• University of Leeds Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
Middlesex University Featured Masters Courses
University of Greenwich Featured Masters Courses
Imperial College London Featured Masters Courses
University of Strathclyde Featured Masters Courses
Cardiff University Featured Masters Courses
"nanomaterials"×
0 miles

Masters Degrees (Nanomaterials)

  • "nanomaterials" ×
  • clear all
Showing 1 to 15 of 49
Order by 
The Dutch Master's Selection Guide (Keuzegids Masters 2016) ranked Utrecht University's Nanomaterials Science programme as the best in the field of Chemistry in the Netherlands. Read more

Nanomaterials Science Judged Best in the Field

The Dutch Master's Selection Guide (Keuzegids Masters 2016) ranked Utrecht University's Nanomaterials Science programme as the best in the field of Chemistry in the Netherlands.
Students chose the Master's programme Nanomaterials Science at Utrecht University as the best programme in the field in the yearly review 'Beste studies' by Elsevier.

Functional materials, organic and inorganic, play an important role in much of modern physics, chemistry and technology.

In this field there is an obvious trend towards systems which operate on the nanoscale. This includes the exciting areas of nanoscience, nanotechnology and catalysis: the fundamental units such as macromolecules, quantum structures and catalysts have dimensions on the nanometre scale. The challenges in this area of science include:
* the synthesis of functional units and their manipulation to form novel and 'artificial' solids;
* the study of fundamental processes in (nano)structured systems and the development of theory and models to explain new phenomena;
* the elucidation of structure-property relations;
* materials engineering and the application of materials in improved and novel devices.
* the elucidation of structure-property relations;
* materials engineering and the application of materials in improved and novel devices.

Read less
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. Read more
This interdisciplinary MSc programme will provide you with the skills, knowledge and expertise to become a practitioner in nanoscience, whether in industry or academia. The programme provides innovative and novel training, and will support you in the next phase of your career. To date, all of our graduates have been successful in obtaining either a PhD place or full-time employment. Just over fifty per cent have taken up PhD places in Bristol, other leading UK universities or in top universities around the world.

The Bristol Centre for Functional Nanomaterials (BCFN) represents more than 100 academics from 15 departments in the faculties of science, engineering and biomedical sciences. This rich and diverse support network ensures your training and research is at the cutting edge and is truly interdisciplinary.

The structure of the programme, with two short training projects and one research project means that you will have direct contact with many different academics and areas of research. You will choose your extended research project after having explored BCFN's network of research.

The programme has been designed to provide feedback on both technical and professional skills, including research skills, presenting, writing, teamwork, creativity and entrepreneurship.

Programme structure

Autumn and spring terms
-Communication and Management Skills (includes training on time management, decision making, project management, group working).
-Lecture courses on nanoscience and functional nanomaterials (graduate level training on key concepts and topics in nanoscience).
-Training in Advanced Tools for Nanoscience (through bespoke online modules, lectures and a special programme of hands-on practical training).
-Two training projects (one per term in months 1-3 and months 4-6).

Summer term
-Extended Research Project (months 6-12)
You can choose your training and research projects from a large number of project proposals, across the whole spectrum of Bristol Centre for Functional Nanomaterials research.

Careers

The combination of skills training and world-class nanoscience means that graduates of this programme have either started a PhD or successfully obtained full-time employment.

Read less
The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation. Read more

About the course

The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation.

You will experience the unique combination of a foundation semester in the general area of science and engineering of materials, followed by a nanoscience and nanotechnology specific semester to result in an unrivalled comprehensive nanomaterials expertise.

The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via options, 
and a major project.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Bionanomaterials; Nanoscale Magnetic Materials and Devices; Nanostructures and Nanostructuring; Nanomaterials; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development

Examples of optional modules

Heat and Materials; Bio-photonics and Bio-imaging

Read less
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing. Read more
This one-year research degree is a chance for you to develop your skills in one of the most exciting areas of modern science. It’s a unique opportunity to gain hi-tech skills that are central to the latest advances in electronics, IT and computing.

This course brings together our expertise in quantum photonics and nanomaterials. There is a particular focus on the study of novel fundamental phenomena in condensed matter systems as well as applications in quantum information processing, photovoltaics and optoelectronics.

Our staff are at the forefront of technological advances. We work with support from the UK Engineering and Physical Sciences Research Council, European Research Council and the Horizon 2020 programme, the Royal Society, the Leverhulme Trust and the British Council as well as CONACyT, the National Council of Science and Technology in Mexico.

Our department attracts postgraduate students from around the world.

