• University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Bedfordshire Featured Masters Courses
Durham University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Sheffield Featured Masters Courses
"nano" AND "engineering"×
0 miles

Masters Degrees (Nano Engineering)

We have 96 Masters Degrees (Nano Engineering)

  • "nano" AND "engineering" ×
  • clear all
Showing 1 to 15 of 96
Order by 
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

  • Compulsory Courses
  • Computational Fluid Dynamics
  • Numerical Simulation of Waves
  • Advanced Composite Materials

Optional Courses

  • Fire and Explosion Engineering
  • Structural Dynamics

SEMESTER 2

  • Compulsory Courses
  • Finite Element Methods
  • Mathematical Optimisation
  • Engineering Risk and Reliability Analysis

Optional Courses

  • Project Management
  • Risers Systems Hydrodynamics
  • Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Communications Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the MSc in Communications Engineering, you will be provided with an in-depth understanding of the technology and architecture of computer communications, photonics and telecommunication networks, wireless telecommunications and related wireless information technologies.

Key Features of MSc in Communications Engineering

The practical knowledge and skills you will gain as a student on the MSc Communications Engineering course include being presented with the essential element of modern optical communication systems based on single mode optical fibres from the core to the access, evaluating bandwidth-rich contemporary approaches.

The MSc Communications Engineering course also covers advanced networking topics including network performance and network security. This is supported with some practical knowledge and skills for project and business management principles.

As a student on the MSc Communications Engineering course, you will also be introduced to technologies underlying the compressions and transmission of digital video over networking platforms, gain knowledge on the channel models and associated impairments that typically limit the performance of wireless systems, and learn to design optimum digital communication receivers for some basic communications channel models.

The MSc in Communications Engineering is modular in structure. Communications Engineering students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students on the Communications Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time MSc in Communications Engineering Delivery mode:

The part-time scheme is a version of the full-time equivalent MSc in Communications Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Communications Engineering programme are typically available one week prior to each semester.

Modules

Modules on the MSc Communications Engineering course can vary each year but you could expect to study:

RF and Microwave

Signals and Systems

Entrepreneurship for Engineers

Nanophotonics

Micro and Nano Electro-Mechnical Systems

Lasers and applications

Wireless Communications

Digital Communications

Optical Communications

Optical Networks

Communication Skills for Research Engineers

Research Dissertation

MSc Dissertation - Communications Engineering

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching which benefit students on the MSc in Communications Engineering course. In addition the University provides open access IT resources.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

This discipline has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students.

Careers

The MSc Communications Engineering is suitable for those who have a career interest in the field of communication systems, which has been fundamentally changing the whole world in virtually every aspect, and would like to gain lasting career skills and in-depth knowledge to carry out development projects and advanced research in the area of communication systems.

Communications Engineering graduates can seek employment in wireless communication systems and network administration, and mobile applications development.

Student Quotes

“I was fascinated by the natural beauty of Swansea before I came here. Swansea University is near the beach so you can walk around the beach at any time. This Master’s is very useful to enhance your ability and enrich your principle of the academic knowledge.”

Zhang Daping, MSc Communication Systems (now Communications Engineering)

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
The Electro-Optical and Photonics Engineering Unit. The Unit of Electro-Optical and Photonics Engineering (EOPE) was established in 2000 with the vision that the 21st century will depend as much on photonics as the 20th century depended on electronics. Read more

The Electro-Optical and Photonics Engineering Unit

The Unit of Electro-Optical and Photonics Engineering (EOPE) was established in 2000 with the vision that the 21st century will depend as much on photonics as the 20th century depended on electronics. It is dedicated to research and education in electro-optical and photonics engineering and is currently the only department in Israel authorized to grant graduate degrees (M.Sc.and Ph.D.) in electro-optical engineering. The Unit’s multidisciplinary research places it at the vanguard of the optics and photonics community, both nationally and internationally. Cutting-edge research is conducted in the areas of remote sensing; atmospheric optics; fiber-optic biosensors; nano-plasmonics; integrated nano-photonics; super-resolution microscopy; image processing; computer vision; display systems; 3D imaging and display; computational optical sensing and imaging; compressive imagin; biomedical optics; liquid crystal devices for sensing and imaging; hyperspectral imaging; THz and MMW imaging; optical glass/fibers; opto-electronic devices; photovoltaics, and more.

