• Ross University School of Veterinary Medicine Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Southampton Featured Masters Courses
University of Manchester Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Manchester Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Cambridge Featured Masters Courses
"musculoskeletal" AND "bi…×
0 miles

Masters Degrees (Musculoskeletal Biomechanics)

We have 28 Masters Degrees (Musculoskeletal Biomechanics)

  • "musculoskeletal" AND "biomechanics" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Study Sport and Clinical Biomechanics in the world-leading School of Sport and Exercise Science at Liverpool John Moores University. Read more
Study Sport and Clinical Biomechanics in the world-leading School of Sport and Exercise Science at Liverpool John Moores University. This Masters degree features extensive training in lab-based skills plus analysis of contemporary issues.

•Course available to study full time (1 year) and part time (2-3 years)
•Developed by world-leading researchers from our pioneering School of Sport and Exercise Science
•Modules complement the specific expertise of the biomechanics staff and include: clinical gait analysis and virtual rehabilitation, muscle and tendon mechanics and biomechanical assessment and injury prevention
•Access to state-of-the-art biomechanics laboratories in the award-winning Tom Reilly Building, including the Movement Function Research Laboratory
•Exciting career opportunities in clinical or sports biomechanics and/or academic and professional development
•Ideal for physiotherapists who wish to deepen their biomechanical expertise

Study under the guidance of world-leaders in biomechanics and take your own knowledge into our state-of-the-art facilities. We welcome applications from those interested in the movement and mechanism of the human body, and dedicated to the application and advancement of this field of study.

Biomechanics is the study of the mechanical functioning of the biological system. This course applies biomechanical knowledge in both a sporting and clinical context.

The curriculum is research-led with a number of core modules being directly informed by the current research activity of staff. Extensive training is provided in laboratory-based skills and in the interpretation of biomechanical findings and there is comprehensive coverage of contemporary issues in biomechanics.

The course is taught through a mixture of lectures, seminars, tutorial support, practical sessions and workshops which encourage critical, reflective engagement with a range of theoretical and applied topics.

You will also be exposed to a wide range of research questions in biomechanics and learn how to critically appraise and interpret the literature. The diversity of assessment methods, including written coursework and oral viva assessment, are innovative and well received by students.

Please see guidance below on core and option modules for further information on what you will study.
Technical Training in Biomechanics: provides technical training in laboratory techniques appropriate to sport and clinical biomechanics. It will enable you to develop laboratory skills including 2D, and 3D motion analysis, force analysis and biomechanical modelling so that you can collect and interpret biomechanical measurement and protocols to benchmark standards. The topic is taught in the laboratories in a hands-on, interactive manner.

Research Methods: provides mastery and expertise in quantitative research strategies, methods and techniques, specifically focussed on quantitative data so that you can undertake postgraduate research. It aims to encourage critical understanding of how quantitative data should be handled and analysed using a variety of approaches. The module enables you to develop critical analysis of statistical concepts and procedures, trains you to use statistical analysis software and extend your knowledge of the experimental and research design process.

Current Issues in Biomechanics: develops and extends your opportunity to investigate issues of current importance in Biomechanics. You will be presented with a variety of cutting-edge research topics in biomechanics applied to sport, exercise and clinical applications. You will need to read up-to-date literature in the appropriate fields and to evaluate past and current directions. Laboratory content will involve using measurement skills developed in the Technical Training module to replicate an experimental study from the literature.

Muscle-tendon mechanics: introduces the main biomechanical characteristics of human muscles and tendons and the implications for human movement, performance and biomechanical testing. The mechanical parameters and behaviour of these tissues of the human body in-vivo will also be examined in response to chronic loading and disuse to understand basic, musculoskeletal mechanisms and adaptations underpinning changes in whole-body function and performance.

Biomechanical assessment in sport and exercise: provides the conceptual and practical knowledge base that develops and extends understanding of biomechanical assessment. With continuous developments of equipment, software, and knowledge, there is a growing need for biomechanical assessment in sport and exercise. This has a role both in performance evaluation, in injury prevention, and in injury rehabilitation. You will be exposed to a large variety of tools, each time first gaining a better understanding of the theoretical framework that justifies the use of such tool.

Clinical Movement Analysis: provides the conceptual and practical knowledge base that develops and extends your understanding of clinical movement analysis. You will learn how to interpret gait analysis results in a clinical context through exposure to the current literature, specialised methods, and clinical case studies. You will also be exposed to the latest research developments in the unique area of virtual rehabilitation.

Further guidance on modules

The information listed in the section entitled ‘What you will study’ is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal Academic Framework review, so may be subject to change. Students will be required to undertake modules that the University designates as core and will have a choice of designated option modules. Additionally, option modules may be offered subject to meeting minimum student numbers.

Academic Framework reviews are conducted by LJMU from time to time to ensure that academic standards continue to be maintained. A review is currently in progress and will be operational for the academic year 2016/2017. Final details of this programme’s designated core and option modules will be made available on LJMU’s website as soon as possible and prior to formal enrolment for the academic year 2016/2017.

Please email if you require further guidance or clarification.

Read less
The programme is suitable for physiotherapists, osteopaths and doctors. This internationally renowned programme is open to doctors and physiotherapists. Read more
The programme is suitable for physiotherapists, osteopaths and doctors.

This internationally renowned programme is open to doctors and physiotherapists. As the longest-established Sports and Exercise Medicine MSc in the country, we have a prestigious history. The programme is based on the philosophy of total care for the athlete and the promotion of physical activity in the general population. Working in sport is a largely practical discipline and the programme's emphasis lies firmly on regular clinical experience. You will benefit from regular contact with members of the Centre for Sports and Exercise Medicine as well as visiting clinicians and lecturers who are experienced sport medicine specialists.

The Centre is ideally situated on the same campus as the sports injury, physiotherapy, podiatry and the interdisciplinary combined sports clinics. Additionally, you will have the opportunity to attend recognised external clinics around London, as well as the chance to attend sporting events and visits to national centres of excellence where possible.

Successful alumni have gone on to hold pivotal positions in sports medicine across the UK and internationally, including the Chief Medical Officer to the British Olympic Association and London 2012 and the Medical Director to the English Institute of Sport.

