention of disease. Increasing demand and awareness of applications of nanotechnology in medicine has resulted in the emergence of a new discipline, namely nanomedicine.

This 12-month course (starts in October) is suitable for graduates with experience in disciplines of biology, life sciences or engineering who wish to develop their understanding of the application of Nanotechnology in healthcare and to undergo training in experimental design and experimental practice in a novel research topic.

Key Features of the Nanomedicine Programme

This innovative programme in Nanomedicine combines a multidisciplinary approach of nanotechnology and medical science that promises to bring significant advances in the diagnosis, treatment and prevention of disease.

- The opportunity to study specialised modules including Bionanotechnology, Bioinformatics, Diagnostics, Molecular Medicine, Regenerative Medicine, Nanomedicine, and Nanotoxicology , taught by leading researchers in the field
- Develop research skills by working with an interdisciplinary research team
- Use state-of-the art laboratory equipment in the Centre for NanoHealth
- Engage with clinicians through established links with local hospitals and Health Board

Carry out collaborative research with Industry, including hi-tech medical device companies based in the College of Medicine‘s Institute of Life Science.

Modules

The Nanomedicine programme is modular and structured in three levels, each building on the next. You can elect to take either the full Master's programme or the Postgraduate Certificate or Diploma, depending on need and circumstances.

The programme is designed to allow you to complete either as full time or part time study. For part-time students, each of the three components are scheduled to take a year each to complete.

The Nanomedicine programme will give you generic evidence based practice training with additional modules exploring:

Bio-nanotechnology
Principles of Nanomedicine
Nano(geno)toxicology
Regenerative Medicine
Diagnostics and Imaging
Physiology and Disease
Nanomedicines and Therapeutics
Research Design and Ethics
Bioinformatics

Professional Development

The Medical School offers the following M Level modules as standalone opportunities for prospective students to undertake continued professional development (CPD) in the area of Nanomedicine.

You can enroll on the individual modules for this programme as either an Associate Student (who will be required to complete the module(s) assessments) or as a Non-Associate Student (who can attend all teaching sessions but will not be required to complete any assessments).

How to Apply

For information and advice on applying for any of the continuing education opportunities, please contact the school directly at .

Employability

Postgraduate study has many benefits, including enhanced employability, career progression, intellectual reward and the opportunity to change direction with a conversion course.

From the moment you arrive in Swansea, specialist staff in Careers and Employability will help you plan and prepare for your future. They will help you identify and develop skills that will enable you to make the most of your postgraduate degree and enhance your career options. The services they offer will ensure that you have the best possible chance of success in the job market.

The student experience at Swansea University offers a wide range of opportunities for personal and professional development through involvement in many aspects of student life.

Co-curricular opportunities to develop employability skills include national and international work experience and study abroad programmes and volunteering, together with students' union and athletic union societies, social and leisure activities.

For the MSc Nanomedicine programme, we are in the process of identifying opportunities for our students to complete placements with a number of our collaborative partners.

Read less
Oxford’s new MSc in Nanotechnology for Medicine and Health Care builds on the world-leading research in nanomedicine at the University’s Institute of Biomedical Engineering and other departments in the Mathematical, Physical and Life Sciences (MPLS) Division and Medical Sciences Division. Read more
Oxford’s new MSc in Nanotechnology for Medicine and Health Care builds on the world-leading research in nanomedicine at the University’s Institute of Biomedical Engineering and other departments in the Mathematical, Physical and Life Sciences (MPLS) Division and Medical Sciences Division. This advanced modular course is delivered by leading scientists and experts in this rapidly developing field and has been specifically designed for those who would value a part-time modular learning structure, for example those in full-time employment, both in the UK and overseas.

The MSc is designed to be completed part-time, normally over a two- to three-year period, and so provides a path to career development that is flexible and recognised within academia and industry. The programme comprises three online modules exploring the fundamentals of science and materials characterisation at the nanoscale, three intensive five-day face-to-face modules describing the clinical and commercial application of such science, and a piece of original lab-based research leading to the submission of a dissertation. This modular structure provides an adaptable approach to learning, and each module may also be taken as an individual short course.

