• University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Sussex Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
Loughborough University Featured Masters Courses
"nano" AND "material"×
0 miles

Masters Degrees (Nano Material)

  • "nano" AND "material" ×
  • clear all
Showing 1 to 15 of 25
Order by 
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:

Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:

Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:
Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Read more
Nanoscience and technology have become one of the most visible and fast growing multidisciplinary research areas. Nanoscience and technology research, ranging from nanostructured-materials to nanoelectronics, covers diverse areas in many disciplines, such as medicine and healthcare, aeronautics and space, environmental studies and energy, biotechnology and agriculture, national security and education. A joint postgraduate program in Nanoscience and Technology, initiated by the Schools of Science and Engineering, can offer long-term support to our ongoing research and training as well as to the development of technology and to commercialization efforts. Because of the diverse, multidisciplinary nature of Nanotechnology, its research and training can be best integrated into different disciplines. The aim of the concentration is to equip students with the necessary knowledge in the areas on which they wish to focus on.

Given the above developments, the School of Engineering has introduced the Nanotechnology Concentration in different disciplines including Chemical and Biomolecular Engineering, Civil and Environmental Engineering, Electronic and Computer Engineering and Mechanical Engineering. This allows students to enroll in a particular discipline and pursue a focused-study on a specific area of Nanotechnology or Nanoscience.

The Nanotechnology Concentration is open exclusively to School of Engineering research postgraduates. Students must enroll in one of the following research degree programs prior to their registration for the Nanotechnology Concentration:
-MPhil/PhD in Chemical and Biomolecular Engineering
-MPhil/PhD in Civil Engineering
-MPhil/PhD in Electronic and Computer Engineering
-MPhil/PhD in Mechanical Engineering

Research Foci

The research foci of Nanotechnology falls into the following disciplines:
Chemical and Biomolecular Engineering
Study of nanocatalysts, nanocomposite and nanoporous materials, nanomaterials for environmental applications, atmospheric nanoparticle pollutants, usage of nano-sized magnetic particles and nano-electrocatalysts, morphology/property relationship of polymers at nanoscale, bio-functionalized nanoparticles for diagnostics and biosensing, nanocarriers for drug delivery and nanomaterials for tissue engineering, and nano-biomaterials for treatment of industrial effluents.

Civil and Environmental Engineering
Development of iron-based nanoparticles for the removal of heavy metals from groundwater and industrial wastewater, polymeric nanocomposites for the surface coating of concrete structures, and fate, transport, transformation and toxicity of manufactured nanomaterials in water.

Electronic and Computer Engineering
Design, fabrication, and characterization of compound semiconductor-based nano-electronic devices, integration of compound semiconductor-based nano-electronic devices on silicon, modeling of nano-CMOS devices, nanoscale transistors, nanoelectromechanical system (NEMS), nanosize photo-alignment layers, nanoelectronics, nanophotonics, nanoelectronic devices design and fabrication, and system-on-chip and embedded system designs using nanotechnologies.

Mechanical Engineering
Nano precision machining, nanofibers, carbon nanotubes, graphene and organoclay nanoparticles, nanoindentation, applications of nano-particles for printable electronics and nano composites; integrated nano bubble actuator, nanosclae fluid-surface interaction, multiscale mechanics, nanoscale gas transport, micro/nanomechanics; molecular dynamic simulations, thermal interface material; micro fuel cell, and nano-structured materials for lithium ion battery electrodes.

Read less
Joining the Department of Physics as a postgraduate student is an exciting prospect. The Department has received worldwide recognition for its research breakthroughs. Read more
Joining the Department of Physics as a postgraduate student is an exciting prospect. The Department has received worldwide recognition for its research breakthroughs. The strong research culture within the Department, and in the University as a whole, has encouraged such success, which has been characterized by frequent collaboration between experimental and theoretical faculty members.