The Centre is renowned in the UK for its academic strength and excellence. Lectures are delivered by national experts; from cutting edge scientists to physiotherapists, doctors, and other health professionals working with world-class athletes.

An insightful video for prospective students interested in the Sports and Exercise Medicine programmes.

This programme will:

-Offer you mastery of foundation concepts and skills in Sports and Exercise Medicine.
-Give you the knowledge and skills to assess sports injuries and to understand their treatment options, as well as understanding the physiological and psychological benefits of exercise and its use as a health tool.
-Allow you regular clinical contact with athletes and sportspeople.
-Introduce you to visiting lecturers, who are experts in the field of Sports Medicine.

Why study your MSc in Sport and Exercise Medicine at Queen Mary?
The Centre for Sports and Exercise Medicine is based at the William Harvey Research Institute at Barts and The London School of Medicine and Dentistry.

Barts and the London School of Medicine and Dentistry is comprised of two world renowned teaching hospitals, St Bartholomew’s and The Royal London, which have made, and continue to make, an outstanding contribution to modern medicine. We were one of the top five in the UK for medicine in the 2008 Research Assessment Exercise.

It is unique in the UK for the delivery of integrated academic and practical tuition. Lectures are delivered by national experts.
Core clinician-scientists on staff consult to elite athletes, we have an international research profile in Sports and Exercise Medicine.
Our staff will work closely with you to nurture your research interests and to develop your clinical ability in Sports and Exercise Medicine.

Many students also go on to publish in peer-reviewed journals, a reflection of the quality of our student research output.
Facilities

You will have access to Queen Mary’s comprehensive libraries, including the Postgraduate Reading Room, and The British Library can also be accessed as a research resource. We subscribe to many journals in sport and exercise medicine. You can access electronic journals online.

The Human Performance Laboratory (HPL) at QMUL combines the expertise of sports medicine clinicians, surgeons, engineers and sports scientists with state-of-the-art physiological testing and motion analysis equipment. This collaborative venture offers clinical, educational, research and athlete support service applications in the laboratory or field based settings.

The capabilities of the HPL can be broadly divided into two areas: musculoskeletal biomechanics and physiological testing.

Musculoskeletal biomechanics
The HPL carries 4 Codamotion Cx1 infra-red scanning units that are used extensively for 3-dimensional motion analysis. This system is fully integrated with 2 ground embedded Kistler force plates and a 16 channel wireless EMG system. The integration of these systems allows for full analysis of movement, forces associated with movement and measuring muscular effort during movement. In addition, the HPL also boasts a 64 channel EMG system for multichannel work and an isokinetic dynamometer, which can be used for both research and rehabilitation.

Physiological testing
Detailed analysis of pulmonary gas exchange can be made using an online gas analysis system, in addition to cardiac monitoring using a 12-lead ECG system, during exercise on a treadmill or the electromagnetically braked cycle ergometer. Measures can also be made out in the field, from simple tests of flexibility, strength, speed, power and cardiorespiratory fitness, to comprehensive measurement of expired air using the portable on-line gas analysis system.

Papers of interest

-In Vivo Biological Response to Extracorpereal Shockwave Therapy in Human Tendinopathy (paper is called ESWT)
-The role of interventions directed at the foot for managing patellofemoral pain (paper is called InTouch Article)
-The biomechanics of running in athletes with previous hamstring injury: A case-control study (Hamstrings paper)
-The ‘Best Practice Guide to Conservative Management of Patellofemoral Pain’: incorporating level 1 evidence with expert clinical reasoning (PFP paper)
-Eccentric and Concentric Exercise of the Triceps Surae: An In Vivo Study of Dynamic Muscle and Tendon Biomechanical Parameters (JAB EL CL paper)

Read less
The Musculoskeletal Science MSc covers a broad spectrum of musculoskeletal topics, including basic science and clinical aspects. Read more
The Musculoskeletal Science MSc covers a broad spectrum of musculoskeletal topics, including basic science and clinical aspects. It aims to give students, in a multidisciplinary setting, a holistic view of musculoskeletal science, orthopaedic bioengineering and medicine, and provides an in-depth knowledge of specific areas appropriate to each student's individual interests.

Degree information

Students on this MSc programme acquire essential scientific knowledge, improve their basic research skills, and are equipped with the ability to solve the musculoskeletal problems emphasised within the NHS framework. The programme emphasises the four major areas as identified by the Bone and Joint Decade - arthritis, osteoporosis, trauma and spinal disorders, and transferable skills and research methodology in orthopaedic bioengineering.

Students undertake modules to the value of 180 credits. The programme consists of eight taught modules (120 credits), and a research project (60 credits).

Students will be awarded an MSc on successful completion of all taught modules and research project; a Postgraduate Diploma on successful completion of eight taught modules (all core modules plus any four from options); and a Postgraduate Certificate on successful completion of four taught modules.

A Postgraduate Diploma (120 credits, full-time nine months and flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time three months and flexible study up to two years) is offered.

Core modules
-Clinical Aspects of Musculoskeletal Medicine and Surgery, Part I
-Musculoskeletal Tissue Biology - Form and Function
-Musculoskeletal Biomechanics and Biomaterials, Part I
-Research Methodology and Generic Skills

Optional modules - up to 60 credits of optional modules (4 modules) drawn from the following:
-Clinical Aspects of Musculoskeletal Medicine and Surgery, Part II
-Musculoskeletal Tissue Biology - Disease and Dysfunction
-Musculoskeletal Biomechanics and Biomaterials, Part II
-Research Governance
-Clinical Experience in Musculoskeletal Surgery
-Surgical Skills in Orthopaedic Surgery

Dissertation/report
All MSc students undertake an independent research project that will contribute to cutting-edge scientific, clinical and industrial research, and culminates in a dissertation and oral examination.

Teaching and learning
The programme is delivered through a combination of taught lectures, seminars, tutorials, group project work and workshops. Assessment is through online MCQs, coursework, and the dissertation and viva voce. Candidates are examined in the year in which they complete the programme.

Careers

This programme offers students from a wide variety of disciplines the opportunity to gain a higher degree in an exciting and rapidly developing field, and equips them to make a strong contribution to the development of musculoskeletal services. The students can develop their careers in healthcare sector, medical device industry and bio-industry, regenerative medicine, regulatory bodies, as well as academic community.