There are opportunities to access and learn about cutting-edge research and current practice in a wide range of nanotechnology and healthcare topics from experts with experience of taking nanotechnologies from basic concept through clinical validation to market realisation. The tutor-led approach lends cohesion to the modular experience which is tailored for busy people in full-time employment who wish to minimise time away from the workplace to study.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-nanotechnology-for-medicine-and-health-care

The first deadline for applications is Friday 20 January 2017

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For full details please see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Description

Nanotechnology is the production and application of devices and systems at the nanometre scale, which is of the order of one billionth of a metre. Developments in this area of technology are now coming to fruition, and increasingly impacting on our daily lives. In particular, nanotechnology is becoming a crucial driving force behind innovation in medicine and healthcare, with a range of advances including nanoscale therapeutics, biosensors, implantable devices and imaging systems. However, the pace with which this revolution is occurring has left even some of its leading practitioners lacking in aspects of the key fundamental knowledge or the information required to navigate the regulatory and clinical pathway to achieve market realisation.

The University of Oxford's MSc in Nanotechnology for Medicine and Health Care offers a detailed and cutting-edge education in this subject and builds on the successful Postgraduate Certificate in Nanotechnology, which was launched in 2006. The course is taken part-time as a mixture of online and face-to-face modules, meaning it can fit around the demands of those working full-time and can be studied by international students without the requirement to relocate. The course uses a blend of individual study of learning materials, together with group work during live online tutorials, conventional lectures and discussions and also requires the student to submit a dissertation reporting an original piece of nanomedicine-based research. The group sessions with tutors are particularly valuable because they offer highly focused learning and assessment opportunities.

Programme details

The MSc in Nanotechnology for Medicine and Health Care is a part-time course consisting of six modules and a research project and associated dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration on the MSc is not more than two years.

The course comprises:

- three online modules giving a thorough introduction to the fundamental science of nanotechnology and the behaviour and characterisation of nanoscale materials;

- three five-day modules taught face-to-face in Oxford explaining the scientific, regulatory, clinical and commercial aspects of the application of nanotechnology to medicine and healthcare

- an original research project of approximately 18 weeks to be written up as a dissertation

The course has a dedicated Course Director, Associate Director and administration team accustomed to supporting students undertaking distance learning and face-to-face courses. Students have access to staff at the University of Oxford’s Begbroke Science Park and Institute of Biomedical Engineering, particularly the Course Director, Professor Robert Carlisle and the Associate Course Director, Dr Christiane Norenberg.

Throughout the course, students can use the University of Oxford’s excellent electronic library resources to enable them to complete the assignment tasks.

Programme modules:

- Module 1: The Wider Context of Nanotechnology (online)
- Module 2: The Fundamental Science of Nanotechnology (online)
- Module 3: Fundamental Characterisation for Nanotechnology (online with two-day component in Oxford)
- Module 4: Introduction to Bionanotechnology (in Oxford)
- Module 5: Nanomedicine – Science and Applications (in Oxford)
- Module 6: Clinical Translation and Commercialisation of Nanomedicine (in Oxford)

To complete the MSc, students need to attend the six modules and complete the assessed written assignments for each module, and complete a research project with dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Who is it for?

This is a part-time, modular course leading to a postgraduate qualification at the University of Oxford. The course is designed for students wishing to study part-time. It will appeal to those working in the commercial, research or healthcare sectors who use or develop nanotechnology in their work. Applications are welcome from biomedical engineers, materials scientists, biotech-entrepreneurs, medical practitioners, chemists, pharmacists, electrical engineers, project managers in related industries, patent agents, legislators, as well as those involved in commercial or academic research in this area of science.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford

Read less
Nanotechnology and Regenerative Medicine are rapidly expanding fields with the potential to revolutionise modern medicine. This cross-disciplinary programme provides students with a robust scientific understanding in these fields, combined with a "hands-on" practical and translational focus. Read more
Nanotechnology and Regenerative Medicine are rapidly expanding fields with the potential to revolutionise modern medicine. This cross-disciplinary programme provides students with a robust scientific understanding in these fields, combined with a "hands-on" practical and translational focus.