By pursuing research at the frontier of knowledge and innovation at the cutting edge of technology, our faculty seeks to preserve and nurture a sense of wonder about the natural world and to impart it to students as a lasting motivation for learning. Our postgraduate programs seek to provide students with a solid grounding in broad physics principles and techniques, an ambience conducive to creative and innovative activities, and opportunities for cross- and inter-disciplinary research.

The Department has 31 full-time faculty members and 122 postgraduate students. In addition, a program of regular visiting faculty members and scholars in other specialties helps ensure breadth of coverage.

The MPhil program aims to train postgraduate students to conduct independent research. Students are expected to undertake coursework and conduct thesis research. Submission and successful defense of a thesis based on original research are required.

Research Foci

The Department concentrates its resources on condensed matter physics with potential relevance to the technological industry. Faculty and postgraduate research focuses on optical, condensed matter and statistical physics, and includes the physics of lasers, solid state, mesoscopic systems, devices, nanomaterials, thin films, surfaces, interfaces, liquid crystals, polymers and composites.

An area of interdisciplinary collaboration that has emerged over the years is that of nanomaterials and nanotechnology and the Department is closely linked with HKUST’s front-running William Mong Institute of Nano Science and Technology. The followings are main research areas that the Department is presently focusing on:
· First Principles Studies of Material Properties
· Information Physics
· Nano Materials
· Physics of Semiconductors
· Atomic, Molecular, and Optical (AMO) Physics
· Soft Condensed Matter Physics
· Strongly Correlated Electron Systems
· Surface Physics
· Ultrafast Photonics and Nonlinear Optics
· Wave Phenomena and Wave Functional Materials
· Particle Theory and Cosmology
· Biophysics

Read less
Advances in technology depends more and more on the discovery and development of new materials having particular desired properties. Read more
Advances in technology depends more and more on the discovery and development of new materials having particular desired properties. In addition to mechanical strength, various structural, optical, electrical, magnetic and thermal properties are demanded from materials depending on the application. The field of Materials Science and Engineering investigates different classes of materials -metals, ceramics, polymers, electronic materials, biomaterials- with an emphasis on the relationships between the underlying structure and the processing, properties, and performance of the materials.
Understanding various material properties is the first step in finding ways to tailor these properties to meet some particular need or application, and for creating entirely new materials having particular desired properties. The M.S. program in Material Science & Engineering at Koç University is an interdisciplinary program with the objective of giving the students the fundamental physical and chemical knowledge required for material synthesis, structure-property characterization and processing; and complementing this with practical laboratory experience.

Current faculty projects and research interests:

• Nanostructured materials
• Photonics & laser materials
• Polymeric materials & composites
• Fuel cells & hydrogen storage materials
• Processing & device applications
• Protein biochemistry & biotechnology
• Micro-optics & micro-nano system Technologies

Read less
Since the dawn of mankind, materials have played an essential role in human development. The Stone Age, the Bronze Age and the Iron Age are part of our history and today we are heading towards the Nano Age. Read more
Since the dawn of mankind, materials have played an essential role in human development. The Stone Age, the Bronze Age and the Iron Age are part of our history and today we are heading towards the Nano Age.

Using all the tools in chemistry, such as material synthesis and chemical and physical characterization methods, this broad engineering programme aims at deepening the understanding of materials properties in order to design and develop the materials of tomorrow.

Programme description

Society is increasingly relying on chemistry in creating materials that are more environmentally sustainable, more durable, lighter, consume less energy and are cheaper.

Centred around organic- and inorganic chemistry, polymers and nanotechnology we train you in how to use these tools in tweaking molecules to give materials specific properties. This could range from high temperature corrosion resistant materials and materials for catalysts in a chemical process or in cars to nanomaterials that have unique traits and precision targeted pharmaceuticals.

Evolving fields where materials chemistry stands for great opportunities are e.g. biodegradable detergents, solvent free paints, polymers made of renewable recourses, polymer based solar panels and diodes, thermoelectric materials that transfers heat to electricity and handling complex emissions from fuel efficient engines that rely on biofuels instead of fossil fuels.

