• Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Imperial College London Featured Masters Courses
Coventry University Featured Masters Courses
University of Leicester Featured Masters Courses
Cardiff University Featured Masters Courses
"nano"×
0 miles

Masters Degrees (Nano)

We have 129 Masters Degrees (Nano)

  • "nano" ×
  • clear all
Showing 1 to 15 of 129
Order by 
Learning outcomes. Read more

Learning outcomes

This Master's Degree Programme aims to provide graduates with a solid multidisciplinary education in physics, chemistry and biology, and the ability to hold positions of high responsibility in complex process management such as planning, synthesis and characterisation of materials, of a biological nature too. The educational activities include theoretical activities and laboratories relating to preparation and characterisation of bio- and nano-materials. In particular, chemical-physical characteristics, properties and preparation methods of nano-structured materials, as well as their applications, will be investigated.

Teaching language

English

Curricula available

Science and Technology of Bio and Nano Materials

Occupational profiles

Master's graduates in Sciences and Technologies of Bio- and Nano-Materials may be employed in all technical sectors, including managerial positions, of companies dealing with manufacturing, processing and development of materials of various nature, both structured and functional. Proper career opportunities may be also found in research and development laboratories, both public and private, operating in the field of materials investigation and certification.

Examination assessment and graduation

The educational activities include classroom teaching, workshops and internships, in order to acquire wide-ranging skills that can be readily transferable into the world of work.

During the whole university career, the various skills and knowledge acquired by students will be assessed through written and oral examinations.

The degree exam consists in writing a thesis, which must possess the characters of originality, exhaustive documentation and scientific investigation and which will be discussed with a committee of university professors and experts.



Read less
Research profile. Read more

Research profile

The Institute for Integrated Micro and Nano Systems (IMNS) brings together researchers from integrated-circuit design, system-on-chip design, image-sensor design, bioelectronics, micro/nano-fabrication, microelectromechanical systems (MEMS), micromachining, neural computation and reconfigurable and adaptive computing.

Research interests include low-level analogue, low-power, adaptive and bio-inspired approaches, system-on-chip computing and applications from telecommunications to finance and astronomy. There is also a research focus on integrating CMOS microelectronic technology with sensors and microsystems/MEMS to create smart sensor systems. We also have a strong and growing interest in applications relating to life sciences and medicine, with particular focus on bioelectronics, biophotonics and bio-MEMS.

IMNS has laboratory facilities that are unique within the UK, including an advanced silicon and MEMS micro-fabrication capability coupled with substantial design and test resources. The Institute has an excellent reputation for commercialising technology.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Masters by Research

An MSc by Research is based on a research project tailored to a candidate’s interests. It lasts one year full time or two years part time. The project can be a shorter alternative to an MPhil or PhD, or a precursor to either – including the option of an MSc project expanding into MPhil or doctorate work as it evolves. It can also be a mechanism for industry to collaborate with the School.

Facilities

The Institute has laboratory facilities that are unique within the UK, including a comprehensive silicon and MEMS micro-fabrication capability coupled with substantial design and test resources.

The Institute has an excellent reputation for commercialising technology.



Read less
This exciting new one-year Masters' Course provides research-focused teaching and training for graduates wishing to develop a career in the cutting-edge, dynamic field of nano and functional materials. . Read more

This exciting new one-year Masters' Course provides research-focused teaching and training for graduates wishing to develop a career in the cutting-edge, dynamic field of nano and functional materials. 

The NANO masters (MSc) Programme provides an in-depth understanding of the principles governing nano and functional materials properties and synthesis, their characterization and their assembly into advanced functional devices, from photovoltaics to supercapacitors.

Aims

The programme aims to convey advanced knowledge and training on state-of-the-art nano and functional materials and devices with a focus on low-dimensional materials, from 0D quantum dots to graphene and related 2D materials. The students will develop an understanding of scale-dependant properties of materials and their link to functionality and applications. They will explore strategies for nanomaterials assembly in 3D and nanocomposite fabrication with a view on their advantages and limitations. World-class research papers and industrial case studies will guide teaching throughout. Students will also be provided with an overview of the potential socio-economic and environmental impacts of nanomaterials as a disruptive technology. The NANO MSc Programme aims to prepare graduates to become academic or industrial scientists with unique skills and expertise in nano and functional materials and related technologies.

