• University of Northampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
EURECOM Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University Featured Masters Courses
University of Birmingham Featured Masters Courses
"nanochemistry"×
0 miles

Masters Degrees (Nanochemistry)

We have 5 Masters Degrees (Nanochemistry)

  • "nanochemistry" ×
  • clear all
Showing 1 to 5 of 5
Order by 
What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?. Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. Read more

What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?

Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. The partner institutions are:

  • KU Leuven, Belgium (Coordinator)
  • Chalmers, Tekniska Högskola, Sweden
  • Université Grenoble Alpes, France
  • Technische Universität Dresden, Germany

The word Nanoscience refers to the study, manipulation and engineering of matter, particles and structures on the nanometer scale (one millionth of a millimeter, the scale of atoms and molecules). Important properties of materials, such as the electrical, optical, thermal and mechanical properties, are determined by the way molecules and atoms assemble on the nanoscale into larger structures. Moreover, on a nanometer scale, structures’ properties are often different then on a macro scale because quantum mechanical effects become important.

Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronic components, new types of ‘smart’ medicines and sensors, and even interfaces between electronics and biological systems.

Structure

In the first stage of the programme all students study at the coordinating institution, where they take a set of fundamental courses (max 12 credits) to give them a common starting basis, general interest courses (6-9 credits), a compulsory common block of core courses (36 credits), and already a profiling block of elective courses (min 6 credits) which prepares them for their specialisation area. In the second stage the students take a compulsory set of specialising courses (15 credits), depending on their chosen specialisation area, combined with a set of elective broadening courses (15 credits), and do their Master’s thesis research project (30 credits). Chalmers offers the second year specialisation options of Nanophysics and Nanoelectronics. TU Dresden offers the options Biophysics and Nanoelectronics, and JFU Grenoble offers the options Nanophysics, Nanochemistry and Nanobiotechnology.

 The programme contains the following educational modules:

  1. The fundamental courses (max. 12 credits) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s. If a student does not need any or all of the fundamental courses, he/she may use the remaining credits to take more elective courses from the broadening course modules.
  2.  The general interest courses (6-9 credits) are imparting non-technical skills to the students, in domains such as management, economics, languages, quality management, ethics, psychology, etc. A Dutch language and culture course is compulsory for all the students.
  3.  The core courses (36 credits) contain first of all five compulsory courses focusing on the thorough basic education within the main disciplines of the Master: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. All students also have to take one out of two available practical courses where they learn to carry out some practical experimental work, which takes places in small teams. Also part of the Core courses is the Lecture Series on Nanoscience and Nanotechnology, which is a serie of seminars (14-18 per year) on various topics related to nanoscience and nanotechnology, given by national and international guest speakers.
  4. The specific courses (min. 21 credits) are courses of the specialising option aimed to deepen the student’s competences. The students can choose 6-18 credits elective profiling programme units in the first year at the KU Leuven from three course modules. Then in the second year university the students take 15 credits compulsory courses at their second year location on their selected specialisation. They can also choose to do an industrial internship on a nanoscience or nanotechnology related topic at a nanotechnology company or research institute.
  5. The broadening courses (15 credits) are courses from the other options of the Master’s programme, which allow the students to broaden their scope beyond the chosen specialisation. Students can choose from a large set of program units offered at the second year university.
  6. The Master’s thesis (30 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The research project always takes place at the second year partner university and is finalised with a written thesis report and a public presentation. Each Master’s thesis has a promotor from the local university and a promotor from KU Leuven.

 The EMM-Nano programme is truly integrated, with a strong research backbone and an important international scope. The objective of the programme is to provide a top quality multidisciplinary education in nanoscience and nanotechnology. 

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in the EMM-Nano programme.

Thus, EMM-Nano graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
This MSc in Nanomaterials Chemistry is designed for Science and Engineering graduates interested to learn about the emerging area of nanomaterials, with a key focus on the chemistry of the nanoscale. Read more

This MSc in Nanomaterials Chemistry is designed for Science and Engineering graduates interested to learn about the emerging area of nanomaterials, with a key focus on the chemistry of the nanoscale. The course has a strong emphasis on both the development of technical skills in the areas of nanofabrication/materials chemistry, and the development of professional skills.

  • Our goal is to equip graduates with the knowledge and skills necessary to understand and harness the potential of nanomaterials in future advanced manufacturing, ICT, chemical, biopharma, medical device (diagnostics, drug delivery, and therapeutics) and other industries with a view to future employment in these sectors.
  • Key to learning about nanomaterials is the availability of advanced technology platforms that permit the preparation and processing of nanomaterials in synergy with quantitative materials measurement and functional assessment. In this regard, the UCD School of Chemistry is strongly positioned in hosting world-class researchers and teachers that are comprehensively supported by state-of-the-art nano research facilities.
  • The quality and diversity of our research environment will enrich the learning experience of nanomaterial chemistry students and will empower them to develop the competitive skillset necessary to establish successful careers. Opportunities to conduct a research project through internship will be available.