The programme provides you with an engineering education within the materials field where emphasis is on synthesis, chemical characterisation, physical and chemical properties and applications, and top down chemical nano manufacturing. There is also a close connection to industrially relevant materials, including both present products and the materials of the future.

Educational methods

As a student you will develop the knowledge, skills and attitudes that are necessary to handle the complexity of materials related problem solving in products and processes. This includes e.g. design, development of new and existing materials, synthesis and characterization of material’s properties. Several of the compulsory elective courses have a project based part where e.g. teamwork and innovation processes are included. The projects are to be presented in written reports, posters and/or orally.

Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

- Robot Detectives
LSBU holds an international reputation as a world leader in the use of robotics in non-destructive testing and developing intelligent robotic systems. Groundbreaking projects have ranged from building wall climbing robots to robots that work under water and oil.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechatronics-robotics-engineering-msc

Modules

- Embedded system design
This module shows you how to design and implement an Embedded System on a single IC. You will learn about the basics and the benefits of all programmable devices. The SOC (System on Chip) process flow is explained for FPGAs (Field Programmable Gate Arrays) stressing the role played by the Hardware Description Languages (HDL). The accompanying workshops demonstrate the use of tools and methodologies as well as the programming, verifying and protecting your designs. We use the commercial software Quartus II and QSYS and the hardware development platform DE2 by Altera.

- Individual project
The individual project is a major element of the course. It involves a wider spectrum of multidisciplinary research in design, manufacturing systems, quality management and IT, with due regard to the efficient exploitation of the technology, materials and marketing resources of industrial firms. Students are encouraged to work on industrial-based projects.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based workshops to inculcate the principles of machine learning and classification. The module covers: Bayesian decision theory, parametric density estimation, linear discriminant functions, perceptrons, support vector machines, neural networks and clustering.

- Microprocessor-based control and robotics
This module will provide information allowing you to critically evaluate and make the right choice of the microprocessor that will be at the heart of your embedded system. To this effect we provide a thorough discussion and qualitative comparison of the various microprocessor architectures and the methods of the software development available to you. The workshop assignments involve interfacing 8 and 32 bit microcontrollers to a wide range of devices, including robotic manipulators and control/measurement instrumentation.

- Electromechanical systems and manufacturing technology
This module consists of two parts. The first part covers the design of electromechanical components of the embedded system. The material presented here derives from the fields of Mechatronics and Robotics. The second part provides information on modern developments in the field of materials and the manufacturing. Examples of topics covered include applications of nano-technology, use of polymers and composites. Manufacturing techniques are described together with process modelling and control that is essential to produce the material to the required specification.

- Technology evaluation and commercialisation
This module includes: research product idea generation; product definition and value proposition; market research and assessment; functional assessment of product concepts; and strategic assessment of commercial viability.

- Technical, research and professional skills
This module includes: an introduction to project management, project planning, research project characteristics, ethics, feasibility analysis of requirements and resources; research methods; stages in project management; modelling and optimisation tools (PERT and CPM); technical report writing.

- Robotics
This module introduces you to the basic elements and principles of modern robotics. You'll gain a thorough theoretical and practical understanding of the fundamental concepts of this important and fast developing field. Essential geometric concepts will be introduced and these will be applied to the analysis and control of several different types of machines. A key feature of the module will be the wide range of robotic devices studied, from industrial serial manipulators, through mobile robots to quadcopters. The workshop for this modules includes various topics such as Robot Programming, Path Planning, Mapping and Localisation.

- MSc project
The individual project is a major element of the course. We offer a supervision of projects from a wide spectrum of either specialized or multi-disciplinary topics. There are opportunities for individual-centered projects as well for the student being allocated specific tasks within a larger research effort. Students are encouraged to work on industrial-based projects under joint supervision with their employer.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University after time working in industry

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Read less
Joining the Department of Physics as a postgraduate student is an exciting prospect. The Department has received worldwide recognition for its research breakthroughs. Read more
Joining the Department of Physics as a postgraduate student is an exciting prospect. The Department has received worldwide recognition for its research breakthroughs. The strong research culture within the Department, and in the University as a whole, has encouraged such success, which has been characterized by frequent collaboration between experimental and theoretical faculty members.