Teaching and learning

The course is delivered through a mix of lecturing, blended small and small group tutorials with hands on research training.

Course unit details

 The taught units include:

  • Introduction to Materials Science
  • Advanced research methods
  • Principles of Nano and Functional materials
  • Advanced Composites
  • Applied Functional Materials & Devices
  • Graphene and Nano Materials

 All students are also required to carry out a research project on which they submit a dissertation.

Overseas students will require and ATAS certificate for this course. The ATAS certificate will expire after 6 months so please wait until May before applying. For a full list of the course units, please  . The JACS code for this course is J500 or J5.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

It is anticipated that graduates from this new programme will fill key posts as nanomaterials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.



Read less
The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. Read more

Mission and goals

The main educational objective of this Master of Science programme is to prepare an engineer able to “produce” innovation both in the industrial environment as well as in basic research and which is highly competitive in the global market, with particular reference to the physical and optical technology, nanotechnology and photonic sectors. The physical engineer can approach all sectors in which advanced technological systems are developed: lasers, photonics, materials technology, biomedical optics, etc.

The course has three possible finalizations:
- Nano-optics and Photonics
- Nano and Physical Technologies
- Semiconductor nanotechnologies

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Career opportunities

The graduate in Engineering Physics can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical optics.
The physical engineer can therefore find employment in companies working in the fields of materials engineering and optical technologies; companies which use innovative systems and technologies; public and private research centres; companies operating in the physical, optical and photonic technologies and diagnostics market.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Engineering_Physics.pdf
The objective of this programme is to prepare an engineer able to produce innovation both in the industrial environment as well as in basic research. The graduates will have a broad cultural and scientific foundation and will be provided with the latest knowledge of solid-state and modern physics, optics, lasers, physical technology and instrumentation, nanotechnologies and photonics. Thanks to the experimental laboratory modules, available within different courses, the students face realistic problems throughout their studies. Career opportunities in the Physics Engineering field are extremely wide and varied. In particular, graduates can approach all those sectors in which advanced technological systems are developed, such as lasers and their applications, photonics, vacuum applications, materials technology and biomedical technology.
Moreover, master graduates can work in strategic consultancy companies or can continue their Academic Education with a PhD Program toward a professional career in academic or industrial research. The programme is taught in English.

Subjects

Three tracks available: Photonics and Nanotechnologies; Nanophysics and nanotechnology; Semiconductor nanotechnologies

Subjects common to all the tracks:
Mathematical Methods for Engineering, Solid State Physics, Photonics I, Automatic Controls, Electronics, Computer Science, Management

Other subjects:
- TRACK: PHOTONICS AND NANO OPTICS
Micro and Nano Optics, Photonics II
- TRACK: NANOPHYSICS AND NANOTECHNOLOGY
Physics of Low Dimensional Systems, Electron Microscopy And Spintronics
- TRACK: SEMICONDUCTOR NANOTECHNOLOGIES
Physics of Low Dimensional Systems, Physics of Semiconductor Nanostructures, Graphene and Nanoelectronic Devices

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/engineering-physics/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Outline of the program. The Master PICS program provides a comprehensive program of courses covering theoretical, experimental and engineering aspects of photonics, micro/nano technologies, time-frequency metrology, information theory and complex systems. Read more

Outline of the program

The Master PICS program provides a comprehensive program of courses covering theoretical, experimental and engineering aspects of photonics, micro/nano technologies, time-frequency metrology, information theory and complex systems. It is delivered by the University of Bourgogne Franche-Comté (UBFC) in the city of Besançon. It is designed to cover a selection of topics at the interface of physics and engineering sciences, closely integrated with domains of research excellence developed in the Region of Bourgogne Franche-Comté (BFC). The master’s program also provides complementary courses in disciplinary and interdisciplinary knowledge, as well as broad digital, societal, cultural, environmental, and entrepreneurial skills. It is open to students with undergraduate physics degrees, and it aims to provide complementary courses to prepare students for careers in either industry or for future PhD level studies. The PICS masters is strongly supported by the FEMTO-ST Institute and the ICB Laboratory, research institutions with major international reputations in Physical Sciences and Engineering. The PICS Master’s program has received a national label as a Master’s of Excellence for Engineering and Research, entitled CMI (“Cursus master en Ingénierie”) which is delivered by the CMI-FIGURE network which consists of 28 universities in France.