M.Sc. Degree in Electro-Optical Engineering

The aim of the M.Sc. Program in Electro-Optical Engineering (EOE) is to provide the students with research expertise and advanced knowledge in electro-optical and photonics engineering. M.Sc. students carry out thesis research supervised by EOPE faculty or relevant faculty members from other departments. Students graduating with a M.Sc. degree are equipped to assume senior research and development positions in industry, and may continue towards Ph.D. studies. M.Sc. studies in EOE at BGU can be extended into a combined Ph.D. track, such that the M.Sc. thesis exam serves also as the Ph.D. candidacy exam. The M.Sc. degree is typically completed within 2 academic years (4 semesters). Fields of specialization in the M.Sc. Program include: imaging systems and image processing; optoelectronic devices; bio-medical optics; quantum and non-linear optics; nanophotonics and integrated nanophotonics; optical communications; plasmonics; and metamaterials.

Application Requirements

Due to the multidisciplinary nature of EOPE, students with diverse backgrounds in science and engineering are accepted to our program. The study program is tailored individually for those candidates with insufficient background in EOPE. Applicants to the M.Sc. Program should hold a B.Sc. degree from an accredited institution in related science and engineering fields (e.g., electrical engineering, materials engineering, mechanical engineering, chemical engineering, physics, etc.) at a minimum GPA of 80/100. A TOEFL score of 85/120 or equivalent score in an internationally recognized English proficiency exam is required. The English proficiency requirement is waived for applicants who received their B.Sc. degree in a program taught in English. GRE is recommended but not required. Additionally, prior to applying to the M.Sc. Program, the applicant is expected to contact a potential advisor among the EOPE faculty.

The M.Sc. Thesis

The research leading to the M.Sc. thesis is conducted throughout the two years of studies. The student is expected to publish and present the research results in leading international journals and conferences. The thesis is evaluated through a written report and an oral examination.

How to Apply

Please visit our online application site at: https://apps4cloud.bgu.ac.il/engrg/

Applications are accepted on a rolling basis. Please check website for the scholarships application deadline.

Further Details

The Unit of Electro-Optical Engineering at BGU: http://in.bgu.ac.il/en/engn/electrop/Pages/About.aspx

Director of graduate studies: Prof. Adrian Stern, email:

BGU International - http://www.bgu.ac.il/international



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
This specialist engineering programme. will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more

This specialist engineering programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to progress their careers, and will enable graduates to proceed to Chartered Engineer status.

This degree has been accredited by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Systems Analysis in Engineering;
  • Computer Aided Engineering Design;
  • Research Methodology;
  • Sustainable Engineering;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Advanced CFD,
  • Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more

The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

  • Electronics and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017). It was also ranked 1st in Scotland in the Guardian and Complete University Rankings 2018.
  • You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
  • If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
  • You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
  • You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
  • This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

  • Contemporary issues in human resource management 
  • Managing creativity and innovation 
  • Managing innovative change 
  • Marketing management 
  • Operations management 
  • Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

  • Integrated systems design project

Optional courses (a choice of two)

  • Computer communications
  • Electrical energy systems
  • Micro- and nano-technology
  • Microwave and millimetre wave circuit design
  • Microwave electronic and optoelectronic devices
  • Optical communications
  • Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects. 

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:

Project Engineer at TOTAL

Schedule Officer at OSCO SDN BHD

Control and Automation Engineer at an oil and gas company.



Read less
This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. Read more

This new, innovative programme offers graduates excellent career prospects in a broad field of mechanical engineering-related industries. It will also provide excellent preparation for those wishing to undertake a PhD. The MSc Advanced Mechanical Engineering is a broad-based programme covering an important and industrially-relevant portfolio of mechanical engineering modules, such as Biofuels and Combustion, Manufacturing Processes, MEMS, and Automation and Robotics. 

All the teaching is delivered by highly experienced and qualified members of academic staff who are at the cutting-edge of research in their respective fields. This programme will be attractive to graduates of mechanical engineering or related subjects.

With leading research into Advanced Mechanical Engineering, the University of Birmingham is the ideal location for bright graduates, looking for a solid and well-respected postgraduate qualification which will act as a springboard for a successful future. 

  • 120 credits of taught modules studied during October-April
  • 60 credits of project-based module carried out during June-September
  • Assessment methods include a range of examinations, assignments and projects

The MSc Advanced Mechanical Engineering is fully accredited by the Institution of Mechanical Engineers (IMechE) for both of its full-time and part-time modes of study.