By pursuing research at the frontier of knowledge and innovation at the cutting edge of technology, our faculty seeks to preserve and nurture a sense of wonder about the natural world and to impart it to students as a lasting motivation for learning. Our postgraduate programs seek to provide students with a solid grounding in broad physics principles and techniques, an ambience conducive to creative and innovative activities, and opportunities for cross- and inter-disciplinary research.

The Department has 31 full-time faculty members and 122 postgraduate students. In addition, a program of regular visiting faculty members and scholars in other specialties helps ensure breadth of coverage.

The MPhil program is designed to prepare students for teaching, further postgraduate studies, or advanced work in industry. Students are expected to undertake coursework and successfully complete a thesis to demonstrate competence in research.

Research Foci

The Department concentrates its resources on condensed matter physics with potential relevance to the technological industry. Faculty and postgraduate research focuses on optical, condensed matter and statistical physics, and includes the physics of lasers, solid state, mesoscopic systems, devices, nanomaterials, thin films, surfaces, interfaces, liquid crystals, polymers and composites.

An area of interdisciplinary collaboration that has emerged over the years is that of nanomaterials and nanotechnology and the Department is closely linked with HKUST’s front-running William Mong Institute of Nano Science and Technology. The followings are main research areas that the Department is presently focusing on:
· First Principles Studies of Material Properties
· Information Physics
· Nano Materials
· Physics of Semiconductors
· Atomic, Molecular, and Optical (AMO) Physics
· Soft Condensed Matter Physics
· Strongly Correlated Electron Systems
· Surface Physics
· Ultrafast Photonics and Nonlinear Optics
· Wave Phenomena and Wave Functional Materials
· Particle Theory and Cosmology
· Biophysics

Read less
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. Read more
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. UNB’s mechanical engineering program offers students exciting and diverse program options including: biomedical engineering, instrumentation and control, manufacturing engineering, materials characterization and processing, and mechatronics.

Students have access to various labs, and the department is linked with various research groups and institutes, for example, the Advanced Manufacturing Lab (High performance machining, manufacturing and materials characterization), Robotics and Mechanisms Laboratory, Silicon Hall (research lab for micro & nano fabrication and bionanotechnology), Bioenergy and Bioproducts Research Lab, Institute of Biomedical Engineering.

Research Areas

-Acoustics & Vibration
-Advanced Process Controls
-Advanced Manufacturing and Materials Processing
-Biofuels and Biomass Processing
-Biomedical Engineering and Biomaterials
-Composites
-High-performance machining
-Laser machining micro/nano processing
-Material Characterization
-Multiscale modeling in solid and fluid mechanics
-Mechatronics & Design
-Nanostructured Coatings
-Renewable Energy Systems
-Robotics & Applied Mechanics
-Smart Sensors
-Solid Mechanics
-Thermofluids & Aerodynamics

Read less
This MSc programme is accredited by the IMechE and the IET. This course is designed to address the challenges of modern Manufacturing and Enterprise Systems. Read more
This MSc programme is accredited by the IMechE and the IET.

This course is designed to address the challenges of modern Manufacturing and Enterprise Systems. It covers a breadth of subjects that enable candidates to appreciate and deal with complexities of modern Industrial Environments. The AMS graduates will be equipped with the latest techniques in manufacturing and systems engineering for dealing with complexities in:

Efficient and economical performance of Industrial systems ranging from manufacturing, finance, transport, health, and public services;
Managing and providing solutions for advanced automated and semi-automated industries;
Application of advanced computer and mathematical modelling for improved performance, design and management of industrial systems;
The latest advanced material technology and micro/nano manufacturing to achieve highest manufacturing capabilities;
Management and implementation of Projects and Operations under time and resource constraints.