Degree information

This programme will equip students with a critical understanding of:
-How nanotechnology can be harnessed for the improved detection and treatment of disease.
-The use of stem cells in medicine.
-Tissue engineering strategies for tissue regeneration.
-Improving biomaterials for directing cell behaviour.
-The regulatory, ethical and commercial hurdles for the translation of these emerging technologies.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), one optional module (15 credits) and a research project (90 credits). A Postgraduate Certificate (60 credits) is offered. The programme consists of two core modules (30 credits) and two optional modules (30 credits).

Core modules
-Nanotechnology in Medicine *
-Applied Tissue Engineering *
-Biomaterials
-Research Methodologies
-Practical Bio-Nanotechnology and Regenerative Medicine
-*PG Cert - compulsory modules

Optional modules - choose one of the following options; attendance at the other module is possible but will not be assessed.
-Stem Cells in Medicine and their Applications in Surgery
-Translation of Nanotechnology and Regenerative Medicine

Dissertation/report
All students undertake an extensive laboratory-based (90 credits) research project which culminates in a dissertation of c.15,000 words and an individual viva voce.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, workshops, group discussions, practical sessions, and demonstrations. Assessment is through presentations, problem-solving workshops, written practical reports, coursework, unseen written examinations and the dissertation.

Careers

Student career options and progression during and following the completion of the degree are considered to be of the utmost importance. Personal tutors will offer individual advice and seminars are arranged on a variety of career competencies including CV writing, writing research proposals and positive personal presentation.

Networking with world-leading scientists, new biotechnology CEO's and clinicians is encouraged and enabled throughout the programme. Research output in terms of publishing papers and presenting at conferences is also promoted.

Recent career destinations include:
-PhD or Medicine at UCL, Imperial College London and Universities of Oxford and Cambridge
-Clinical PhD training programmes
-NHS hospitals in the UK
-EU and overseas hospitals and research facilities

Top career destinations for this degree:
-Health Careers Program, Harvard University
-PhD Medicine, Queen's University, Belfast
-PhD Bioengineering, Imperial College London
-PhD Nanomedicine, UCL
-DPhil Researcher (Biomedical Sciences), University of Oxford and studying MSc Nanotechnology and Regenerative Medicine, -University College London (UCL)

Employability
Graduates of the programme gain the transferable laboratory, critical and soft skills, such as science communication, necessary to pursue a scientific or clinical research career in the fields of nanomedicine and regenerative medicine.

Why study this degree at UCL?

Based within the world-leading medical research environment of the UCL Division of Surgery and Interventional Science this MSc retains a clinical focus and addresses real medicine needs. Students learn about the route of translation from research ideas into actual products which can benefit patients.

An in-depth laboratory-based research project is an integral component of the programme: expert support allows students to investigate cutting-edge projects and thereby open up opportunities for further research and publications.

Students are embedded within the vibrant research community of the Faculty of Medical Sciences which provides students - through research seminars, symposia and eminent guest lecturers - outstanding networking opportunities within the research, clinical and translational science communities.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology
Entrepreneurship for Engineers
Colloid and Interface Science
Communication Skills for Research Engineers
Water and Wastewater Engineering
Membrane Technology
Environmental Analysis and Legislation
Optimisation
Desalination
Polymers: Properties and Design
Principles of Nanomedicine
Nanoscale Structures and Devices
Pollutant Transport by Groundwater Flows
MSc Research Practice
MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Read more
This MSc will provide students with the skills and knowledge to allow them to participate effectively in the creation and growth of high-impact pharmaceutical business ventures. Its graduates will be ideally positioned to initiate their own start-up companies or join existing biotech or pharmaceutical businesses.

Degree information

Students will learn how to develop and assess a new business concept, and how to raise finance for and market a business and its outputs. They will build their scientific skill set by exploring four scientific research areas in pharmaceutics, and will interact closely with and be mentored by those who have direct experience of initiating a start-up business.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits), a scientific research project (30 credits) and a business case development project (30 credits).