Top career destinations for this degree:
-Orthopaedic Surgeon, St Thomas' Hospital (NHS)
-MBBS (Bachelor of Medicine, Bachelor of Surgery), King's College London
-Medical Research on Replacement Joints, Cardiff University (Prifysgol Caerdydd)
-Occupational Therapy Assistant, Watford General Hospital (NHS)
-Orthopaedic Surgeon, Assaswa International Hospital

Why study this degree at UCL?

The Division of Surgery & Interventional Science is part of one of the most prestigious medical schools in Europe, with a team of nearly 400 people, from surgeons, biologists, bioengineers and material scientists and oncologists, to clinical trials specialists and researchers. Our aim is to understand the causes of human musculoskeletal disease and develop innovative therapies and technology to improve the quality of life.

Students on this MSc will gain an unparalleled grounding in musculoskeletal science and orthopaedic bioengineering, including a holistic view of clinical care as well as orthopaedic sciences and bioengineering. The programme is run at the internationally renowned Royal Orthopaedic Hospital in Stanmore.

Read less
The Musculoskeletal Science MSc covers a broad spectrum of musculoskeletal topics, including basic science and clinical aspects. Read more
The Musculoskeletal Science MSc covers a broad spectrum of musculoskeletal topics, including basic science and clinical aspects. It aims to give students, in a multidisciplinary setting, a holistic view of musculoskeletal science, orthopaedic bioengineering and medicine, and provides an in-depth knowledge of specific areas appropriate to each student's individual interests.

Degree information

Students on this MSc programme acquire essential scientific knowledge, improve their basic research skills, and are equipped with the ability to solve the musculoskeletal problems emphasised within the NHS framework. The programme emphasises the four major areas as identified by the Bone and Joint Decade - arthritis, osteoporosis, trauma and spinal disorders, and transferable skills and research methodology in orthopaedic bioengineering.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits, full-time nine months and flexible study up to five years) is offered. A Postgraduate Certificate (60 credits, full-time three months and flexible study up to two years) is offered.

Core modules
-Clinical aspects of Musculoskeletal Medicine and Surgery, Part I
-Musculoskeletal Tissue Biology - Form and Function
-Musculoskeletal Biomechanics and Biomaterials, Part I
-Research Methodology and Generic Skills

Optional modules - up to 60 credits of optional modules (4 modules) drawn from the following:
-Clinical aspects of Musculoskeletal Medicine and Surgery, Part II
-Musculoskeletal Biology, Part II
-Musculoskeletal Biomechanics and Biomaterials, Part II
-Musculoskeletal Epidemiology and Research Methodology, Part II
-Clinical Experience in Musculoskeletal Surgery

Dissertation/report
All MSc students undertake an independent research project, which can be carried out at their own institution or hospital, and culminates in a dissertation and oral examination.

Teaching and learning
The programme is delivered through a combination of web-based taught lectures, seminars, tutorials, online research forum, group project work and workshops. Assessment is through unseen written examination, coursework, and the dissertation and viva voce. Candidates are examined in the year in which they complete the programme.

Careers

This programme offers students from a wide variety of disciplines the opportunity to gain a higher degree in an exciting and rapidly developing field, and equips them to make a strong contribution to the development of musculoskeletal services. The students can develop their careers in healthcare sector, medical device industry and bio-industry, regenerative medicine, regulatory bodies, as well as academic community.

Top career destinations for this degree:
-Trauma and Orthopaedics, NHS Bradford Teaching Hospitals NHS Foundation Trust and studying Engineering, The Open University.

Why study this degree at UCL?

The UCL Division of Surgery & Interventional Science is part of one of the most prestigious medical schools in Europe, with a team of nearly 400 people, from surgeons, biologists, bioengineers and material scientists and oncologists to clinical trials specialists and researchers. Our aim is to understand the causes of human musculoskeletal disease and develop innovative therapies and technology to improve the quality of life of the people around us.

Students on this MSc will gain an unparalleled grounding in musculoskeletal science and orthopaedic bioengineering including a holistic view of clinical care as well as orthopaedic sciences and bioengineering. The programme is run at the internationally renowned Royal Orthopaedic Hospital in Stanmore.

Read less
This MSc has the approval of the Royal Colleges of Surgery and aims to improve the level of scientific appreciation of surgical trainees by exposing them to scientific principles and methods. Read more
This MSc has the approval of the Royal Colleges of Surgery and aims to improve the level of scientific appreciation of surgical trainees by exposing them to scientific principles and methods. The programme is suitable for both surgical and dental trainees and is primarily intended to provide scientific research experience prior to or as part of the surgical training programme.

Degree information

Students gain skills in the verbal and written communication of science, together with an in-depth understanding of science-based subjects of clinical relevance. Students also undertaken in-depth scientific research project (50% of final mark) and an appreciation of scientific research which further trains them to appraise the current scientific literature/evidence and experimental design, practice and analysis.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), three optional modules (45 credits), and a research project (90 credits).

Core modules
-Advanced Surgical Skills (Microsurgery)
-Advanced Surgical Skills (Robotics)
-Research Methodology and Transferable Skills (Part I)

Optional modules - students choose three of the following optional modules:
-Research Methodology and Transferable Skills (Part II)
-Applied Tissue Engineering
-Biomaterials in Tissue Regeneration: Micro and Nanoscale Surface Structuring
-Clinical Experience in Musculoskeletal Surgery
-Experimental Models in Surgical Research
-Heart and Circulation
-Musculoskeletal Biology (Part I)
-Musculoskeletal Biology (Part II)
-Musculoskeletal Biomechanics and Biomaterials (Part I)
-Musculoskeletal Biomechanics and Biomaterials (Part II)
-Nanotechnology
-Pain
-Performing Systematic Reviews of Interventions (Part I)
-Performing Systematic Reviews of Interventions (Part II)
-Surgical Oncology
-Translation of Nanotechnology and Regenerative Medicine (Bench to Bedside)
-Translation of Nanotechnology and Regenerative Medicine (Bench to Bedside)

Dissertation/report
All students undertake an independent research project on a subject of relevance to their clinical interests which culminates in a dissertation of 13,000 words and contributes 50% of the final mark. We encourage students to submit their work for presentation at conferences and for publication.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, workshops and tutorials. Student performance is assessed through unseen written examination papers, written reports, oral presentations, written coursework and oral examinations, and a dissertation and oral examination for the research project.