Course details

The programme will include 9 subject-specific technical modules of 10 credits each covering vehicle engineering, mechanics, thermal systems, energy, computational geometry, manufacturing processes, robotics, biomechanics, and micro electro-mechanical systems. A 20-credit synoptic mechanical engineering module has been integrated into the programme and provides research-focused teaching of selected novel case studies from various research areas being carried out within the School in order to enhance the relevant knowledge base of the students. 

A further 10 credit module covering research skills, project management and business enterprise will provide the necessary training to enhance the competencies in professional skills that modern mechanical engineers are expected to possess. The latter part of the programme will include a 60 credit summer project module. The project can either be based at the University, or be carried out in industry.

Related links

Learning and teaching

The modules will be delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods, providing a well-rounded educational experience and an opportunity to further develop skills prized by employers.

There will be a strong emphasis on enquiry-based learning throughout, further enhancing students’ ability to think independently and creatively.

Employability

The graduates of this programme will be ideally placed to gain employment in a wide field of careers in mechanical and related engineering. The typical functional roles include design, consultancy, maintenance, operations, and R&D in a spectrum of industrial sectors such as manufacturing, aerospace, energy, automotive, micro/nano technology, nuclear and defence

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems. Read more

This exciting programme will equip you with the skills required to be a modern mechanical engineer. It focuses on the latest techniques and technologies used in mechanical engineering, teaching you how to apply these to complex contemporary problems.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

You will gain a range of computational skills which will enable you to analyse systems using numerical methods, simulation and optimisation techniques. Sustainability is also emphasised throughout the programme and you will be encouraged to consider responsible solutions to modern day challenges.

The programme is supported by internationally leading research projects in areas such as nano-scale materials engineering, biomedical engineering, 3D analysis from CT scans for prosthetic bone replacement surgery, additive layer manufacturing for high specification applications with aerospace metals, and application and recycling of polymers and composites.

The programme has been designed for mechanical engineers who want to develop their management expertise in order to progress their careers. It also enables graduates to proceed to Chartered Engineer status.

Professional accreditation

This degree has been accredited by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council for the purposes of meeting the requirements for Further Learning for registration as a Chartered Engineer for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Programme Structure

This programme is modular and consists of seven core engineering, modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Systems Analysis in Engineering;
  • Management Concepts;
  • Professional Skills;
  • Computer Aided Engineering Design;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Advanced CFD, Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems. Read more
The world demand for energy, in particular electricity, will increase significantly over the next decade and beyond. There are many challenges to be addressed in order to meet this ever-increasing demand, electrical and electronic engineers will provide key solutions to these problems.

There are tremendous opportunities for us to make a significant impact that will shape the future, and this programme has been carefully designed and developed for this.

Our degree programmes are developed with industry partners to provide you with a career focused degree.

This programme provides you with an in-depth knowledge of the electrical power generation, transmission, distribution and networks. The operating principles, monitoring, optimisation and control of modern power systems are discussed in detail.

The environmental challenges, renewable energy generation, smart grid, high voltage power engineering and research and management skills are also addressed in this one-year programme. In addition, site visit and practical sessions are included. The programme has been carefully developed for graduates with electrical/electronic or related backgrounds to meet the increasing demand from the energy and power industry.

Projects

Project work contributes 60 credits, which will be based on a topic of industrial or scientific relevance, and will be carried out in laboratories in the University or at an approved placement in industry. The project is examined by oral presentation and dissertation, and award of the MSc (Eng) degree will require evidence of in-depth understanding, mastery of research techniques, ability to analyse assembled data, and assessment of outcomes.

Why Electrical Engineering and Electronics?

World-class facilities, including top industry standard laboratories

We have specialist facilities for processing semiconductor devices, optical imaging spectroscopy and sensing, technological plasmas, equipment for testing switch gear, specialist robot laboratories, clean room laboratories, e-automation, RF Engineering, bio-nano engineering labs and excellent mechanical and electrical workshops.

A leading centre for electrical and electronic engineering expertise

We are closely involved with over 50 prominent companies and research organisations worldwide, many of which not only fund and collaborate with us but also make a vital contribution to developing our students.

Career prospects

Our postgraduate students get to be a part of the cutting edge research projects being undertaken by our academic staff.

Here are some of the areas these projects cover:-

Molecular and semiconductor integrated circuit electronics
Technological plasmas
Communications
Digital signal processing
Optoelectronics
Nanotechnology
Robotics
Free electron lasers
Power electronics
Energy efficient systems
E-Automation
Intelligence engineering.