Core modules

Optical Properties of Solids
Semiconductor Physics and Technology
Advanced Electromagnetism
Solid State Physics
Research Skills in Physics
Research Project in Physics

Examples of optional modules

Magnetic Resonance: Principles and Applications
Physics in an Enterprise Culture
The Physics of Soft Condensed Matter
Statistical Physics
Advanced Quantum Mechanics
Further Quantum Mechanics
Biological Physics

Teaching

Teaching is through lectures, research seminars, small group tutorials and oral presentation.

Your supervisor will help you develop your research skills and support you as you work on your research project.

Assessment

Assessment includes: a project report, literature review, oral presentations, including a viva, formal examinations and short reports and essays.

Read less
Nanotechnology represents a fundamental change in the way we interact with the natural world, and is set to deliver major scientific and technological advances. Read more
Nanotechnology represents a fundamental change in the way we interact with the natural world, and is set to deliver major scientific and technological advances.

The massive global investment in nanotechnology means that scientists, who are trained to work effectively in an interdisciplinary environment that bridges the diverse fields of chemistry, physics, materials science, biology and engineering, will play a vital role in shaping the future.

The course provides the background required for a career in industrial or academic research. Combining interdisciplinary teaching with cutting-edge research, this flagship course will train the next generation of nanotechnologists.

Read less
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage. Read more
Taught by internationally-recognised experts in the University’s Advanced Technology Institute (ATI), this programme will see you discover the practical implementation of nanoscience and quantum engineering, nanomaterials, nanotechnology for renewable energy generation and storage.

You will gain specialised skills through an individual research project within our research groups, using state-of-the-art equipment and facilities.

PROGRAMME OVERVIEW

The programme's broad theme is the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

The programme covers the fundamentals behind nanotechnology and moves on to discuss its implementation using nanomaterials – such as graphene – and the use of advanced tools of nanotechnology which allow us to see at the nanoscale, before discussing future trends and applications for energy generation and storage.

You will gain specialised, practical skills through an individual research project within our research groups, using state-of-the-art equipment and facilities. Completion of the programme will provide you with the skills essential to furthering your career in this rapidly emerging field.

The delivery of media content relies on many layers of sophisticated signal engineering that can process images, video, speech and audio – and signal processing is at the heart of all multimedia systems.

Our Mobile Media Communications programme explains the algorithms and intricacies surrounding transmission and delivery of audio and video content. Particular emphasis is given to networking and data compression, in addition to the foundations of pattern recognition.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Molecular Electronics
-RF Systems and Circuit Design
-Nanofabrication and Characterisation
-Energy Economics and Technology
-Semiconductor Devices and Optoelectronics
-Microwave Engineering
-Nanoelectronics and Devices
-Nanophotonics Principles and Engineering
-Renewable Energy Technology
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

NANOTECHNOLOGY AT SURREY

We are one of the leading institutions developing nanotechnology and the next generation of materials and nanoelectronic devices.

Taught by internationally-recognised experts within the University’s Advanced Technology Institute (ATI), on this programme you will discover the practical implementation of nanoscience and quantum engineering, nanomaterials and nanotechnology.

You will gain specialised skills through an individual research project within our research groups, using state-of- the-art equipment and facilities.

The ATI is a £10 million investment in advanced research and is the flagship institute of the University of Surrey in the area of nanotechnology and nanomaterials. The ATI brings together under one roof the major research activities of the University from the Department of Electronic Engineering and the Department of Physics in the area of nanotechnology and electronic devices.

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning – know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin Nanoscience and nanotechnology for renewable systems
-Engineering problem solving - be able to analyse problems within the field of nanoscience and nanotechnology and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within Nanoscience, nanotechnology and nanoelectronics for renewable energy
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research and development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability.
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our Advanced Materials MSc is a broad-based, flexible modular programme, giving you a thorough understanding of advanced engineering materials, their manufacture, and the techniques used for their characterisation. Read more
Our Advanced Materials MSc is a broad-based, flexible modular programme, giving you a thorough understanding of advanced engineering materials, their manufacture, and the techniques used for their characterisation.

This programme is a springboard for career development, new employment opportunities and postgraduate research. It provides a strong platform for workplace-based continuing education with many part-time students funded by their employers.

PROGRAMME OVERVIEW

Full-time and part-time students study a number of one-week short-course modules comprising lectures, laboratory sessions and tutorials.

The modules cover metals, polymers, ceramics, composites, nanomaterials, bonding, surfaces, corrosion, fracture, fatigue, analytical techniques and general research methods. Each module is followed by an open book assessment of approximately 120 hours.