The Advanced Manufacturing Systems programme consists of three main schemes, Technology, Systems and Management.

The technology scheme: enables you to appreciate the technological challenges of modern industrial systems. The scheme provides you with the necessary skills to tackle issues in manufacturing methods, design, applied control, and precision manufacturing.

The systems scheme: deals with modern mathematical tools for measuring systems performance techniques such as, discrete event simulation, modelling, stochastic analysis, queuing theory, quality and reliability issues.

The management scheme: enables you to appreciate the necessary management skills to run and effectively manage projects, companies and large consortiums. You will acquire the necessary skills to design and manage supply chains.

In addition to a strong theoretical background, AMS will offer you the opportunity to acquire practical skills in the subject area with its state-of-the-art workshops and computer labs.

AMS is run by one of the strongest research groups in the University and within the UK. In the current Research Assessment Exercise, 95% of academics in the School achieved international standard, with 100% achieving this level in General Engineering. General Engineering at Brunel is ranked 5th in the country and Mechanical Engineering is ranked 8th in the country by Research Power.

Read less
The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. Read more

Course Objective

The objective of this course is to introduce students to an inter-disciplinary approach to research, which utilises technologies and skills from a wide spectrum of scientific, engineering and clinical disciplines to address fundamental questions originating in biology and medicine. During the course students will carry out a number of practicals. They will be introduced to selected advanced experimental techniques used in biomedical science and industry. The techniques include:
DNA-microarray and RT-PCR, Immunostaining and Confocal Microscopy, Scanning Electron Microscopy, Atomic Force Microscopy and Nano Hardness Tester, Mass Spectrometry, various chromatography methods and Infra-red spectroscopy.

Benefits of the Course

The programme offers the Biological Sciences graduate a means of achieving the mathematical, computational, and instrumentation skills necessary to work in biomedical science. Likewise the Physical Science/Engineering graduate will gain experience in aspects of cell biology, tissue engineering, and animal studies. The course work will draw mainly from courses already on offer to undergraduates in the Science faculty, but will also include new modules developed specifically for this course. Expertise from other research institutes and from industry will be used,where appropriate.

The course covers following areas:
Material Science and Biomaterials
Applied Biomedical Sciences
Cell & Molecular Biology: Advanced Technologies
Fundamental Concepts in Pharmacology
Human Body Structure
Protein Technology
Tissue Engineering
Bioinformatics
Radiation & Medical Physics
Molecular Medicine
Regulatory Compliance in Healthcare Manufacturing
Advanced Tissue Engineering
Introduction to Business
Scientific Writing

Career Opportunities

Graduates of the MSc in Biomedical Science with undergraduate degrees in engineering and science have gone on to work within the medical device and pharmaceutical industry, hospitals and academia.

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. Read more
Graduate education in Optoelectronic and Photonic Engineering (OEPE) at Koç University is offered through an interdisciplinary program with the objective of giving the students the fundamental physical scientific and applied engineering knowledge required for the design, simulation, realization, and characterization of OEPE materials, devices, systems, and applications. The OEPE program has both theoretical and experimental research activities. The graduates of the OEPE program will work at frontiers of technology with a broad spectrum of application areas: from automotive and home lighting to information and communications, from life sciences and health to displays, from remote sensing to nondestructive diagnostics, and from material processing to photovoltaics. Individuals with B.S. degrees in electrical and electronic engineering, optics, optoelectronics, physics, and related science and engineering disciplines should apply for graduate study in the OEPE Program.

Current faculty projects and research interests:

• 2D/3D Displays and Imaging Systems
• Advanced Signal Processing
• Femtosecond Lasers
• Metamaterials
• Microwaves
• Nano-optics
• Optical Communication
• Optical MEMS
• Plasma Physics
• Plasmonics
• Quantum Communication
• Quantum Optics
• Remote Sensing
• Silicon Photonics
• Solid State Lasers

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X