• University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Bristol Featured Masters Courses
University of Nottingham in China Featured Masters Courses
OCAD University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
"nano"×
0 miles

Masters Degrees (Nano)

We have 113 Masters Degrees (Nano)

  • "nano" ×
  • clear all
Showing 1 to 15 of 113
Order by 
Research profile. Read more

Research profile

The Institute for Integrated Micro and Nano Systems (IMNS) brings together researchers from integrated-circuit design, system-on-chip design, image-sensor design, bioelectronics, micro/nano-fabrication, microelectromechanical systems (MEMS), micromachining, neural computation and reconfigurable and adaptive computing.

Research interests include low-level analogue, low-power, adaptive and bio-inspired approaches, system-on-chip computing and applications from telecommunications to finance and astronomy. There is also a research focus on integrating CMOS microelectronic technology with sensors and microsystems/MEMS to create smart sensor systems. We also have a strong and growing interest in applications relating to life sciences and medicine, with particular focus on bioelectronics, biophotonics and bio-MEMS.

IMNS has laboratory facilities that are unique within the UK, including an advanced silicon and MEMS micro-fabrication capability coupled with substantial design and test resources. The Institute has an excellent reputation for commercialising technology.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has laboratory facilities that are unique within the UK, including a comprehensive silicon and MEMS micro-fabrication capability coupled with substantial design and test resources.

The Institute has an excellent reputation for commercialising technology.



Read less
Summary. This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. Read more

Summary

This programme outlines the micro and nanotechnology aspects of electronic engineering, with a focus on microelectromechanical systems and nanoelectronics. These technologies underpin research and development of miniaturised sensors, for example mobile phone motion and position detectors, and of nanoscale logic and memory devices for next-generation consumer electronics and future quantum devices. The programme also addresses microfluidic technology for biodevices such as point-of-care diagnostics, and covers the fundamentals of photonic circuits and devices. The modules cover state-of-the-art design, fabrication and characterisation methodologies, utilising industry-standard tools and involve our extensive cleanroom complex.

Modules

Semester one: Microfabrication; Microsensor Technologies; Nanoelectronic Devices; Advanced Memory and Storage; Microfluidics and Lab-on-a-Chip; Bionanotechnology; Introduction to Silicon Photonics.

Semester two: Bio/Micro/Nano Systems; Green Electronics; Nanofabrication and Microscopy; Quantum Devices and Technology; Medical and Electrical Technologies; Photonic Materials.

Plus three-month independent research project culminating in a dissertation.

Visit our website for more information.



Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanotechnology (Physics)  at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Nanotechnology (Physics)  at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Nanotechnology (Physics) enables students to pursue a one year individual programme of research. The Nanotechnology (Physics) programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

For MSc by Research in Nanotechnology (Physics) programme you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element. The Nanotechnology (Physics) programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research in Nanotechnology (Physics) you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a postgraduate Physics student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach.

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a student of the MSc by Research in Nanotechnology (Physics) in the Department of Physics you will have access to the following Specialist Facilities:

Low-energy positron beam with a high field superconducting magnet for the study of

positronium

CW and pulsed laser systems

Scanning tunnelling electron and nearfield optical microscopes

Raman microscope

CPU parallel cluster

Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The Physics Department carries out world-leading research in experimental and theoretical physics.

The results of the Research Excellence Framework (REF) 2014 show that over 80% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

This MSc by Research in Nanotechnology comes under the Nano-physics and the life sciences research area at Swansea. The fundamental understanding of the electronic, structural, chemical and optical properties of materials on the nano-scale is essential for advances in nanotechnology, in particular the development of new devices via the incorporation of novel materials. Advances in experimental physics underpin these developments via characterisation and quantification of quantum phenomena which dominate at these length scales.

The Nanotechnology research concentrates on two main areas: determining properties of materials (e.g., graphene) on the nano-scale using scanning probe based techniques; the development of imaging and laser based spectroscopic techniques to study biological samples (e.g., imaging of cellular components and bacteria).



Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

-◾The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
◾You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
◾You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses

◾Electronic devices
◾Introduction to research in nanoscience and nanotechnology
◾Micro- and nano-technology
◾Nanofabrication
◾Research methods and techniques
◾MSc project.

Optional courses

◾Applied optics
◾Cellular biophysics
◾Microwave electronic & optoelectronic devices
◾Microwave and mm wave circuit design
◾Microscopy and optics
◾Nano and atomic scale imaging
◾Semiconductor physics.