There is also a materials-based research project, which is made up of the Research Project Planning and the Project modules.

The MSc in Advanced Materials is accredited by the Institute of Materials, Minerals and Mining (IOM3) and by the Institution of Mechanical Engineers (IMechE) when a Project is undertaken.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over five academic years. It consists of eight taught modules and a compulsory Project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Introduction to Materials Science
-Research Methods
-Research Project Planning
-Project
-Introduction to Composite Materials Science
-Characterisation of Advanced Materials
-Introduction to Physical Metallurgy
-Polymers: Science, Engineering and Applications
-Structural Ceramics and Hard Coatings
-Surface Analysis: XPS, Auger and SIMS
-Materials Under Stress
-The Science and Technology of Adhesive Bonding
-Composite Materials Technology
-Corrosion Engineering
-Nanomaterials

-Advanced Materials Independent Study (part-time only)
-Advanced Materials Project (part-time only)
-Project (part-time only)

EDUCATIONAL AIMS OF THE PROGRAMME

-To provide students with a broad knowledge of the manufacture, characterisation and properties of advanced materials
-To address issues of sustainability such as degradation and recycling
-To equip graduate scientists and engineers with specific expertise in the selection and use of materials for industry
-To enable students to prepare, plan, execute and report an original piece of research
-To develop a deeper understanding of a materials topic which is of particular interest (full-time students) or relevance to their work in industry (part-time students) by a project based or independent study based thesis

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The different major classes of advanced materials
-Routes for manufacturing and processing of advanced materials
-Characterisation techniques for analysing bonding and microstructure
-Mechanical, chemical and physical properties of advanced materials
-Processing -microstructure - property relationships of advanced materials
-Material selection and use
-Appropriate mathematical methods

Intellectual / cognitive skills
-Reason systematically about the behaviour of materials
-Select materials for an application
-Predict material properties
-Understand mathematical relationships relating to material properties
-Plan experiments, interpret experimental data and discuss experimental results in the context of present understanding in the field

Professional practical skills
-Research information to develop ideas and understanding
-Develop an understanding of, and competence, in using laboratory equipment and instrumentation
-Apply mathematical methods, as appropriate

Key / transferable skills
-Use the scientific process to reason through to a sound conclusion
-Write clear reports
-Communicate ideas clearly and in an appropriate format
-Design and carry out experimental work

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. Read more
The global challenges of climate and energy require new technologies for renewable energy sources, methods of energy storage, efficient energy use, new lightweight vehicular structures, techniques for carbon capture and storage and climate engineering. This is a broad-based MSc, designed for graduates who wish to acquire skills in energy and materials science in order to participate in the emerging challenges to meet climate change targets.

Degree information

Students gain an advanced knowledge of materials science as it applies to energy and environmental technologies and research skills including information and literature retrieval, critical interpretation and analysis, and effective communication. They can benefit from modules in chemistry, physics, chemical engineering or mechanical engineering, thus offering future employers a wide-ranging skills base. Graduates will be well qualified to deal with the problems of energy decision-making and the implications for the environment.

Students undertake modules to the value of 180 credits. The programme consists of five core modules (90 credits), two optional modules (15 credits each) and a research project (60 credits). An exit-level only Postgraduate Diploma (120 credits) is available. An exit-level only Postgraduate Certificate (60 credits) is available.

Core modules - students take all of the following, totalling 90 credits, and a 60 credit research dissertation.
-Advanced Topics in Energy Science and Materials
-Microstructural Control in Materials Science
-Energy Systems and Sustainability
-Transferable Skills for Scientists
-Research Project Literature Review

Optional modules - students take 30 credits drawn from the following:
-Climate and Energy
-Materials and Nanomaterials
-Electrical Power Systems and Alternative Power Systems
-Atom and Photon Physics
-Solid State Physics
-Mastering Entrepreneurship

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of approximately 10,000 words, an oral presentation and a viva voce examination (60 credits).

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, laboratory classes and research supervision. Assessment is through unseen written examination and coursework. The literature project is assessed by written dissertation and oral presentation, and the research project is assessed by a written report, an oral presentation and a viva voce examination.

Careers

The UK has committed to 80% reduction in CO2 emissions on a 1990 baseline by 2050. CERES, the organisation that represents the largest institutional investors would like to see 90% reduction by 2050. National Systems of Innovation (NSI), which includes the universities, research centres and government departments working in conjunction with industry, will need to apprehend new opportunities and change direction, diverting personnel to energy and climate issues in response to changing markets and legislation. This MSc will contribute to the supply of personnel needed for the era of sustainability.