Careers

First destinations of recent graduates as junior surgeons in surgical training include: Southend Hospital: Surgeon; Bangor Hospital: Doctor; Royal Derby Hospital: Core Surgical Trainee; Royal National Orthopaedic Hospital: Academic Clinical Fellow; King's College Hospital NHS Trust: Specialist Registrar in Cardiothoracic; Greater Glasgow NHS: Paediatric Surgery Registrar and Training Surgeon. The majority of older graduates have become consultants in specialist surgical fields, e.g. at the Royal Free Hospital, Birmingham, Great Ormond Street, UCLH and generally throughout the UK and abroad.

Why study this degree at UCL?

The Division of Surgery & Interventional Science is part of one of the most prestigious medical schools in Europe, with a team of nearly 400 people, from surgeons and oncologists to clinical trials specialists and researchers. Our aim is to understand the causes of human disease and develop innovative therapies and technology to improve the quality of life of the people around us.

The UCL Medical School has highly rated science expertise within its academic and clinical departments thus guaranteeing an excellent research environment.

Students have the advantages of studying in a multi-faculty university with a long tradition of excellence, situated within the heart of one of the world's greatest cities.

Read less
The programme is suitable for physiotherapists, osteopaths and doctors. This internationally renowned programme is open to doctors and physiotherapists. Read more
The programme is suitable for physiotherapists, osteopaths and doctors.

This internationally renowned programme is open to doctors and physiotherapists. As the longest-established Sports and Exercise Medicine MSc in the country, we have a prestigious history. The programme is based on the philosophy of total care for the athlete and the promotion of physical activity in the general population. Working in sport is a largely practical discipline and the programme's emphasis lies firmly on regular clinical experience. You will benefit from regular contact with members of the Centre for Sports and Exercise Medicine as well as visiting clinicians and lecturers who are experienced sport medicine specialists.

The Centre is ideally situated on the same campus as the sports injury, physiotherapy, podiatry and the interdisciplinary combined sports clinics. Additionally, you will have the opportunity to attend recognised external clinics around London, as well as the chance to attend sporting events and visits to national centres of excellence where possible.

Successful alumni have gone on to hold pivotal positions in sports medicine across the UK and internationally, including the Chief Medical Officer to the British Olympic Association and London 2012 and the Medical Director to the English Institute of Sport.

The Centre is renowned in the UK for its academic strength and excellence. Lectures are delivered by national experts; from cutting edge scientists to physiotherapists, doctors, and other health professionals working with world-class athletes.

This programme will:

-Offer you mastery of foundation concepts and skills in Sports and Exercise Medicine.
-Give you the knowledge and skills to assess sports injuries and to understand their treatment options, as well as understanding the physiological and psychological benefits of exercise and its use as a health tool.
-Allow you regular clinical contact with athletes and sportspeople.
-Introduce you to visiting lecturers, who are experts in the field of Sports Medicine.

Why study your MSc in Sport and Exercise Medicine at Queen Mary?
The Centre for Sports and Exercise Medicine is based at the William Harvey Research Institute at Barts and The London School of Medicine and Dentistry.

Barts and the London School of Medicine and Dentistry is comprised of two world renowned teaching hospitals, St Bartholomew’s and The Royal London, which have made, and continue to make, an outstanding contribution to modern medicine. We were one of the top five in the UK for medicine in the 2008 Research Assessment Exercise.

This programme is the longest-established Sports and Exercise Medicine MSc in the country.

It is unique in the UK for the delivery of integrated academic and practical tuition. Lectures are delivered by national experts.
Core clinician-scientists on staff consult to elite athletes, we have an international research profile in Sports and Exercise Medicine.
Our staff will work closely with you to nurture your research interests and to develop your clinical ability in Sports and Exercise Medicine.

Many students also go on to publish in peer-reviewed journals, a reflection of the quality of our student research output.
Facilities

You will have access to Queen Mary’s comprehensive libraries, including the Postgraduate Reading Room, and The British Library can also be accessed as a research resource. We subscribe to many journals in sport and exercise medicine. You can access electronic journals online.

The Human Performance Laboratory (HPL) at QMUL combines the expertise of sports medicine clinicians, surgeons, engineers and sports scientists with state-of-the-art physiological testing and motion analysis equipment. This collaborative venture offers clinical, educational, research and athlete support service applications in the laboratory or field based settings.

The capabilities of the HPL can be broadly divided into two areas: musculoskeletal biomechanics and physiological testing.

Musculoskeletal biomechanics

The HPL carries 4 Codamotion Cx1 infra-red scanning units that are used extensively for 3-dimensional motion analysis. This system is fully integrated with 2 ground embedded Kistler force plates and a 16 channel wireless EMG system. The integration of these systems allows for full analysis of movement, forces associated with movement and measuring muscular effort during movement. In addition, the HPL also boasts a 64 channel EMG system for multichannel work and an isokinetic dynamometer, which can be used for both research and rehabilitation.

Physiological testing

Detailed analysis of pulmonary gas exchange can be made using an online gas analysis system, in addition to cardiac monitoring using a 12-lead ECG system, during exercise on a treadmill or the electromagnetically braked cycle ergometer. Measures can also be made out in the field, from simple tests of flexibility, strength, speed, power and cardiorespiratory fitness, to comprehensive measurement of expired air using the portable on-line gas analysis system.

Read less
This programme aims to provide you with further knowledge of the scientific concepts and procedures underpinning sport and exercise related musculoskeletal function, measurement, injury and treatment. Read more
This programme aims to provide you with further knowledge of the scientific concepts and procedures underpinning sport and exercise related musculoskeletal function, measurement, injury and treatment.

The programme will allow you to adopt a multidisciplinary approach to the scientific study of sport and exercise related musculoskeletal health and performance including anatomy, physiology, biomechanics, bioengineering, and kinesiology. You will have the opportunity to carry out in-depth and critical research in selected areas of interest.

Core study areas include orthopaedic biomechanics, neuromuscular function, physiology of exercise and sport, immediate and pre-hospital care of the injured athlete, research methods for sport and exercise, basic science and regenerative therapy, emerging technologies for health and wellbeing, motion analysis of human movement, developing computer models for sports biomechanics, sports injury, and a research project.