Our Master’s program

Photonics and nanotechnologies are one of the 6 Key Enabling Technologies identified by the European Commission as sources of innovation and competitiveness for the future. They are technological sectors that feed competitive and fast-growing markets (environment, health, automotive, safety, etc.) and there is a strong need for qualified graduates to support developing European Industry.  When compared to other French Masters programs in similar fields, the particular novelty of the Masters PICS is that it focuses on teaching multi-disciplinary skills on both the practical and fundamental level in a very wide range of topics: photonics, micro and nano-optics, quantum optics, micro-nanotechnologies, instrumentation, time-frequency metrology, micro-oscillators, micro- and nano-acoustics, bio-photonics, and complex systems.  

 

The FEMTO-ST and ICB Institutes are the underlying UBFC laboratories that support the master PICS program. The FEMTO-ST Institute in Besançon (http://www.femto-st.fr/en/), with more than 750 staff, is one of the largest laboratories in France in Engineering Sciences, having high international visibility in photonics, nanotechnology and time frequency technology. The ICB Institute in Dijon (icb.ubourgogne.fr/en/), with a staff of 300 people, is also an underlying UBFC laboratory of the PICS master’s. The PICS master’s program is based on the internationally highly recognized research activities of all these laboratories in photonics, micro & nanotechnologies, time-frequency and complex systems, with teaching and supervision being performed by renowned and highly qualified researchers (professors, assistant professors, or full-time CNRS researchers).

 

The courses, taught in English (see Teaching section), are divided between lectures, exercises/tutorials, practical labs and project activities. Students will be immersed in the labs from their 1st year of study, closely connected with the research groups via lab projects that will run throughout semester 1 to 3.  Individual supervision will be provided to all students, combining a personal project advisor and a mentor. 

 

A one-semester research internship in semester 4 can be carried out at FEMTO-ST, ICB, or a local or national industry partner. Students also have the possibility to obtain significant international experience by carrying out Master’s Internships (5-6 months) abroad at internationally-renowned universities having strong research collaborations with FEMTO-ST and ICB. The proposed PICS Master’s program is also based on strong interactions with high-tech industrial partners both at the local and international levels. 

 

Teaching

The PICS master’s program takes place over 2 academic years divided into 4 semesters. Each semester corresponds to an accreditation of 30 ECTS, which leads to a total at the end of 120 ECTS.  The program has an extensive international flavor, with all courses taught in English, except two modules of 3 ECTS in semesters 1 and 3 that will introduce French culture and language for foreign students, and organized in close connection with another master’s programs. We offer the opportunity to obtain French language certification (B2 at minimum).  The teaching staff are highly qualified researchers with international recognition and all teaching staff are fluent in English, with many at native or near-native level.

Future Career prospects

Photonics and micro/nano technologies are very dynamic industrial sectors in Europe and hold the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs.

The master program offers intensive educational activities based on high level research activities in these domains. It focuses on fundamental & applied research mainly targeting careers in industry (R&D engineer) or for future PhD level studies either in academic institution or industry.

Student profile

Students eligible to the master PICS program must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism, electronic and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

Living in Besançon

Besançon is a historical town with a strong university community, and is consistently voted as having an excellent quality of life. It is home to a UNESCO-World Heritage listed citadel and fortifications, and is well known for its proximity to an excellent range of outdoor pursuits including hiking, mountain-biking, skiing and rock-climbing. 

Grants

Many scholarships will be awarded each year to high quality foreign students.



Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more

The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

  • The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
  • You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
  • Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017). It was also ranked 1st in Scotland in the Guardian and Complete University Rankings 2018.
  • This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
  • You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

Core courses

  • Electronic devices
  • Introduction to research in nanoscience and nanotechnology
  • Micro- and nano-technology
  • Nanofabrication
  • Research methods and techniques
  • MSc project.

Optional courses

  • Applied optics
  • Cellular biophysics
  • Microwave electronic & optoelectronic devices
  • Microwave and mm wave circuit design
  • Microscopy and optics
  • Nano and atomic scale imaging
  • Semiconductor physics.

Career Prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.



Read less
What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?. Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. Read more

What’s the Erasmus Mundus Master of Nanoscience and Nanotechnology all about?