Please note, the structure of this MSc has changed from that highlighted in the brochure and from the 2017/2018 offering. The updated programme structure and list of modules being offered for 2018/2019 can be found below.

One significant feature of this programme is that it is delivered in association with Intel Ireland, who are funding four scholarships of €3,000 each. All applicants to the MSc programme are welcome to apply for this scholarship through the School of Chemistry. Applicants must apply for the MSc programme prior to 31st of July 2018 to be eligible for application for the scholarship, which will be awarded on a competitive basis. For more information on last years awardees, please see: http://www.ucd.ie/newsandopinion/news/2018/january/19/intelbursariesandemployeementorsforucdgraduatestudents/.

The programme structure for 2018/2019: 90 credits taught masters: 45 credits taught modules & 45 credit research project

The modules of offer for 2018/2019 are:

CHEM40870 Nanomaterials Chemistry

CHEM41210 Professional Career Development

CHEM41230 Nanochemistry Seminar Series

CHEM41220 Nanochemistry Techniques Lab

MEEN40630 Biomaterials

PHYC40410 Physics of nanomaterials

PHYC40560 AFM for Bionano

SCI50020 Research Integrity Online

CHEN40510 Advanced Characterisation Techniques

MEEN40180 Nanomaterials

45 credit Chemistry Research Project



Read less
What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? . Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers. Read more

What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? 

Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers: i.e., one billionth of a meter). Important material properties such as the electrical, optical and mechanical are determined by the way molecules and atoms assemble into larger structures on the nanoscale. Nanotechnology is the application of this science in new nanomaterials and nano-concepts to create new components, systems and products. Nanotechnology is the key to unlocking the ability to design custom-made materials which possess any property we require. These newborn scientific disciplines are situated at the interface of physics, chemistry, material science, microelectronics, biochemistry and biotechnology. Consequently, control of the discipline requires an academic and multidisciplinary scientific education.

In the Master of Science in Nanoscience, Nanotechnology and Nanoengineering, you will learn the basics of physics, biology and chemistry on the nanometer scale; these courses will be complemented by courses in technology and engineering to ensure practical know-how. The programme is strongly research oriented, and is largely based on the research of centres like imec (Interuniversity Microelectronics Center), the Leuven Nanocenter and INPAC (Institute for Nanoscale Physics and Chemistry) at the Faculty of Science, all global research leaders in nanoscience, nanotechnology and nanoengineering. In your Master’s thesis, you will have the opportunity to work in the exciting research programmes of these institutes.

The objective of the Master of Science in Nanoscience, Nanotechnology and Nano engineering is to provide top quality multidisciplinary tertiary education in nanoscience as well as in the use of nanotechnologies for systems and sensors on the macro-scale.

Structure

Students follow a set of introductory courses to give them a common starting basis, a compulsory common block of core programme courses to give them the necessary multidisciplinary background of nanoscience, nanotechnology and nanoengineering, and a selection of programme courses to provide some non-technical skills. The students also select their specialisation option for which they choose a set of compulsory specific programme courses, a number of elective broadening programme courses and do their Master’s thesis research project.

  1. The fundamental courses (max 15 credits, 6 courses) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s education. These are necessary in order to prepare students from different backgrounds for the core programme courses and the specialisation programme courses of the Master’s.
  2. The general interest courses (9-12 credits) are imparting non-technical skills to the students in domains such as management, economics, languages, quality management, ethics, psychology, etc.
  3. The core courses (39 credits, 8 courses) contain first of all 6 compulsory courses focusing on the thorough basic education within the main disciplines of the Master’s: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. These core programme courses deliver the basic competences (knowledge, skills and attitudes) to prepare the students for their specialisation in one of the subdisciplines of the Master. Next all students also have to follow one out of two available practical courses where they learn to carry out some practical experimental work, which takes place in small teams. Also part of the core courses is the Lecture Series on Nanoscience, Nanotechnology and Nanoengineering, which is a series of seminars (14-18 per year) on various topics related to nanoscience, nanotechnology and nanoengineering, given by national and international guest speakers.
  4. The specific courses (21 credits) are compulsory programme courses of the specialisation option. These programme courses are deepening the student’s competences in one of the specialising disciplines of the Master’s programme and prepare them also for the thesis work.
  5. The broadening courses (9-27 credits) allow the students to choose additional progamme courses, either from their own or from the other options of the Master’s, which allow them to broaden their scope beyond the chosen specialisation. They can also choose to do an industrial internship on a nanoscience, nanotechnology or nanoengineering related topic at a nanotechnology company or research institute.
  6. The Master’s thesis (24 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The student is assigned a relevant research project and work in close collaboration with PhD students, postdocs and professors. The research project is spread over the two semesters of the second Master’s year, and is finalised with a written Master’s thesis report, a publishable summary paper and a public presentation.