Core modules
-Mastering Entrepreneurship
-Entrepreneurial Marketing
-Entrepreneurial Finance
-Initiating a Pharmaceutical Start-Up

Optional modules
Term One
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicine

Term Two
-Pharmaceutical Biotechnology
-Clinical Pharmaceutics
-Nanomedicine
-Formulation of Natural Products and Cosmeceuticals

Dissertation/report
All students undertake two projects which comprise the major component of this MSc programme and culminate in two written reports and oral presentations. One of these is a short laboratory research project, while the second involves the development of a business case for a new pharmaceutical endeavour.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, seminars and practical sessions as well as industrial visits. Assessment is through a combination of written examinations, coursework assignments and the project.

Careers

Graduates of this programme are expected to become involved in businesses in various areas of the pharmaceutical and biotechnology industries. They will be fully equipped with the skills to start their own businesses, and will be able to approach UCL Innovation and Enterprise to assist with this if desired. Alternatively, they may join small biotech or major pharmaceutical companies, pursue further research in academia, work in consulting, or join world-leading technology companies where there is increasing emphasis on healthcare and the life sciences.

The first cohort of students on the Pharmaceutical Formulation and Entrepreneurship MSc will graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

This programme is unique in equipping students with a broad skill set in both medicine design and entrepreneurship. It is delivered by world-leading academics in both the UCL School of Pharmacy and UCL School of Management.

UCL staff with direct experience of launching a pharmaceutical start-up will teach students best practice and how to overcome the major challenges involved in enterprises of this kind.

UCL’s central London location combines state-of-the-art research with an entrepreneurial dynamic that fosters start-up creation, and provides access to venture capitalists, business angels, and world-leading pharmaceutical companies. UCL Innovation and Enterprise, UCL’s centre for entrepreneurship and business interaction, offers UCL students direct practical support in launching a business

Read less
Pharmaceutics is the science of medicine design. This MSc was introduced in direct response to the requirements of the pharmaceutical industry for highly skilled formulation scientists capable of taking promising new drug candidates and developing them into world-class medicines. Read more
Pharmaceutics is the science of medicine design. This MSc was introduced in direct response to the requirements of the pharmaceutical industry for highly skilled formulation scientists capable of taking promising new drug candidates and developing them into world-class medicines. Graduates of this programme are highly competitive in the global jobs market.

Degree information

This programme provides education in the science of successful medicine design, development and manufacture and students acquire the key skills needed to pursue a career in industrial product development or a research career in the design of drug delivery systems. Particular emphasis is placed on developing research skills.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), optional modules (45 credits) and a research dissertation (60 credits).

Core modules
-Analysis and Quality Control
-Preformulation
-Formulation of Small Molecules
-Personalised Medicine
-Pharmaceutical Biotechnology

Optional modules
-Clinical Pharmaceutics
-Nanomedicine
-Formulation of Natural Products and Cosmeceuticals
-Initiating a Pharmaceutical Start-Up

Dissertation/report
All students undertake a research project which is the major component of this MSc programme and culminates in a written dissertation and oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and seminars as well as industrial visits. Assessment is through a combination of written examinations, coursework assignments and a research project.

Careers

Graduates of this programme progress on to careers in the various aspects of the pharmaceutical and biotechnology industries including research, product development and manufacturing, clinical trials and regulatory affairs. Others pursue a PhD in the UK or overseas.

Why study this degree at UCL?

The research project, perhaps the most exciting aspect of this programme, now lasts seven months. During this period you will join the research of one of our world-leading academics, pursuing research that will advance the progress of contemporary medicine design.

Our close links with the UK pharma industry mean we can arrange careers days and other networking opportunities where you will have direct access to potential employers.

We have introduced elements to the programme which will provide evidence of continuing professional development and increase your employability. These include building a portfolio of practical and analytical skills, and classes to develop your key skills in communication, calculations, and IT.

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:

• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
• Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
• Mechanics of tissues, cells and sub-cellular components;
• Biocompatibility of implantable materials and devices;
• Materials and techniques for nanotechnology and nanomedicine.

Applications are welcome from students with a background in physical sciences (Chemistry, Physics, Mathematics and Materials Science) or Engineering.The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomaterials and Tissue Engineering.