Within the Erasmus Mundus framework, four leading educational institutions in Europe offer a joint Erasmus Mundus Master of Science in Nanoscience and Nanotechnology. The partner institutions are:

  • KU Leuven, Belgium (Coordinator)
  • Chalmers, Tekniska Högskola, Sweden
  • Université Grenoble Alpes, France
  • Technische Universität Dresden, Germany

The word Nanoscience refers to the study, manipulation and engineering of matter, particles and structures on the nanometer scale (one millionth of a millimeter, the scale of atoms and molecules). Important properties of materials, such as the electrical, optical, thermal and mechanical properties, are determined by the way molecules and atoms assemble on the nanoscale into larger structures. Moreover, on a nanometer scale, structures’ properties are often different then on a macro scale because quantum mechanical effects become important.

Nanotechnology is the application of nanoscience leading to the use of new nanomaterials and nanosize components in useful products. Nanotechnology will eventually provide us with the ability to design custom-made materials and products with new enhanced properties, new nanoelectronic components, new types of ‘smart’ medicines and sensors, and even interfaces between electronics and biological systems.

Structure

In the first stage of the programme all students study at the coordinating institution, where they take a set of fundamental courses (max 12 credits) to give them a common starting basis, general interest courses (6-9 credits), a compulsory common block of core courses (36 credits), and already a profiling block of elective courses (min 6 credits) which prepares them for their specialisation area. In the second stage the students take a compulsory set of specialising courses (15 credits), depending on their chosen specialisation area, combined with a set of elective broadening courses (15 credits), and do their Master’s thesis research project (30 credits). Chalmers offers the second year specialisation options of Nanophysics and Nanoelectronics. TU Dresden offers the options Biophysics and Nanoelectronics, and JFU Grenoble offers the options Nanophysics, Nanochemistry and Nanobiotechnology.

 The programme contains the following educational modules:

  1. The fundamental courses (max. 12 credits) introduce the students to relevant disciplines in which they have had no or little training during their Bachelor’s. If a student does not need any or all of the fundamental courses, he/she may use the remaining credits to take more elective courses from the broadening course modules.
  2.  The general interest courses (6-9 credits) are imparting non-technical skills to the students, in domains such as management, economics, languages, quality management, ethics, psychology, etc. A Dutch language and culture course is compulsory for all the students.
  3.  The core courses (36 credits) contain first of all five compulsory courses focusing on the thorough basic education within the main disciplines of the Master: nanophysics, nanochemistry, nanoelectronics and nanobiochemistry. All students also have to take one out of two available practical courses where they learn to carry out some practical experimental work, which takes places in small teams. Also part of the Core courses is the Lecture Series on Nanoscience and Nanotechnology, which is a serie of seminars (14-18 per year) on various topics related to nanoscience and nanotechnology, given by national and international guest speakers.
  4. The specific courses (min. 21 credits) are courses of the specialising option aimed to deepen the student’s competences. The students can choose 6-18 credits elective profiling programme units in the first year at the KU Leuven from three course modules. Then in the second year university the students take 15 credits compulsory courses at their second year location on their selected specialisation. They can also choose to do an industrial internship on a nanoscience or nanotechnology related topic at a nanotechnology company or research institute.
  5. The broadening courses (15 credits) are courses from the other options of the Master’s programme, which allow the students to broaden their scope beyond the chosen specialisation. Students can choose from a large set of program units offered at the second year university.
  6. The Master’s thesis (30 credits) is intended to bring the students in close and active contact with a multidisciplinary research environment. The research project always takes place at the second year partner university and is finalised with a written thesis report and a public presentation. Each Master’s thesis has a promotor from the local university and a promotor from KU Leuven.

 The EMM-Nano programme is truly integrated, with a strong research backbone and an important international scope. The objective of the programme is to provide a top quality multidisciplinary education in nanoscience and nanotechnology. 

Career perspectives

In the coming decades, nanoscience and nanotechnology will undoubtedly become the driving force for a new set of products, systems, and applications. These disciplines are even expected to form the basis for a new industrial revolution.

Within a few years, nanoscience applications are expected to impact virtually every technological sector and ultimately many aspects of our daily life. In the coming five-to-ten years, many new products and companies will emerge based on nanotechnology and nanosciences. These new products will stem from the knowledge developed at the interface of the various scientific disciplines offered in the EMM-Nano programme.