This course is delivered under the auspices of the National Centre for Sport and Exercise Medicine – East Midlands (NCSEM-EM), and is primarily taught at Loughborough University. The NCSEM-EM is an Olympic legacy funded project aimed at improving the health and wellbeing of the nation. The course is delivered in conjunction with The University of Nottingham with some teaching at the Queen’s Medical Centre.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/ssehs/musculoskeletal-sport-science-health/

Programme modules

Programme Modules:
Semester 1
- Orthopaedic Biomechanics
- Neuromuscular Function
- Physiology of Exercise and Sport
- Immediate and Pre-Hospital Care of the Injured Athlete (continues into semester 2)
- Research Methods for Sport and Exercise

Semester 2
- Basic Science and regenerative therapy
- Emerging Technologies for Health and Wellbeing
- Motion analysis of human movement
- Developing Computer Models for Sports Biomechanics
- Sports Injury
- Research Project

Assessment

Coursework and examination, project reports and research project.

Careers and further study

Typical destinations include teaching in further and higher education, sports science support with the English Institute of Sport, working in rehabilitation and exercise therapy, working with professional sports organisations, research and PhD study.

Why choose sport, exercise and health sciences at Loughborough?

Staff within the School are renowned internationally for the quality of their teaching and research, which has influenced policy and practice around the world.

Knowledge gained from our research underpins the teaching and variety of learning experiences offered through the School’s comprehensive range of postgraduate taught and research degrees.

Our staff expertise, combined with on-going investment in buildings, teaching facilities, laboratories and equipment, makes the School of Sport, Exercise and Health Sciences a stimulating, multidisciplinary environment in which to study.

- Research
Research within the School is classified broadly into three themes: Performance in sport, Lifestyle for health and well-being, and Participation in sport and exercise.

- Career prospects
Over 92% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as APR Psychology, Adidas, BUPA, Badminton England, British Red Cross, Ministry of Education, KPGM, Lucozade, NHS, Nuffield Health and Youth Sport Trust.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/ssehs/musculoskeletal-sport-science-health/

Read less
This programme is aimed at physiotherapists working in the speciality of musculoskeletal practice in a variety of health care settings. Read more
This programme is aimed at physiotherapists working in the speciality of musculoskeletal practice in a variety of health care settings. It offers physiotherapists a range of opportunities to develop their theoretical knowledge relevant to their role and the chance to extend current clinical practice.

Students will integrate the theory and evidence base of musculoskeletal practice. The modules include taught sessions at the Faculty of Health Studies, University of Bradford to encourage shared learning. These sessions include both theory and practical skills with an emphasis on clinical reasoning and problem solving.

Further learning and teaching on the practice module occurs in the clinical setting under the guidance of a clinical mentor. Students require access to an appropriate clinical caseload in order to be able to undertake the Musculoskeletal Physiotherapy Practice modules.

We are able to offer a limited number of Overseas students the required clinical caseload within the University's Physiotherapy Clinic.

Why Bradford?

The musculoskeletal modules in Bradford have been developed in conjunction with specialist clinicians working in hospitals within the region, thus ensuring the continued clinical relevance of the programme.

A further strength of the programme is the use of external lecturers who are specialists within their field and continue to have a clinical caseload. The programme also has the opportunity for overseas students to undertake the required clinical practice elements within the onsite Physiotherapy Clinic.

Learning activities and assessment

Assessment methods:
Physiotherapy Management of Spinal Dysfunction
1) Observed examination of a patient demonstrating an advanced clinical reasoning approach
2) Evidence based single case study
3) Practical skills checklist signed off by a clinical mentor

Physiotherapy Management of Lower Limb Dysfunction
1) Observed Structured Practical Examination- covering anatomy, biomechanics, clinical examination, treatment and scenarios.
2) Assignment based on the critical evaluation of a clinical paper
3) An open book case study including video analysis

Physiotherapy Management of Upper Limb Dysfunction
1) Observed Structured Practical Examination- covering anatomy, biomechanics, clinical examination, treatment and scenarios.
2) Assignment based on the critical evaluation of a clinical paper
3) An open book case study including video analysis

[[Career support and prospects
The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

This Post Graduate Certificate offers the physiotherapist a range of opportunities to develop advanced theoretical knowledge and practical skills relevant to their musculoskeletal role and offers the chance to extend and enhance their clinical practice and career pathway.

This award will be of benefit to physiotherapists working and specialising in the musculoskeletal field in a variety of health care settings.

Read less
This unique programme is designed to provide an education in the underlying scientific principles of physical therapy - physiotherapy, osteopathy, sports therapy - and an opportunity to experience the clinical application of specialist rehabilitation techniques with expert clinicians at the Royal National Orthopaedic Hospital (RNOH). Read more
This unique programme is designed to provide an education in the underlying scientific principles of physical therapy - physiotherapy, osteopathy, sports therapy - and an opportunity to experience the clinical application of specialist rehabilitation techniques with expert clinicians at the Royal National Orthopaedic Hospital (RNOH).

Degree information

Students can expect to acquire a broad and deep understanding of the science underpinning a physical therapy approach to the treatment of musculoskeletal pain and dysfunction. In addition, the MSc builds on cognitive skills, and students will become creative in their thinking and highly skilled in analysis and evaluation, and thus ideally placed to become innovative leaders within their field.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits), and a research project (60 credits).

Core modules
-Clinical Aspects of Musculoskeletal Medicine
-Movement Science and Pain
-Musculoskeletal Biomechanics and Application in Physical Therapy
-Musculoskeletal Tissue Biology - Disease and Dysfunction
-Musculoskeletal Tissue Biology - Form and Function
-Rehabilitation and Multi-Dimensional Patient Management
-Research Governance
-Research Methodology and Generic Skills

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, case-based studies, workshops and practical classes. Assessment is through MCQ examinations; coursework, including narrative reviews, structured questions and case studies; and poster presentation. The research project is assessed by a written dissertation and viva examination.

Careers

On successful completion of this programme, students can expect to assume leadership positions in clinical practice in the NHS, or in private practice for those with a prior clinical qualification. Graduates will also be well placed to enter academic or clinical research or a biomedical/healthcare-related position in industry.