Top career destinations for this degree:
-Process Innovation Executive, Samsung Electronics UK
-Chemical Engineer, Jing Eong Fang
-Research Intern, CECP
-PhD Nanomaterials, University of Oxford
-PhD Sugar Chemistry, Monash University

Why study this degree at UCL?

This programme is designed for graduates from a wide range of science and engineering backgrounds who wish to broaden their knowledge and skills into materials science with an emphasis on the energy and climate change issues that will drive markets over the next century. It delivers courses from five departments across three faculties depending on options and includes a self-managed research project which is intended to introduce the challenges of original scientific research in a supportive environment.

Research activities span the whole spectrum of energy-related research from the development of batteries and fuel cells to the prediction of the structure of new water-splitting catalytic materials.

Students develop experience in scientific method, techniques for reporting science and in the many generic skills required for a future career.

Read less
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector. The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Read more
Materials Chemistry is one of the modern chemical disciplines underpinning a substantial portion of the chemicals sector.

The programme provides a unique general training in the area and includes the chance to specialise in aspects such as Polymer Chemistry, Inorganic Materials, Supramolecular Chemistry or Nanosciences. Both synthesis and characterisation are core parts of the taught aspects.

The course provides for studies in all aspects of Materials Chemistry. Students can study fundamental aspects of Polymer Chemistry; Nano and Supramolecular Chemistry, Inorganic Materials Chemistry and the programme includes application areas such as Nanomaterials and Semi-conductors.

Professional Accreditation

We will be seeking accreditation from the Royal Society of Chemistry (RSC).

Why Bradford?

Uniquely the programme offers one of the widest ranges of opportunities for carrying out a 12 month research project from a selection that covers all aspects of Materials Chemistry. Projects are supervised by leading researchers in their fields.

Studies can either be conducted over a 12 month period at Bradford or remotely over 24 months with a project being conducted in an area of Materials Chemistry at the student’s workplace.

Rankings

Ranked 18th in the UK for Chemistry in the Guardian University League Tables 2017.

Modules

Core modules:
-Research skills, professional development and commercial awareness
-Research Project - Part 1
-Research Project - Part 2

Option modules:
-Inorganic Materials Chemistry
-Fundamentals of Nano and Supramolecular Materials
-Introduction to Polymer and Colloid Science
-Computational Crystal Engineering
-Materials in Electronics
-Materials Characterisation

Learning activities and assessment

Transferrable skills are at the heart of the programme and these aspects are assessed by submission of a thesis, a draft scientific paper, oral presentation as well as modules on data management.

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Materials Chemists work in a diverse range of areas including: medical devices; electronic devices; sustainable energy generation; nanomaterials; surface coatings; controlled delivery of drugs and agrochemicals and many other areas.

Transferable skills are also a key component and graduating students will be equipped for careers in both academia and industry.

Read less
Our Materials Design and Engineering MSc gives graduates in science and engineering disciplines an understanding of the role and application of materials. Read more
Our Materials Design and Engineering MSc gives graduates in science and engineering disciplines an understanding of the role and application of materials. It provides knowledge of traditional and new materials and the science underpinning their behaviour and properties.

This course takes you through 120 credits of modules. Half of these are for an extended practical based project supported by our research laboratories and staff.
You will study a range of traditional and modern topics such as joining technology and nanomaterials.

The course will provide you with a high level of understanding of new and current materials, their applications, and design issues related to their use. You will also develop your reporting and research skills and extend your problem solving and written and verbal communication skills.

Many successful students from this course have gone on to do PhD research with us. The course gives an insight into the field of materials, bridging the gap between many science and engineering disciplines.

Delivery

The one year course includes taught modules and a major research project in the form of a dissertation.

The two year course is designed for students who require extra English tuition, or who need further training in certain other key background skills. You take a preparatory year comprising English language and other relevant introductory modules, including engineering modules. You then continue into the second year and take the one year version of the course as described above.

Placements

The course includes a 60 credit project module which is a laboratory based practical exercise. Some of these projects are related to industrial problems and you can also create links to companies yourself to generate a suitable project topic.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
Ceramic materials range from new electroceramics and high-temperature materials for aerospace, as well as other engineering applications, to the more traditional refractories and cements where new systems are being developed. Read more

About the course

Ceramic materials range from new electroceramics and high-temperature materials for aerospace, as well as other engineering applications, to the more traditional refractories and cements where new systems are being developed. Our course introduces you to the theories and concepts that make it all possible.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

Functional and Structural Ceramics; Glasses and Cements; Science of Materials; Materials Processing and Characterisation; Materials Selection, Properties and Applications; Technical Skills Development; Heat and Materials; Research project in an area of 
your choice.