Thus, EMM-Nano graduates will find a wealth of career opportunities in the sectors and industries developing these new technologies: electronics, new and smart materials, chemical technology, biotechnology, R&D, independent consultancies and more. Graduates have an ideal background to become the invaluable interface between these areas and will be able to apply their broad perspective on nanoscience and nanotechnology to the development and creation of new products and even new companies.



Read less
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. Read more
The MS program in Electrical and Electronics Engineering aims to provide advanced education and a cutting edge research experience in electrical and electronics engineering, or in electrical and computer engineering crossing the boundary of the two disciplines. The focus of this program is excellence in research. Graduates of the program can join industry or continue to work in academia.

Current faculty projects and research interests:

• Micro and Nano Systems (MEMS & NEMS)
• Wireless, Acoustic, Nano and Quantum Communication
• Waves, Optics and Photonics
• Electrical, Biological and Nano-Scale Systems
• Signal, Speech, Image and Video Processing
• Multimedia and Networking
• Machine Learning

Read less
OUTLINE OF THE PROGRAM. The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. Read more

OUTLINE OF THE PROGRAM

The proposed master program aims at training students in fundamental, both theoretical and experimental, physics with applications in photonics, nanotechnology, and quantum technologies. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, with thematic areas of growing demand for highly trained students, able to embark in a doctoral programme. This two-year master programme, fully taught in English for international students, is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC). It consists in both lessons and research project (3 month during the first year) / internship (5 months during the second year). This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon.

OUR MASTER PROGRAM

This two-year master programme, fully taught in English for international students, combines macroscopic with nano- and quantum-scale topics. The programme aims at developing and improving students’ skills in fundamental optical physics, optical fibre communications, optoelectronics, laser technologies, ultrafast femtosecond optics, quantum information science, nanophotonics, nano-microscopy and nano-biosciences. This combination, innovative at the level of a master program, is well aligned with priority investments in research at the European and international level, and with thematic areas of growing demand for highly trained students.

The master programme is part of the Graduate School of Sciences of the University Bourgogne Franche-Comté (UBFC), Engineering and Innovation through Physical Sciences and High-technologies (EIPHI), which also includes a doctoral programme in the same topics.

Almost half of the programme is devoted to research project (3 month during the first year) & internship (5 months during the second year) in an international research team, leading to a master thesis aiming at the standards of a research article. This training program will be based on the internationally highly recognised research activities of the underlying laboratories ICB, Dijon and FEMTO-ST, Besançon, both having high international visibility in photonics, quantum technologies, nanotechnology and Engineering Sciences with researchers of high reputation.

TEACHING

Teaching consists of lectures, seminars by international researchers (both from the ICB & FEMTO-ST laboratories and from international partner universities), class tutorials, practical training & research work in laboratory, soft skills by professional coaches, technology and entrepreneurial courses by industrial partners, and French culture and language.

FUTURE CAREER PROSPECTS

Photonics is a very dynamic industrial sector in Europe and holds the potential for huge market growth. It has a substantial leverage effect on the European economy and workforce: 20-30% of the economy and 10% of the workforce depend on photonics, directly impacting around 30 million jobs. The master program offers intensive educational activities based on research activities of photonics, including nanophotonics and quantum technologies. It focuses on fundamental & applied research mainly targetting PhD programs, which will lead to recruitment in academia or in industry. A need of master degree students in the field of photonics & nanotechnologies, including specialties in quantum technologies boosted by the European flagship in Quantum Technologies (launched in 2018), able to embark on a PhD program both in academia & industry will strongly increase in a near future.

The master's Alumni Office helps alumni keep in touch with each other and organises alumni events.

LIFE IN DIJON, CAPITAL CITY OF BURGUNDY (FRANCE)

The two-year master program takes place at the University of Burgundy-Franche Comté, located in the scenic cities of Dijon & Besançon. The former capital city of the Duchy of Burgundy, Dijon is a medium-size French city, where you can enjoy a vibrant and active cultural life, as well as quick getaways to the countryside and the world famous neighbouring vineyards of the so-called “Golden coast” (city center, climates of the Burgundy vineyard, and gastronomy listed as world heritage sites in Dijon by Unesco). Life in Dijon is very affordable and accommodation easily accessible. The city is well-equipped with modern tramway and bus lines, making commuting between any place in Dijon and the University easy and convenient. Dijon is also host of several top-level professional sports teams (football, basketball, handball, rugby…), while also offering a large diversity of sports facilities.