This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomaterials and Tissue Engineering, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from the College.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programmes in Biomedical Engineering is a 1 calendar year conversion programme that is part of a suite of programmes offered in Biomedical Engineering at Queen Mary University of London. This MSc conversion programme is aimed at students who already have an in depth knowledge of an area of Science (e.g. Maths, Physics, Biology or Chemistry), and who wish to convert to a career in Biomedical Engineering

This MSc programme aims to prepare specialists with advanced knowledge and transferable skills in the field of Biomedical Engineering, covering the following topics:

Fundamentals of human physiology;
Ethics and regulatory affairs in the biomedical field;
Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
Mechanics of tissues, cells and sub-cellular components;
Biocompatibility of implantable materials and devices;
Materials and techniques for nanotechnology and nanomedicine.
The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomedical Engineering and Materials. This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomedical Engineering and Materials, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from QMUL.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research.

* All new courses are required to undergo a two-stage internal review and approval process before being advertised to students. Courses that are marked "subject to approval" have successfully completed the first stage of this process. Applications are welcome but we will not make formal offers for this course until it has passed this second (and final) stage.

Read less
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations. Read more
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations.

Research in the School is diverse and multidisciplinary and is generally grouped around two distinct strands: 1) pharmacy education and community engagement with prescribing, and 2) physical pharmaceutics and drug development and delivery. Subsequently, there are opportunities for research students to work with academics across varied topics, including solid-state drug development and biologics delivery.

As a postgraduate student, you can benefit from specialist laboratory space and equipment, a wide range of training programmes designed to enhance your research and transferable skills, as well as support from dedicated academic supervisors.

All of our research students are encouraged to submit papers to scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Research Areas, Projects & Topics

The School’s research is diverse and multidisciplinary and it includes the following areas:
-Solid state drug development
-Crystal engineering of salts/polymorphs/co-crystals
-Biologics delivery
-Nanomedicine and targeted drug delivery
-Mucosal delivery of biologics
-Mucosal models to study drug delivery
-Antimicrobials and vaccines
-Organic chemistry
-Bioconjugations and Bio-inspired chemistry
-Development of sequence selective DNA cross-linking agents
-Health education
-Personalised care
-Data-based medicine and assessment of individual risks/benefits
-Application and use of evidence, and pharmacy-led clinical medication reviews

How You Study

Our research environment aims to support students through a specific framework. This covers all aspects of the postgraduate experience, including supervisor interaction, training and access to the facilities and allied support through the Directors of Research and Postgraduates Studies, from initial application to final completion.

All postgraduates are actively encouraged to prepare submission to scientific journals in their field. Students are expected to present their findings to national and international conferences, and also to participate in internal research meetings.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor(s), with the regularity of these varying depending on your own individual requirements, subject area and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Facilities

Our Science and Innovation Park, home to the Joseph Banks Laboratories, provides specialist teaching suites and laboratories for study and research. It is a regional hub for science industry innovation and development.

Career and Personal Development

Graduates may progress to careers in the pharmaceutical, cosmetics or food industries, while others may choose to work within academia.

Read less
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations. Read more
As a researcher in the School of Pharmacy, you have the opportunity to liaise with leaders in the pharmaceutical and biotechnology industries and to develop strong national and international collaborations.

Research in the School is diverse and multidisciplinary and is generally grouped around two distinct strands: 1) pharmacy education and community engagement with prescribing, and 2) physical pharmaceutics and drug development and delivery. Subsequently, there are opportunities for research students to work with academics across varied topics, including solid-state drug development and biologics delivery.

As a postgraduate student, you can benefit from specialist laboratory space and equipment, a wide range of training programmes designed to enhance your research and transferable skills, as well as support from dedicated academic supervisors.

All of our research students are encouraged to submit papers to scientific journals, present their findings at conferences in the UK and overseas, and share knowledge with colleagues across the University.