 You can also follow a similar programme in the frame of an interuniversity programme, the Erasmus Mundus Master of Science in Nanoscience and Nanotechnology.

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in this Master's programme.

Thus, graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
We provide a unique Master’s education in Materials Chemistry, offering the opportunity to carry out a 12-month research project from a selection that covers all aspects of Materials Chemistry. Read more

We provide a unique Master’s education in Materials Chemistry, offering the opportunity to carry out a 12-month research project from a selection that covers all aspects of Materials Chemistry.

Optional modules enable you to gain specialist knowledge of core areas such as:

  • supramolecular and nanochemistry
  • polymer chemistry
  • inorganic materials chemistry

Both synthesis and characterisation are integral to the teaching around these areas.

Materials Chemistry is a key multidisciplinary area, and a growth area for both academic and industrial research. Employment prospects in this area are excellent - the programme will prepare you for a career in industrial or academic research and development, or in production or manufacturing roles.

Professional accreditation

We will be seeking accreditation from the Royal Society of Chemistry (RSC).

Rankings

Ranked 18th in the UK for Chemistry in the Guardian University League Tables 2017.

What you will study

The MSc in Materials Chemistry qualification comprises of 180 credits. These are divided into modules, the smallest being 20 credits (20 credits are equivalent to 200 student learning hours).

In semester one the programme consists of two core compulsory modules (40 credits) to provide the appropriate framework and a compulsory module (20 credits) to develop your research skills, professional development and commercial awareness.

Semester two also consists of two core compulsory modules (40 credits) to provide the appropriate framework and a compulsory module (20 credits) to develop your research project design skills. Students will be introduced to the concept of peer-review, and will provide feedback on a project proposal from one of their peers.

Students will be guided on how to:

  • strategically plan experimental work
  • carry out all appropriate COSHH assessments involved in practical work
  • source and access relevant published work

In support of this, students will be required to meet with their supervisor regularly to discuss interim reports and to propose the next steps in the planning of a project. Instruction will be given by library staff in critical reading of the scientific literature. A presentation of the work achieved will be given in the form of a poster presentation.

In semester three students are expected to devote a significant period of time to an individual and original piece of research. The student is required to work independently on their project, and to seek advice or practical help when appropriate, with regular communication with their project supervisor(s). The students’ supervisor will provide guidance on data collection, data analysis, discussion, summarising of findings and writing up of the final dissertation and associated research paper.

Modules

Core

Option

Learning and assessment

A variety of teaching methods appropriate to the learning outcomes of the individual modules are employed throughout the programme. The learning activities include lectures, workshops and directed study.

Core modules are dedicated to developing generic key skills, specialism practice and project management experience. The specialist modules relating to materials chemistry include lectures, workshops and use of specialist software packages under the instruction of a team of interdisciplinary specialists in the area.

The modules are assessed through course work (problem solving exercises, project plan, training plan), oral presentations and formal exams.

These progressively focus on student-centred approaches to learning and will reflect increasing reliance on independent responsibility for learning. In this way you will develop the attributes needed for life-long learning and continued professional development.

Facilities

Postgraduate students at the University of Bradford learn in a high-quality environment with teaching by academics from around the world, many engaged in ground-breaking research.

You will join a growing community of more than 2,700 students who choose to continue their higher education here each year, whether it's on a taught course such as an MSc in Cancer Pharmacology, or a research degree such as a PhD in Archaeological Sciences.

When you join the University of Bradford as a postgraduate student you gain access to our world-class facilities designed to give you the best possible environment in which to learn and undertake research.

Career prospects

Materials Chemists work in a diverse range of areas including: medical devices; electronic devices; sustainable energy generation; nanomaterials; surface coatings; controlled delivery of drugs and agrochemicals and many other areas.

Transferable skills are also a key component and graduating students will be equipped for careers in both academia and industry.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

Our comprehensive support services will help you to achieve your full potential – both academically and personally. 

We provide all you need to make the very best of your time with us, and successfully progress through your studies and on into the world of graduate employment. 

Our support services include: 

  • Personal tutors 
  • Disability services 
  • Counselling services 
  • MyBradford student support centres 
  • The Students’ Union 
  • Chaplaincy and faith advisers 
  • An on-campus nursery 
  • Halls wardens 

We have well-stocked libraries and excellent IT facilities across campus. These facilities are open 24 hours a day during term time, meaning you’ll always find a place to get things done on campus. 

Our Academic Skills Advice Service will work with you to develop your academic, interpersonal and transferable skills. 

Research

Research in Chemistry is broadly themed into Molecular Science and Materials Chemistry, comprising the development of synthetic, analytical and computational methods.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X