STUDENT PROFILE

Students eligible to the master program PPN must have obtained a degree equivalent to or higher than a Bachelor of Science. Background knowledge in general physics, optics, electromagnetism and quantum physics is mandatory. Candidates must have very good academic qualifications and a very good practice of English.

GRANTS

Many scholarships will be awarded each year to high quality foreign students.

APPLICATIONS

During the first year, students have to pass the examinations associated with the Master 1 (60 ECTS credits) in order to proceed to the second year, Master 2 (60 ECTS), including research project and master thesis (33 ECTS).

For further information about how to apply, please directly contact the head of the master program, Professor Stéphane Guérin () and visit the webpage (http://www.ubfc.fr/formationen/).

Please also visit our dedicated webpage (http://blog.u-bourgogne.fr/master-ppn/).



Read less
MSc in Materials Science programme develops research skills, deep theoretical and experimental knowledge of material composition and improvement of their… Read more

MSc in Materials Science programme develops research skills, deep theoretical and experimental knowledge of material composition and improvement of their characteristics, knowledge of methodology and technique for technological measurements of materials, processing and analysis of experimental results, knowledge of application of high technologies (micro- and nanotechnologies) in materials science. The programme combines fundamental and engineering studies, and enables the graduates to create and apply functional materials and technologies of their production.

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills by choosing the Interdisciplinary Expert track emphasising managerial skills or a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Why @KTU?

Internationally recognised research

KTU research in materials science is recognised internationally, and the research outcomes are applied in industry, e.g. to create scales for precision laser measurement systems.

Cooperation with international organizations

KTU cooperates with leading international organisations: Inter-Academia, Federation of European Materials Society, Physics and Chemistry of Advanced Materials, etc.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– Has deep various theoretical knowledge of material composition and improvement of their properties, knowledge of methodology and technique for technological measurements of materials, knowledge of processing and analysis of experimental results, thorough methodological knowledge on composing, creation and research of mew materials.

– Is competent to define, assess and forecast the trends and prospects of development of materials science and impact of technologies on the environment, apply high technologies (micro and nano technologies).

– Is competent to apply modern methods and instruments of surface engineering, micro and nano technologies, functional (optical, electrical, magnetic) materials used, form micro and nano structure, and use or develop devices.

– Has skills of management, negotiations and leadership, takes responsibility for the quality of his/her activities and that of his/her subordinate employees, quality assessment and performance improvement based on professional ethics, technological engineering operating standards and citizenship.

– Has very good knowledge of project management and business aspects, understands links between technological solutions and their economic effects.

Student’s skills:

– Able to make technological solutions and solve atypical, undefined and incomplete problems, is able to define, analyse and solve problems of development of materials science, scientific research, technological processes and environmental protection.

– Able to assess, model and forecast material structure, composition and properties applying analytical and numerical methods, including mathematical analysis, computational modelling or experiments for assessment, modelling and forecast of structure, composition and properties of functional materials, to select or develop functional materials with optimal properties for various engineering properties.

– Able to select of develop materials with optimal properties, able to apply innovative methods to solve various engineering problems.

– Able to apply acquired knowledge and latest achievements of materials science to select and develop various materials with optimal or required properties, to solve engineering problems using modern technological equipment and formation principles.

– Able to plan, perform analytical, modelling or applied research and introduce their results in the processes of material processing, to analyse applicability of new or newly occurring high technologies, methods of instrumental analysis in solving of various engineering problems.



Read less
Led by internationally recognised research, this study programme focuses on the aspects of fundamental and applied physics, on the formation of new functional solid surfaces produced by physical vapour deposition high technologies, and many other exciting issues, starting with experimental research and ending with theoretical computer simulation. Read more

Led by internationally recognised research, this study programme focuses on the aspects of fundamental and applied physics, on the formation of new functional solid surfaces produced by physical vapour deposition high technologies, and many other exciting issues, starting with experimental research and ending with theoretical computer simulation.

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills by choosing the Interdisciplinary Expert track emphasising managerial skills or a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Why @KTU?

Internationally recognised research

KTU physicists are internationally famous for research in processes on the surface, radiation interaction with materials, nanotechnologies and thin films processes.