You'll get plenty of industry exposure too. Our industrial partners include ARM Holdings Plc, a top 200 UK company that specialises in microprocessor design and development.

As a result our postgraduates have an impressive record of securing employment after graduation in a wide range of careers not limited to engineering.

Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more

The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules

Semester 1:

- Applied Engineering Practice

- Downstream Processing

- Research and Communication

Semester 2:

- Applied Heterogeneous Catalysis

Semester 1 and 2:

- MSc Project

Optional Modules (select four)

Semester 1:

- Chemical Product Design

- Colloid Engineering and Nano-science

- Filtration

- Hazard Identification and Risk Management

Semester 2:

- Mixing of Fluids and Particles

- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities

The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research

The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects

The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/



Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. Read more
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. The School offers an MRes programme in Electronic Engineering, with a variety of specialist areas of study available. Each programme is aligned to the research conducted within the School:

MRes Electronic Engineering Optoelectronics
MRes Electronic Engineering Optical Communications
MRes Electronic Engineering Organic Electronics
MRes Electronic Engineering Polymer Electronics
MRes Electronic Engineering Micromachining
MRes Electronic Engineering Nanotechnology
MRes Electronic Engineering VLSI Design
MRes Electronic Engineering Bio-Electronics

The MRes programme provides a dedicated route for high-calibre students who (may have a specific research aim in mind) are ready to carry out independent research leading to PhD level study or who are seeking a stand alone research based qualification suitable for a career in research with transferable skills for graduate employment.
It is the normal expectation that the independent research thesis (120 credits) should be of at a publishable standard in a high quality peer reviewed journal.
The MRes programme is a full-time one year course consisting of 60 taught credits at the beginning of the programme which lead on to the 120 credit thesis.
Each MRes shares the taught element of the course, after successful completion of the taught element students are then able to specialise in a specific subject for their thesis.
The taught provision has four distinct 15 credit modules that concentrate on specific generic skill.

Modelling and Design
Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Introduction to Nanotechnology and Microsystems
Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Project Planning
Focuses on the skills required to scope, plan, execute and report the
outcomes of a business and research project.

Mini Project
Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the substantive research project.
MRes Research Project: After the successful completions of the taught component of the programme, the major individual thesis will be undertaken within the world-leading research groups of the School.
Student Study Support
All students are assigned a designated supervisor, an academic member of staff who will provide formal supervision and support on a daily basis.
The School’s Director of Graduate Studies will ensure that the appropriate level of support and guidance is available for all postgraduate students, and each Course Director is available to help and advise their students as and when required.

Read less
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems. Read more
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems.

The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

We cover the following core (compulsory) topics during the MSc:

- Embedded computer systems
- Digital system design
- IC design
- Microprocess systems
- Research skills and project management.

Part-time study is in co-operation with the students’ employers. Please contact the Programme Director before applying.

Projects

Your project work will earn you 60 credits towards your MSc degree. The project's examined by oral presentation and dissertation.

In your work you'll need to demonstrate an in-depth understanding of your topic, mastery of research techniques, and the ability to analyse assembled data and assess outcomes.

Why Electrical Engineering and Electronics?

World-class facilities, including top industry standard laboratories

We have specialist facilities for processing semiconductor devices, optical imaging spectroscopy and sensing, technological plasmas, equipment for testing switch gear, specialist robot laboratories, clean room laboratories, e-automation, RF Engineering, bio-nano engineering labs and excellent mechanical and electrical workshops.

A leading centre for electrical and electronic engineering expertise

We are closely involved with over 50 prominent companies and research organisations worldwide, many of which not only fund and collaborate with us but also make a vital contribution to developing our students.

Career prospects

Our postgraduate students get to be a part of the cutting edge research projects being undertaken by our academic staff.

Here are some of the areas these projects cover:-

Molecular and semiconductor integrated circuit electronics
Technological plasmas
Communications
Digital signal processing
Optoelectronics
Nanotechnology
Robotics
Free electron lasers
Power electronics
Energy efficient systems
E-Automation
Intelligence engineering.

You'll get plenty of industry exposure too. Our industrial partners include ARM Holdings Plc, a top 200 UK company that specialises in microprocessor design and development.

As a result our postgraduates have an impressive record of securing employment after graduation in a wide range of careers not limited to engineering.

Read less

Show 10 15 30 per page



Cookie Policy    X