Projects

◾The programme builds towards an extended project, which is an integral part of the MSc programme: many projects are linked to industry or related to research in the school. Our contacts with industry and our research collaborations will make this a meaningful and valuable experience, giving you the opportunity to apply your newly learnt skills.
◾To complete the MSc degree you must undertake a project worth 60 credits that will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers your ability to apply them in industrially relevant problems.
◾MSc projects are associated with Glasgow's James Watt Nanofabrication Centre, one of Europe's premier research cleanrooms. Projects range from basic research into nanofabrication and nanocharacterisation, to development of systems in optoelectronics, microbiology and electronic devices which require such fabrication.
◾You can choose from a list of approximately 30 projects published yearly in Nanoscience and Nanotechnology.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾Over 250 international companies have undertaken commercial or collaborative work with the JWNC in the last 5 years and over 90 different universities from around the globe presently have collaborations with Glasgow in nanoscience and nanotechnology.
◾Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the nanofabrication industry.

Career prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.

Read less
What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?. Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. Read more

What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?

Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. The partner institutions are:

  • KU Leuven, Belgium (Coordinator)
  • Chalmers, Tekniska Högskola, Sweden
  • Université Grenoble Alpes, France
  • Technische Universität Dresden, Germany

The word Nanoscience refers to the study, manipulation and engineering of matter, particles and structures on the nanometer scale (one millionth of a millimeter, the scale of atoms and molecules). Important properties of materials, such as the electrical, optical, thermal and mechanical properties, are determined by the way molecules and atoms assemble on the nanoscale into larger structures. Moreover, on a nanometer scale, structures’ properties are often different then on a macro scale because quantum mechanical effects become important.

Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronic components, new types of ‘smart’ medicines and sensors, and even interfaces between electronics and biological systems.

Structure

In the first stage of the programme all students study at the coordinating institution, where they take a set of fundamental courses (max 12 credits) to give them a common starting basis, general interest courses (6-9 credits), a compulsory common block of core courses (36 credits), and already a profiling block of elective courses (min 6 credits) which prepares them for their specialisation area. In the second stage the students take a compulsory set of specialising courses (15 credits), depending on their chosen specialisation area, combined with a set of elective broadening courses (15 credits), and do their Master’s thesis research project (30 credits). Chalmers offers the second year specialisation options of Nanophysics and Nanoelectronics. TU Dresden offers the options Biophysics and Nanoelectronics, and JFU Grenoble offers the options Nanophysics, Nanochemistry and Nanobiotechnology.

 The programme contains the following educational modules:

  1. The fundamental courses (max. 12 credits) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s. If a student does not need any or all of the fundamental courses, he/she may use the remaining credits to take more elective courses from the broadening course modules.
  2.  The general interest courses (6-9 credits) are imparting non-technical skills to the students, in domains such as management, economics, languages, quality management, ethics, psychology, etc. A Dutch language and culture course is compulsory for all the students.
  3.  The core courses (36 credits) contain first of all five compulsory courses focusing on the thorough basic education within the main disciplines of the Master: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. All students also have to take one out of two available practical courses where they learn to carry out some practical experimental work, which takes places in small teams. Also part of the Core courses is the Lecture Series on Nanoscience and Nanotechnology, which is a serie of seminars (14-18 per year) on various topics related to nanoscience and nanotechnology, given by national and international guest speakers.
  4. The specific courses (min. 21 credits) are courses of the specialising option aimed to deepen the student’s competences. The students can choose 6-18 credits elective profiling programme units in the first year at the KU Leuven from three course modules. Then in the second year university the students take 15 credits compulsory courses at their second year location on their selected specialisation. They can also choose to do an industrial internship on a nanoscience or nanotechnology related topic at a nanotechnology company or research institute.
  5. The broadening courses (15 credits) are courses from the other options of the Master’s programme, which allow the students to broaden their scope beyond the chosen specialisation. Students can choose from a large set of program units offered at the second year university.
  6. The Master’s thesis (30 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The research project always takes place at the second year partner university and is finalised with a written thesis report and a public presentation. Each Master’s thesis has a promotor from the local university and a promotor from KU Leuven.

 The EMM-Nano programme is truly integrated, with a strong research backbone and an important international scope. The objective of the programme is to provide a top quality multidisciplinary education in nanoscience and nanotechnology. 

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in the EMM-Nano programme.

Thus, EMM-Nano graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. Read more
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. The focus of this program is excellence in research. Graduates of the program can join industry or continue to work in academia.

Current faculty projects and research interests:

• Micro and Nano Systems (MEMS & NEMS)
• Wireless, Acoustic, Nano and Quantum Communication
• Waves, Optics and Photonics
• Electrical, Biological and Nano-Scale Systems
• Signal, Speech, Image and Video Processing
• Multimedia and Networking
• Machine Learning

Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
The course covers technologies used to design, realise and analyse micro and Nano-scale devices, materials and systems, coupled with general and technology management. Read more
The course covers technologies used to design, realise and analyse micro and Nano-scale devices, materials and systems, coupled with general and technology management. This, supported by project work, ensures graduates emerge trained in a wide-range of technical and management skills, and have a sharp appreciation of the relevance of the subject to industrial needs. 'Nanotechnology' is moving from the rhetoric of hype into a manufacturing reality. The popularised myths described in popular fiction like Michael Crichton's novel 'Prey', and serialised in TV dramas, are rapidly being pushed aside as large organisations such as Unilever and QinetiQ see the value of integrating miniature and Nano systems. In such a rapidly changing and vibrant atmosphere it is vital that the nanotechnology programmes are agile and satisfy industry's requirements.