Contemporary and modern equipment

Students conduct research in scientific laboratories of KTU Department of Physics, Microsystems and Nanotechnology Research Centre, Santaka valley.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– Has latest and comprehensive knowledge that deepens and expands the knowledge of the first study cycle (Bachelor) about the laws, concepts, equations, phenomena of modern classic, quantum and theoretical physics, their experimental and theoretical substantiation, understands latest achievements and problems, facts and principles of modern physics, able to apply this knowledge in multi-disciplinary contexts related to the field of physics;

– Has specialised deep knowledge about solid body’s surface condition, kinetic and dynamic processes in interaction with plasma, gas and external ionising, electronic and photonic radiation; is able to integrate this knowledge while solving scientific problems and explaining physical phenomena;

– Knows and is able to apply technologies of modern physics based on ionising, electronic and photonic radiation that are used for modification of solid body surfaces and growth of thin film in new or unknown environment;

– Knows latest solid body surface analysis methods and techniques, methodologies for management and analysis of results and is able to apply them in scientific research;

– Knows the latest achievements, theories, ideas, principles and application of nano science and nano technologies in the areas of solid body surface modification and forming of thin films; is able to apply this knowledge while introducing innovations;

– Knows and is able to apply mathematical methods for modelling of physical processes, analysis of experimental results and planning of experiment in new environments;

– Has knowledge about properties of specialised functional materials and their physical processes, areas of their application and development technologies, is able to apply this knowledge in the process of introduction of innovations and performance of scientific research;

– Able to integrate knowledge of various areas; able to work or manage a team consisting of people from various fields of science and having various competences.

Student’s skills:

– Able to individually find, analyse and critically assess scientific and information literature, review latest literature on the topics of physical processes or phenomena, set objectives and tasks for a research work in physics;

– Able to critically assess available knowledge of theoretical physics, integrate them in planning and performance of practical research and experiments, able to critically assess alternative solutions, research methods, make decisions with a lack of comprehensive or well-defined information; to prepare methodology for research work while solving scientific problems;

– Able to individually plan and perform experimental research in physical fields of plasma, ionisation and plasma-chemical processes, micro and nano technological processes, perform theoretical analysis of experimental results, analytical research, mathematical modelling, is able to assess results and their reliability, assess research data required for introduction of innovations;

– Understands the impact of physical technologies on nature, observes principles of green technologies, is able to manage difficult situation in the context of scientific research;

– Able to individually use technological and analytical equipment for scientific research in physics, to perform experiments, non-standard laboratory tests and measurements in the context of scientific research;

– Able to manage and interpret research data using information technologies; able to summarise results of the performed research in physics and provide reasoned conclusions;

– Able to comprehend the limits of accuracy in experimental data, reliability of modelling or research methods, to assess measurement tolerances and consider all of it while planning further research or activities.



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more

Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes

• Microelectronics

• Micro-mechanics

• MSE design laboratory I

• Optical Microsystems

• Sensors

• Probability and statistics

• Assembly and packaging technology

• Dynamics of MEMS

• Micro-actuators

• Biomedical Microsystems

• Micro-fluidics

• MSE design laboratory II

• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems

• Design and simulation

• Life sciences: Biomedical engineering

• Life sciences: Lab-on-a-chip

• Materials

• Photonics

• Process engineering

• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems

• Analog CMOS Circuit Design

• Mixed-Signal CMOS Circuit Design

• VLSI – System Design

• RF- und Microwave Devices and Circuits

• Micro-acoustics

• Radio sensor systems

• Optoelectronic devices

• Reliability Engineering

• Lasers

• Micro-optics

• Advanced topics in Macro-, Micro- and Nano-optics

Design and Simulation

• Topology optimization

• Compact Modelling of large Scale Systems

• Lattice Gas Methods

• Particle Simulation Methods

• VLSI – System Design

• Hardware Development using the finite element method

• Computer-Aided Design

Life Sciences: Biomedical Engineering

• Signal processing and analysis of brain signals

• Neurophysiology I: Measurement and Analysis of Neuronal Activity

• Neurophysiology II: Electrophysiology in Living Brain

• DNA Analytics

• Basics of Electrostimulation

• Implant Manufacturing Techologies

• Biomedical Instrumentation I

• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip

• DNA Analytics

• Biochip Technologies

• Bio fuel cell

• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials

• Microstructured polymer components

• Test structures and methods for integrated circuits and microsystems

• Quantum mechanics for Micro- and Macrosystems Engineering

• Microsystems Analytics

• From Microsystems to the nano world

• Techniques for surface modification

• Nanomaterials

• Nanotechnology

• Semiconductor Technology and Devices

MEMS Processing

• Advanced silicon technologies

• Piezoelectric and dielectric transducers

• Nanotechnology

Sensors and Actuators

• Nonlinear optic materials

• CMOS Microsystems

• Quantum mechanics for Micro- and Macrosystems Engineering

• BioMEMS

• Bionic Sensors

• Micro-actuators

• Energy harvesting

• Electronic signal processing for sensors and actuators

Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.