Employability
Graduates are likely to be highly attractive to prospective employers; not only will they have gained multidisciplinary knowledge of the musculoskeletal system and treatments for musculoskeletal disease and dysfunction, but importantly they will have developed their skills in analysis and evaluation of information and creation of new ideas. These higher-level cognitive skills are highly sought after by employers.

Why study this degree at UCL?

This programme is unique in that it covers the basic science informing a physical therapy approach to treatment. The programme encourages students to integrate knowledge across modules and to use a multi-dimensional approach to patient management.

The programme is delivered through a partnership between internationally renowned UCL academics and world-leading specialist clinicians at the RNOH, providing students with excellent networking opportunities with academics, clinical professionals and like-minded peers.

UCL was rated as the best university for research strength in the UK in the latest Research Excellence Framework (December 2014). The RNOH has a worldwide reputation for ground-breaking neuro-musculoskeletal healthcare and specialist rehabilitation.

Read less
The MRes Biomechanics course focuses on developing research expertise, with a project conducted over the entire year of study. The aim is to develop and submit work of publishable quality. Read more

The MRes Biomechanics course focuses on developing research expertise, with a project conducted over the entire year of study. The aim is to develop and submit work of publishable quality. Current practical, technical and research skills are embedded in the course to reflect the needs of sport-related careers and industry but it is also a great stepping stone to a PhD.

You’ll learn a strong complement of applied and research skills, balanced with how to communicate key information to relevant sport industry partners.

How do you study?

Terms one – four: Three taught modules (two core and one optional delivered during the first two terms) and an ongoing Research project.

Core modules

  • Sport Science Research Methods
  • Sport Science in Action
  • Sport Research Project
  • Biomechanics of Optimal Performance
  • Advanced Kinesiology of Functional Musculoskeletal Performance

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
This MSc is designed to give clinicians and practitioners a deeper understanding of sports medicine, sports injuries and exercise medicine. Read more
This MSc is designed to give clinicians and practitioners a deeper understanding of sports medicine, sports injuries and exercise medicine. The programme covers the evidence-based management of sports medicine and musculoskeletal injuries, and emphasises the vital role of physical activity in the prevention and treatment of chronic disease. This MSc can be taken full time over one year, part-time over two years, or via flexible distance learning.

Degree information

The programme focuses on sports injuries and their prevention and treatment, and provides a thorough grounding in relevant areas of anatomy, biomechanics, exercise physiology and psychology, as well as the fundamentals of exercise in maintaining and improving health. Students develop essential research skills through an independent research project.

All students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits) and a research project (60 credits). Clinical sessions are spread over the year: commitment is equivalent to one half-day per week over three 12-week semesters. Clinic options include sports injury, physiotherapy and podiatry, exercise testing, and team visits.

A Postgraduate Diploma (120 credits, full-time nine months) is offered.

Core modules
-Exercise Physiology
-Health and Physical Activity
-Sports Injuries I – Lower Limb
-Sports Injuries II – Upper Limb
-Sports Injuries III – Head, Neck and Spine
-Advanced Sports Injury and Injury Prevention
-Research Methods

Optional modules
-Team and Event Medicine
-Rehabilitation of Sports Injuries

Dissertation/report
All MSc students undertake an independent research project from a diverse range of available topics, which culminates in a dissertation, an oral examination and a presentation.

Teaching and learning
Teaching is delivered through a combination of formal lectures, hands-on practical sessions, small group seminars, clinics and field trips, and will be delivered by lecturers who are highly experienced in their field. Up-to-date, evidence-based practice will be emphasised throughout and students' contribution through discussion is considered key. Assessment is through written examination, presentations, coursework and Objective Structured Clinical Examination (OSCE), as well as the dissertation and viva voce (oral) examination.

Careers

Graduates of the programme will gain a deeper understanding and valuable insights into the key areas of sports injury prevention and management, health and physical activity, and will be able to prescribe exercise safely for a range of medical conditions. This will prepare them for potential work in many areas from elite sports medicine to NHS sports and musculoskeletal clinics and exercise medicine services.

Top career destinations for this degree:
-Physiotherapist, Josephine Lawson Physiotherapy Clinic
-Sports Clinical Specialist Physiotherapist, Princess Grace Hospital
-Doctor, NHS Health Education East Midlands
-Rotational and Musculoskeletal Physiotherapist, Guy's and St Thomas' NHS Foundation Trust
-Project Manager, Weight Management Centre

Employability
A Master's-level degree in Sports Medicine, Exercise & Health from UCL will open many doors in the sports and exercise medicine world, from sports injury clinics to developing exercise medicine programmes for the prevention and treatment of chronic disease, and working with sports teams. UCL's MSc in Sports Medicine, Exercise & Health is led by local experts with active involvement in NHS and elite sports and exercise medicine settings. A distinct feature of the programme is the wide variety and large number of distinguished external guest speakers, all experts in their own fields locally, nationally and internationally. Students have unrivalled access to our guest speakers for career advice and potential opportunities.

Why study this degree at UCL?

UCL is one of the world's very best universities, consistently placed in the global top 20 in a wide range of world rankings. The UCL Division of Surgery & Interventional Science is part of one of the most prestigious medical schools in Europe, with a team of nearly 400 people, from surgeons and oncologists to clinical trials specialists and researchers. This programme is based at the Institute of Sport Exercise and Health (ISEH). Our aim is to understand the causes of human disease and develop innovative therapies and technology to improve quality of life.

The MSc in Sports Medicine, Exercise and Health at UCL places a strong emphasis on improving health through exercise alongside the management of sports and musculoskeletal injury. The programme has significant clinical content and students benefit from attendance at numerous specialist clinics and opportunities for field visits to sports teams and events.

Graduate students on the MSc in Sports Medicine, Exercise and Health at UCL are from diverse backgrounds reflecting the true multidisciplinary nature of sports and exercise medicine.

Read less
The MSc Strength and Conditioning degree at the University of Northampton is designed for those with an interest in developing their knowledge and understanding of the key physiological, biomechanical and psychological aspects underpinning sport and exercise performance via the development of strength and conditioning. Read more
The MSc Strength and Conditioning degree at the University of Northampton is designed for those with an interest in developing their knowledge and understanding of the key physiological, biomechanical and psychological aspects underpinning sport and exercise performance via the development of strength and conditioning. It is aimed at individuals with a prior knowledge of, or keen interest in, strength and conditioning, specifically graduates of or those working in clinical or applied sport, exercise or health environments.