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? . Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers. Read more

What's the Master of Nanoscience, Nanotechnology and Nanoengineering all about? 

Nanoscience is the study of phenomena and manipulation on the atomic and molecular scales (nanometers: i.e., one billionth of a meter). Important material properties such as the electrical, optical and mechanical are determined by the way molecules and atoms assemble into larger structures on the nanoscale. Nanotechnology is the application of this science in new nanomaterials and nano-concepts to create new components, systems and products. Nanotechnology is the key to unlocking the ability to design custom-made materials which possess any property we require. These newborn scientific disciplines are situated at the interface of physics, chemistry, material science, microelectronics, biochemistry and biotechnology. Consequently, control of the discipline requires an academic and multidisciplinary scientific education.

In the Master of Science in Nanoscience, Nanotechnology and Nanoengineering, you will learn the basics of physics, biology and chemistry on the nanometer scale; these courses will be complemented by courses in technology and engineering to ensure practical know-how. The programme is strongly research oriented, and is largely based on the research of centres like imec (Interuniversity Microelectronics Center), the Leuven Nanocenter and INPAC (Institute for Nanoscale Physics and Chemistry) at the Faculty of Science, all global research leaders in nanoscience, nanotechnology and nanoengineering. In your Master’s thesis, you will have the opportunity to work in the exciting research programmes of these institutes.

The objective of the Master of Science in Nanoscience, Nanotechnology and Nano engineering is to provide top quality multidisciplinary tertiary education in nanoscience as well as in the use of nanotechnologies for systems and sensors on the macro-scale.

Structure

Students follow a set of introductory courses to give them a common starting basis, a compulsory common block of core programme courses to give them the necessary multidisciplinary background of nanoscience, nanotechnology and nanoengineering, and a selection of programme courses to provide some non-technical skills. The students also select their specialisation option for which they choose a set of compulsory specific programme courses, a number of elective broadening programme courses and do their Master’s thesis research project.

  1. The fundamental courses (max 15 credits, 6 courses) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s education. These are necessary in order to prepare students from different backgrounds for the core programme courses and the specialisation programme courses of the Master’s.
  2. The general interest courses (9-12 credits) are imparting non-technical skills to the students in domains such as management, economics, languages, quality management, ethics, psychology, etc.
  3. The core courses (39 credits, 8 courses) contain first of all 6 compulsory courses focusing on the thorough basic education within the main disciplines of the Master’s: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. These core programme courses deliver the basic competences (knowledge, skills and attitudes) to prepare the students for their specialisation in one of the subdisciplines of the Master. Next all students also have to follow one out of two available practical courses where they learn to carry out some practical experimental work, which takes place in small teams. Also part of the core courses is the Lecture Series on Nanoscience, Nanotechnology and Nanoengineering, which is a series of seminars (14-18 per year) on various topics related to nanoscience, nanotechnology and nanoengineering, given by national and international guest speakers.
  4. The specific courses (21 credits) are compulsory programme courses of the specialisation option. These programme courses are deepening the student’s competences in one of the specialising disciplines of the Master’s programme and prepare them also for the thesis work.
  5. The broadening courses (9-27 credits) allow the students to choose additional progamme courses, either from their own or from the other options of the Master’s, which allow them to broaden their scope beyond the chosen specialisation. They can also choose to do an industrial internship on a nanoscience, nanotechnology or nanoengineering related topic at a nanotechnology company or research institute.
  6. The Master’s thesis (24 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The student is assigned a relevant research project and work in close collaboration with PhD students, postdocs and professors. The research project is spread over the two semesters of the second Master’s year, and is finalised with a written Master’s thesis report, a publishable summary paper and a public presentation.

 You can also follow a similar programme in the frame of an interuniversity programme, the Erasmus Mundus Master of Science in Nanoscience and Nanotechnology.

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in this Master's programme.

Thus, graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence.

Key Features

Course content designed for the needs of industry:

Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute:

To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment:

MRes Applied Analytical Science (LCMS) students can experience more in-depth and ‘hands-on’ learning than most current analytical MRes programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios:

To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible thesis.

Participation of expert industrial guest lecturers:

Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessments that encourage transferrable skills essential for employment:

Including case studies, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

All MRes Applied Analytical Science (LCMS) students will complete the following taught modules:

Mass spectrometry – basics and fundamentals

Separation science and sample handling

Data analysis and method development

Professional management and laboratory practice

MRes students will also be expected to complete a 120 credit research thesis with a viva.