Read less
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Read more
This course teaches numerate graduates knowledge and skills in the field of nanotechnology and microfabrication. The course takes an immersive approach to learning both the principles and practices of nanotechnology and microfabrication with much of the material based around examples and practical exercises. Students completing this course will have a firm grasp of the current practices and directions in this exciting area and will have the knowledge and skills to enable them to design and build microscale devices.

Taught Modules:

Introduction to Nanotechnology & Microsystems: Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Mini Project: Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the research project.

RF and Optical MEMs: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering: This module provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering: This module builds on the knowledge of microengineering and microfabrication gained in module IES4003 Microengineering and provides practical microfabrication experience. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. The module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.



Research Project
After the successful completions of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Read more

This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Nanotechnology is rapidly establishing itself as a key technology, in industries ranging from microelectronics to healthcare, with a consequent demand for appropriately trained graduates.

About this degree

The programme introduces students to and provides training in the skills essential for almost all fields of nanotechnology research, including key laboratory skills and techniques in planning, building devices, analysis, and results comparison. The core lecture programme covers essential topics in physics, electrical and electronic engineering, and biology.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered. The diploma consists of six core modules (75 credits) and three optional modules (45 credits).

Core modules

  • Physical Science for Nanotechnology
  • Nanoscale Processing and Characterisation for Advanced Devices
  • Experimental Techniques for Nanotechnology
  • Nanotechnology and Society
  • Electrical Transport in Nanosystems
  • Photonics in Nanosystems

Optional modules

  • Quantum Computation and Communication
  • Order and Excitations in Condensed Matter
  • Molecular Biophysics
  • Molecular Physics
  • Entrepreneurship: Theory and Practice
  • Bioprocess Microfluidics
  • Physics and Optics of Nano-Structures
  • Materials and Nanomaterials
  • Innovation Practices
  • Physics of Advanced Materials

Dissertation/report

All students undertake an extensive research project on an experimental or theoretical topic which is assessed through an interim report, dissertation and oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, laboratory classes, tutorials and seminars. Student performance is assessed through coursework, laboratory notebooks, case studies, written examination, a dissertation, and written and oral presentations.

Further information on modules and degree structure is available on the department website: Nanotechnology MSc

Careers

Recent graduates have gone on to work as engineers for companies including EDF Energy and Intel, as analysts and consultants for firms including Standard Bank PLC and DN Capital, or to undertake PhD study at the Universities of Oxford, Bath and Glasgow.

Recent career destinations for this degree

  • Business Analyst, Efficio
  • EngD in Molecular Modelling and Materials Science, UCL
  • PhD in Diamond Electronics, UCL
  • Researcher, SCS (Sensor Coating Systems) and studying PhD in Materials, Imperial College London
  • Junior Electronics Engineer, Samsung

Employability

This MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of nanotechnology, from the basis of the fabrication of nanostructures for advanced device applications, to fundamental quantum information and molecular biophysics, from nanotechnology in life science to nanotechnology in healthcare, and from experimental technology to theoretical modelling. Nanotechnology MSc graduates are expertly equipped either to pursue PhD study or become consultants or engineers in a wide range of nanotechnology fields.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The London Centre for Nanotechnology (LCN) is a new UK-based multidisciplinary enterprise operating at the forefront of science and technology.

Forming a bridge between the physical and biomedical sciences, it brings together two of the world's leading institutions in nanotechnology, UCL (University College London) and Imperial College London.

The centre aims to provide leading-edge training in nanotechnology and students on this programme benefit from excellent new facilities, including a £14 million research building furnished with state-of-the art equipment, and a £1 million teaching facility in UCL Electronic & Electrical Engineering.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

Show 10 15 30 per page



Cookie Policy    X