Our programme of study is practical based, stimulating, well-structured and research-informed covering a range of topic areas including musculoskeletal training and adaptation, advanced and applied training methods as well as assessment and management of injury. The practical elements of the degree make use of purpose-built strength and conditioning and physiology laboratories to develop the students’ knowledge and understanding of the key issues associated with strength and conditioning.

Course content

The course will examine advanced and current aspects of strength and conditioning including musculoskeletal strength and conditioning practices, physiological response and adaptations of the cardiovascular system, assessment/management of injury and advanced/applied training methods aimed at developing an advanced, critical understanding of strength and conditioning training, systems and adaptations that dictate performance. The course will culminate by developing an advanced understanding of the research process by conducting a research project with the intention of submitting the findings to relevant conferences and journals for publication. The programme of study is aligned to the guidelines set out by the United Kingdom Strength and Conditioning Association (UKSCA).

The first trimester focuses on the musculoskeletal training and adaptations to specific types of strength and conditioning training, the assessment and management of associated injuries and the advanced training methods associated with this type of training. The second trimester allows students to develop their understanding of these specific training methods and apply them to a real life case study as part of the applied training methods module. They will also develop their knowledge and understanding in areas such as cardiovascular development and research methods.

The modules are taught in structured programmes that are delivered within the classroom, sports hall and laboratories. All sessions are supported by our online learning environment, NILE. Students can expect two hours of contact time each week for each module. Classes are delivered in a variety of means – lectures, seminars and practicals – and our aim is to provide opportunities for students to become actively involved in their learning. Personal tutorials, and meetings with a personal academic tutor are additional to the time spent in the class and would average another one hour per week. There are no additional costs for the course however, students will need sports clothes (trainers, shorts, tops) when participating in the practical sessions.

Course modules (16/17)

-Musculoskeletal Training and Adaptation
-Cardiovascular Response and Adaptation
-Injury Assessment and Management
-Performance Analysis

Facilities and Special Features

-Highly equipped and dedicated biomechanics and physiology laboratories.
-Experienced subject specialists actively researching and publishing in their fields.
-Opportunities to attend and present research at international conferences.

Read less
Break through to your career in Physiotherapy. As a physiotherapist you will be an autonomous, first-contact practitioner and valued member of wider health teams. Read more

Break through to your career in Physiotherapy

As a physiotherapist you will be an autonomous, first-contact practitioner and valued member of wider health teams. Our Master of Physiotherapy provides you with the specialised knowledge for a successful career in a range of different areas. Whether you decide to work in the public hospital setting or private practice, you will be armed with the skills to meet the unique needs of clients and enhance the health and welfare of the wider community.

Study a Master of Physiotherapy at UC and you will:

  • become a skilled practitioner capable of working in a variety of settings
  • receive an integrated learning mix from lecture, laboratory and tutorial sessions with a strong professional practice component
  • gain the necessary knowledge, exposure, ethical training and clinical decision making skills required to practice as a physiotherapist
  • gain professional experience in public hospitals and private practices in the ACT, regional NSW or across Australia
  • undertake a series of problem based clinical studies to further develop your skills and adaptability
  • acquire expertise and skills in research to test established theories against a body of knowledge in the areas of growth and development, movement dysfunction, pathology or degeneration. 

Work-integrated learning

Throughout your Master's degree you will complete clinical practice experience that will give you the opportunity to integrate the theoretical and practical components of your course into genuine work environments.

Professional Accreditation

The course has been accredited by the Australian Physiotherapy Council. Graduates of the Master of Physiotherapy are eligible for registration as a Physiotherapist by the Australian Health Practitioner Regulation Agency. 

For professional Physiotherapy registration with APHRA, IELTS is required for anyone who did not complete high school in Australia, England, Ireland, New Zealand, USA, Canada or South Africa, as opposed to the University requirements where IELTS is only required for those who have not studied in an English speaking country.

Typical study pattern

Year 1

Semester 2

Year 2

Flexible Period 2

Flexible Period 6

Semester 2

Year 3

Flexible Period 2

Career opportunities

A Master of Physiotherapy at UC is fully accredited by the Australian Physiotherapy Council. Graduates are eligible for registration as a Physiotherapist by the Australian Health Practitioner Regulation Agency.

A range of careers are available for Master of Physiotherapy students including:

  • sports
  • musculoskeletal
  • neurological
  • cardiothoracic
  • women’s health
  • paediatrics
  • oncology
  • emergency
  • aged care 
  • burns units and more
  • private industry and the government sector.


Read less
The Department of Orthopaedic and Trauma Surgery, at the University of Dundee, was founded in 1967 when the University of Dundee split from St Andrews’ University and established an independent teaching medical school. Read more
The Department of Orthopaedic and Trauma Surgery, at the University of Dundee, was founded in 1967 when the University of Dundee split from St Andrews’ University and established an independent teaching medical school. The department is based in the Tayside Orthopaedic and Rehabilitation Technology (TORT) Centre. The current staff includes a professor, two clinical senior lecturers, two non-clinical senior lecturers, one clinical and one non-clinical lecturer, one research assistant and four clinical fellows, who are supported by various staff members.

With a tradition of teaching and research in the field of mechanisms of disease, treatment of disorders of the musculoskeletal system and biomedical and rehabilitation engineering. The founder, Professor Ian Smillie, gained a worldwide reputation in knee surgery and the role of the meniscus. His successor, Professor George Murdoch, founded and developed the Dundee Limb Fitting Centre and the Tayside Rehabilitation Engineering Services, which have acquired an international reputation for the treatment of the amputee and assessment of gait analysis. His successor, Professor David Rowley, sustained the department’s international reputation and innovation in the area of joints replacement complemented by a worldwide service in Clinical Audit Outcomes

Overview

The MSc in Orthopaedic Science programme will provide a robust and wide-reaching education in the fundamental physical sciences relating to orthopaedic surgery. It is the only programme amongst the few comparable MSc programmes in the UK with a specific focus on the theoretical and practical application of technology within orthopaedics. Additionally, it equips trainees with the knowledge of fundamental science required for the FRCS exit exam.