Research Areas, Projects & Topics

The School’s research is diverse and multidisciplinary and it includes the following areas:
-Solid state drug development
-Crystal engineering of salts/polymorphs/co-crystals
-Biologics delivery
-Nanomedicine and targeted drug delivery
-Mucosal delivery of biologics
-Mucosal models to study drug delivery
-Antimicrobials and vaccines
-Organic chemistry
-Bioconjugations and Bio-inspired chemistry
-Development of sequence selective DNA cross-linking agents
-Health education
-Personalised care
-Data-based medicine and assessment of individual risks/benefits
-Application and use of evidence, and pharmacy-led clinical medication reviews

How You Study

Our research environment aims to support students through a specific framework. This covers all aspects of the postgraduate experience, including supervisor interaction, training and access to the facilities and allied support through the Directors of Research and Postgraduates Studies, from initial application to final completion.

All postgraduates are actively encouraged to prepare submission to scientific journals in their field. Students are expected to present their findings to national and international conferences, and also to participate in internal research meetings.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor(s), with the regularity of these varying depending on your own individual requirements, subject area and the stage of your programme.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Nanoscience to Nanotechnology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Nanoscience to Nanotechnology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Master's course in Nanoscience to Nanotechnology utilises facilities that include a state-of-the-art nanotechnology laboratory suite (500m2) housing cutting-edge fabrication and characterisation facilities.

Key Features of MSc in Nanoscience to Nanotechnology

The growth of nanotechnology is one of the most exciting developments in science and engineering in recent years. Much of the research in this field is interdisciplinary in nature, drawing expertise from different areas across the life science, physical science and engineering disciplines.

The MSc Nanoscience to Nanotechnology course covers the techniques necessary for scientific investigation at these very small dimensions, and the very latest research developments in this rapidly evolving area.

As a student on the MSc Nanoscience to Nanotechnology course, you be able to comprehend the fundamental principles of physics and engineering, which have consequences for nanotechnology, and to gain an understanding of how the general concepts of scientific research are transferred to engineering applications and products.

This MSc Nanoscience to Nanotechnology course will also enable you to apply appropriate techniques for designing, imaging and evaluating nanostructures, whilst gaining a knowledge of mathematic models and their application within a research project through interpreting quantitative and qualitative data.

As a student on the MSc Nanoscience to Nanotechnology course, you will cover a broad range of subject areas, from the latest semiconductor fabrication technology through to biological and medical applications, with the emphasis throughout on characterisation and control of materials on the nanoscale.

Modules

Modules on the Nanoscience to Nanotechnology course may include:

Colloid and Interface Science
Communication Skills for Research Engineers
Wide Band-gap Electronics
Research Dissertation
Strategic Project Planning
Probing at the Nanoscale
Soft Nanotechnology
Nanoscale Simulation
Nanoscale Structures and Devices
Bio-nanotechnology
Principles of Nanomedicine
Micro and Nano Electro-Mechanical Systems

Nanoscience to Nanotechnology Course Structure

The MSc inNanoscience to Nanotechnology is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode

The part-time scheme is a version of the full-time equivalent MSc in Nanoscience to Nanotechnology scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Nanoscience to Nanotechnology programme are typically available one week prior to each semester.

Links with Industry

Work within the Multidisciplinary Nanotechnology Centre places a strong emphasis on the development of applications-driven research and the transfer of technology from the laboratory to the work place or health centre. Interaction with industry is therefore a key component of the Centre’s strategy and we have collaborated with major multinational companies such as Agilent, Boots and Sharp, as well as a number of smaller Welsh-based companies.

Careers

As a student on the MSc Nanoscience to Nanotechnology course, you will be provided with the qualities needed for employment in technology or higher research degrees requiring the exercise of initiatives, specialist knowledge, personal responsibility and decision making in complex and unpredictable contexts.

This MSc Nanoscience to Nanotechnology course is suitable for those who want to develop an understanding of the techniques available to fabricate and investigate nanoscale structures, and develop arguments and make judgements based on fundamental concepts of nanoscale engineering.

Facilities

The new home of the Nanoscience to Nanotechnology course is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Student Quote

"I found that the MSc in Nanotechnology covered a broad range of topics. This really opened my mind to the potential possibilities of the field and to consider future careers in areas that I had not previously thought of. This course has allowed me to find the right area of research to continue to a PhD."

Chris Barnett, MSc Nanoscience to Nanotechnology

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X