Examples of optional modules

Solid State Chemistry; Materials for Energy; Nanomaterials.

Read less
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

Degree information

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules - students take both modules listed below (45 credits) and submit a research dissertation (105 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 30 credits drawn from the following:
-Researcher Professional Development
-Mastering Entrepreneurship
-Transferable Skills for Scientists
-Numerical Methods

Dissertation/report
All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Top career destinations for this degree:
-PhD Chemistry, The University of Oxford
-Engineer, Mohan Boiler and Fraser Vessel Inspection Institute
-PhD Nanomaterials, University College London (UCL)
-Phd Physics, University College London (UCL)
-PhD Chemistry, Technische Universität Berlin (Technical Universit

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Read less
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials. Read more
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials.

As a postgraduate researcher in Materials Engineering you will be based in the School of Chemical Engineering and Advanced Materials. Our research areas include kinetics and formation mechanisms of new materials, and predictive modelling based upon mechanistic understanding. Work covers the production, property measurement and performance assessment of:
-Ceramics
-Polymers
-Metals
-Composites

We focus on developing new materials for advanced engineering applications, including microelectronics, optics and power transmission.

Current research projects include:
-Developing novel surface engineering processes and materials (such as fullerene-like coating materials)
-Energy-based methods for performance modelling
-Nanomaterials and nanocharacterisation techniques
-Novel materials for intensified processes

A major research strength is the measurement and modelling of the mechanical response of materials at high-spatial resolution, particularly in microelectronic and optical devices. A combination of unique equipment and interdisciplinary expertise supports this.

Another research focus is the materials requirements for the sustainable development and use of key resources, in particular water and energy. We have significant research into the generation of energy from novel sources, low carbon and renewable technologies and the clean-up of effluent and wastewater.

Our major areas of research are:
-Fuel cells and energy systems
-Gasification
-Cold plasma gasification
-Bio-fuel cells
-Bio-diesel production
-Gas and water treatment
-Nano-structured polymer composites for pollution control
-Sustainable and environmental electrochemical systems
-Photochemical processes and electrochemical synthesis

The School of Chemical Engineering and Advanced Materials runs a postgraduate training programme that is compulsory for all new students and involves selected taught modules. You also receive research training from the Science, Agriculture and Engineering Graduate School that covers professional/key skills, personal development and research techniques. You have the opportunity to supplement your income by undertaking laboratory demonstrating and tutorial classes.

Read less
The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects. Read more
The Biomedical Engineering MSc enables you to widen your biomedical engineering knowledge and skills. You develop these to a postgraduate level with the opportunity to undertake in-depth studies through your research projects.

This one year course is intended for honours graduates (or an international equivalent) in mechanical or mechanical-related engineering (eg biomedical, materials or design), maths, physics or a related discipline.

A two year MSc is also available for non-native speakers of English that includes a preliminary year.

The taught part of the course covers major biomedical engineering themes, including:
-Bioengineering
-Manufacturing
-Nanomaterials
-Biomaterials
-Tissue engineering
-BioMEMs and microsystems engineering
-Design for human-systems integration

Your project is chosen from an extensive range of subjects. Project work can range from fundamental studies in areas of basic biomedical engineering science to practical design, make and test investigations.

Recent projects include:
-Investigations of bone cutting
-Assessment of finger splints
-Design of assistive technology
-Testing of artificial shoulder joints
-Design of a rig to flex spinal segments
-Investigation of nanoparticles
-Measuring the material properties of orthopaedic biopolymers

Some research may be undertaken in collaboration with industry.

The course is delivered by the School of Mechanical and Systems Engineering. The School has an established programme of research seminars. These are delivered by guest speakers from academia and industry (both national and international), providing excellent insights into a wide variety of engineering research.

Effective communication is an important skill for the modern professional engineer. This course includes sessions to help develop your ability, both through formal guidance sessions dedicated to good practice in report writing, and through oral/poster presentations of project work.

Delivery

The taught component of the course makes use of a combination of lectures, tutorials/labs and seminars. Assessment is by written examination and submitted in-course assignments.

The research project (worth 60 credits) is undertaken throughout the duration of the Master's course. Project work is assessed by dissertation and oral/poster presentations. You will be allocated, and meet regularly with, project supervisors.

Accreditation

The courses have been accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC).

An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as a Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X