Aims of the Programme

The aim of this programme is to provide students with a Masters level postgraduate education in the knowledge and understanding of the fundamental physical sciences relating to orthopaedic surgery. It also aims to provide experience in the design and execution of a substantive research project in the field of orthopaedic, biomechanics and rehabilitation technology and its underlying science.
By the end of the programme, students should have a systematic understanding and knowledge of the physical sciences and technology relevant to orthopaedics, a critical awareness of current research questions in the field and the appropriate practical and analytical skills in order to be able to:

- Understand and interpret complex scientific concepts.
- Critically evaluate current research.
- Understand and utilise relevant technology, and have the ability to evaluate and critique methodologies.
- Develop and test scientific hypotheses, including the design of laboratory research projects aimed at addressing specific hypothesis-driven questions.
- Undertake the practical and technical aspects of a laboratory-based project.
- Communicate complex scientific concepts to specialist and non-specialist audiences, both verbally and in writing.
- Demonstrate an understanding of whether specific research outcomes make a significant, novel contribution to the field.

Programme Content

The programme will be taught part-time by distance learning over a period of normally 3 to 5 years, or one year full time in house. It is comprised of five compulsory 30-credit taught modules and one 60 credit research project module.

Module 1 - Mechanics
Module 2 - Biomechanics
Module 3 - Rehabilitation Technology
Module 4 - Orthopaedic Technology
Module 5 - Statistics

Methods of Teaching and Assessment

Modules 1-5:
Teaching in modules 1-5 will be delivered through distance learning module components, each comprised of a module component guide and several component units. Tutor support will be available via email, web conferencing, written correspondence and telephone.

Assessment of modules 1-5 will be by examination with the option of sitting exams upon completion of each individual module or upon completion of all five modules. Assessment is weighted (80%) by exam and (20%) by coursework.

Successful completion of the PGDip modules 1-5 is required to progress to the research project component. Successful completion of course work will normally be required prior to sitting the examination papers. Each of the two components of assessment for the PGCert and PGDip (course work and examination) must have a minimum grade of D3 to pass and progress to the full MSc programme.

Module 6 - Research Project:
During the research project, learning will be partly experiential, partly directed and partly self-directed. The research project will be assessed through the presentation of a thesis, and the final mark will be moderated through an oral exam (60 credits).

why study at Dundee?

In 2013 the MCh (Orth) Dundee, course was granted full accreditation by the Royal College of Surgeons of
England. This accreditation is extremely important and comes as the department is celebrating the 20th
anniversary of the course. This is the only face-to-face course accredited by the College outside of England.

“It was a great learning experience. Coming here, my overall
personality has changed. I have learnt the right way to write
a thesis and also got to know the recent advancements in
field of Orthopaedic surgery” International Student Barometer, 2009

Career Prospects

The programme will prepare graduates for a research-focused clinical career in the NHS or academia, and is particularly well positioned to prepare graduates for entry into a clinical academic career path.

If taken in-house, the start date for this course is September. The distance learning start date can be at any point in the year.
* The taught elements are conducted by self-directed learning modules as with distance learning but the project will be undertaken in-house. The candidate will be attached to a consultant firm as an observer.

Students wishing to pursue the MSc must complete the Diploma within 3 years part-time or 9 months full-time. The MSc must be completed within a period of 1 year full-time or 2-5 years part-time.

Fees must be paid in full prior to commencing the course (in-house only).

Read less
The MSc in Sport Rehabilitation educates students in the management and care of the injured athlete or those returning to physical activity following prolonged illness. Read more
The MSc in Sport Rehabilitation educates students in the management and care of the injured athlete or those returning to physical activity following prolonged illness.

The degree provides students with the knowledge and understanding required to assess and manage musculoskeletal injuries from the acute stage through to return to sport or activity.

There is currently a high clinical demand for provision of highly skilled, autonomous and analytical therapists specialising within the field of prevention, assessment and management of sports related injuries.

This demand is from sportsmen and women, teams and clinicians currently working in the field of amateur and professional sport and this course aims to provide specialists in the field of Sport Rehabilitation to fulfil this demand.

Why St Mary’s?

The teaching staff at St Mary’s have a vast amount of experience working with athletes at all levels of competition. The structure of the course embeds clinical placements into the programme, allowing students to bridge the theory to practice gap as they progress through their studies.

It enables students to observe and work with healthcare professionals working in high level sport and clinical settings providing an insight into the demands of the profession and the roles they will fulfill upon graduating.

The degree is underpinned by a detailed understanding of physiological, biomechanical, anatomical and psychosocial principles.

Lectures and practicals take place in specialist rooms. Some are taught in the state-of-the-art strength and conditioning facility (the performance education centre) or in our biomechanics laboratory. We also make use of the sports services at the University when this is relevant.

Course Content

What you will study
-Clinical Anatomy and Physiology
-Clinical Assessment and Soft Tissue Management
-Acute Management of Injury and Specialised Treatment Techniques
-Principles of Rehabilitation and Neuromechanics
-Late Stage Rehabilitation and Factors Affecting Performance
-Evidence Based Practice and Clinical Placement
-Advanced Research Methods
-Dissertation

Please note: All information is correct at the time of publication. However, course content is regularly updated and this may result in some changes, which will be communicated to students before their programme begins.

Career Prospects

Graduates of the MSc in Sport Rehabilitation will be eligible to join BASRaT, the professional body overseeing and regulating the practice of Sport Rehabilitators and Trainers in this country. The 400 clinical placement hours required for BASRAT membership are included in the Evidence Based Practice and Clinical Placement module. BASRaT also has a minimum attendance requirement for lectures, practicals and seminars. To qualify for BASRaT membership students must complete and pass an Immediate Care in Sport (Level 2) course, which is included.

"BASRaT graduates are trained solely in Sports and Exercise Medicine, with an emphasis on the design and implementation of exercise and rehabilitation programmes in both health and disease. St. Mary's University and the University of Salford were the pioneering institutions to run degree programmes of this nature, and have since been joined by several other institutions. To ensure that all accredited courses were of a high equitable standard, and that all graduates conformed to strict codes of professional practice and conduct, the British Association of Sport Rehabilitators and Trainers was born."

Read less

Show 10 15 30 per page



Cookie Policy    X