Professional Accreditation

Professional Development (PD) Portfolio

This will enable students to organise and highlight current competencies and training needs into a single document. This can be essential in documenting necessary requirements for continued professional development with a relevant professional body (i.e. Royal Society of Chemistry, RSC, CChem status).

A PD portfolio will typically contain:

- Educational training and experience

From external parties such as National Mass Spectrometry Facility (NMSF), industrial guest lecturers, and educational exercises recognised by the RSC.

- Practical/instrument training and experience

From external parties such as NMSf and instrument manufacturers.

- Research training and experience

MRes project - health and safety, project training, laboratory practice competency framework test and research

- Qualifications

Plus any affiliations and CV.

This will be an organised and detailed record of competencies for presenting to prospective employers with the potential to offer Swansea University (SU) PG students an edge in ensuring gainful relevant employment.

Accreditation.

An application to the Royal Society of Chemistry will be submitted after the first year of study.

Careers and Employability

Course content designed for the needs of industry

Fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute

Highly practical course and extensive in-house equipment

Experience more in-depth and ‘hands-on’ MRes than most Applied Analytical Science courses.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios

Assessments that encourage transferrable skills essential for employment

Professional Development (PD) Portfolio

Participation of expert industrial guest lecturers

Unique networking opportunities with relevant potential employers for enhanced employability in areas such as:

- Pharmaceuticals

- Food and Nutrition

- Clinical diagnostics

- Forensics

- Environment

- Agriculture

- Homeland security

- Marketing and sales

- Veterinary

- Cosmology

- Geology

- Textile manufacture

- Archaeology

Facilities

Applied Analytical Science graduates will be extensively trained in a research-led institute. The highly practical nature of the course and extensive in-house equipment will enable students to experience a more in-depth and 'hands-on' MRes than most current analytical courses.

Instrumentation/techniques within IMS include:

Liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS and LC/HRMSn)

Liquid chromatography/mass spectrometry (LC/MSn); low resolution MS.

Nano-liquid chromatography/mass spectrometry (nano-LC/MS)

Gas chromatography/mass spectrometry (GC/MS)

Liquid chromatography/ultraviolet spectrophotometry (LC/UV)

Liquid chromatography/diode array (LC/DAD)

Electrospray ionisation-mass spectrometry (ESI-MS)

Atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS)

Electron ionisation-mass spectrometry (EI-MS)

Chemical ionisation-mass spectrometry (CI-MS)

Liquid secondary ion-mass spectrometry (LSI-MS i.e. ‘Fast Atom Bombardment’, FAB),

Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS)

We routinely carry out a number of sample preparation techniques including:

Solid phase extraction (SPE)

Liquid-liquid extraction (LLE)

Electrophoretic techniques

Affinity extraction

Ion-exchange

Precipitation



Read less
Innovation in product design and manufacturing has become a major driver for industrial competitiveness and profitablity in recent years. Read more
Innovation in product design and manufacturing has become a major driver for industrial competitiveness and profitablity in recent years. As enabling technologies become more easily accessible, engineers are faced with increasing demands for designing and producing more complex mechanical devices to serve the needs of the society. Next generation engineering products will be ‘smart’ with many functionalities; they will be made of new materials; they will increase energy efficiency and reduce environmental impact; they will vary in size from nano to mega scales; and they will be more closely integrated with information processing systems. Also as mechanical systems are becoming increasingly complex to analyze and expensive to experiment, more emphasis will have to be placed on computer aided analysis, design, verification and manufacturing. Our research program in mechanical engineering responds to these trends and focuses on basic research related to materials science and process engineering, product design, and information integrated manufacturing processes. In doing so applications to different physical processes are studied (e.g. energy systems, bioengineering, metal forming, polymer processing, discrete part manufacturing to name a few).

Current faculty projects and research interests:

• Computer Aided Numerical Control (CNC) Systems and Machine Tools
• Automation and Mechatronics
• Composite Materials Manufacturing
• Human and Machine Haptics
• Multi-Scale Experimental and Computational Mechanics of Materials
• Bioinspired and Biological Fluid Mechanics
• Cardiovascular Mechanics
• Vibrations and Structural Dynamics
• Modelling and Design of Micro /Macro Systems
• Computational Materials Science (Polymers, Biomaterials, Shape
Memory Alloys)
• Computational Fluid Dynamics
• Thermal and Bio/Micro Fluidic Systems
• Micro-Nano Electromechanical Systems (MEMS/NEMS)
• Microstructure Evolution Dynamics (Solidication, Crystal Groeth)
• Control systems and Robotic

Read less

Show 10 15 30 per page



Cookie Policy    X