• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Leeds Featured Masters Courses
Swansea University Featured Masters Courses
"multiphase" AND "flow"×
0 miles

Masters Degrees (Multiphase Flow)

  • "multiphase" AND "flow" ×
  • clear all
Showing 1 to 5 of 5
Order by 
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more

Course Description

This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Core -

Management for Technology
Risk Management and Reliability Engineering
Pumps and Pumping Systems
Process Plant Operations
Advanced Control Systems
Introduction to Flow Assurance
Multiphase Flows
Multiphase Flows
Production Technology and Chemistry

Optional -

Process Measurement Systems
Process Design and Simulation
Computational Fluid Dynamics
Structural Integrity

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
This course offers a cross-disciplinary approach to the study of environmental management, policy and sustainable development. You’ll gain knowledge of major environmental issues and understand the methods in which environmental considerations and climate change are used in development and planning decisions. Read more

Why this course?

This course offers a cross-disciplinary approach to the study of environmental management, policy and sustainable development.

You’ll gain knowledge of major environmental issues and understand the methods in which environmental considerations and climate change are used in development and planning decisions.

There’s a strong demand for graduates with environmental management and policy-making skills. We’ve seen our graduates capitalise upon a wide range of employment within the private, public and voluntary sectors.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainabilityenvironmentalstudies/

Work Placement

As part of the class Independent Study in Collaboration with Industry you can apply to work with industry projects. One of the projects is the Carbon Clinic. This is an innovative collaborative project between the Carbon Trust and the University. It aims to provide support to small and medium sized enterprises (SMEs) to reduce their carbon footprint and give you practical experience on environmental responsibilities within a business.

Facilities

In our Department of Civil & Environmental Engineering we have invested £6 million in state-of-the-art laboratories which cover core areas of activity including geomechanics, microbiology, analytical chemistry and structural design.

- Field investigation
We are equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- electrical resistivity tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We are equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
- pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The MSc involves a curriculum of three core classes and a very wide range of optional classes. Each module is taught two to three hours per week over 8 to 12 weeks.

In addition, you'll also undertake a dissertation. Progress to the dissertation is dependent on performance in the instructional modules.

Careers

There’s a strong demand for graduates with environmental management and policymaking skills. As a graduate you may find yourself in a range of positions in:
- Private consultancies
- Government agencies
- Local authorities
- Environmental regulators, businesses and agencies

- Where are they now?
84% of our graduates are in work or further study.*

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:
- Structural Engineering & Project Management
- Geotechnical Engineering & Project Management
- Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Engineering graduates are in high demand from recruiting companies worldwide. This course has been designed to meet the needs of a broad range of engineering industries. Read more

Why this course?

Engineering graduates are in high demand from recruiting companies worldwide.

This course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments.

This one-year MSc in civil engineering is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, maths, physics and mechanical engineering may also be considered.

You can graduate with an MSc in Civil Engineering or choose to follow a specialist named stream:
- Civil Engineering with Structural Engineering & Project Management
- Civil Engineering with Geotechnical Engineering & Project Management
- Civil Engineering with Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineering/

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

You'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Placements

As part of the class Independent Study in Collaboration with Industry, you can apply to work with industry projects.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
- pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software & numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Open Access

Home students can also choose to study through Open Access. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Open Access route instead.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The course has two semesters of taught classes. Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Department of Mechanical and Aerospace Engineering (MAE) is one of the leading MAE departments in Asia. It offers rigorous academic and professional training in a wide range of areas, including both traditional and cutting-edge topics in energy, mechanics, advanced materials, nano/biotechnology, and manufacturing. Read more
The Department of Mechanical and Aerospace Engineering (MAE) is one of the leading MAE departments in Asia. It offers rigorous academic and professional training in a wide range of areas, including both traditional and cutting-edge topics in energy, mechanics, advanced materials, nano/biotechnology, and manufacturing.

The aim of the MAE Department is to produce high quality MAE graduates with competitive academic training, technology leadership, and/or entrepreneurship.

The Department has 26 full-time faculty members. Many of them are internationally renowned scholars in their fields. There are about 150 research postgraduate students. The MAE Department is also equipped with many state-of-the-art laboratory facilities. Our faculty and postgraduate students conduct research at the frontier of mechanical and aerospace engineering and collaborate closely with local industry.

The MPhil program focuses on strengthening students' background in the fundamentals of mechanical and aerospace engineering and exposing them to the environment of academic research and development. Students are required to undertake coursework and complete a thesis to demonstrate their competence in engineering research.

Research Foci

The Department's research concentrates on energy and environmental engineering, mechanics and materials, and mechatronics and manufacturing. Research covers several major areas:

Solid Mechanics and Dynamics
These are two of the fundamental pillars of Mechanics research. The Department has a diverse faculty with expertise in these fields. Research activities range from applied to theoretical problems, and have a marked multidisciplinary nature. They involve: applied mathematics, solid mechanics, nonlinear dynamics, computations, solid state physics, material science and experiments for various kinds of solid materials/systems and mechanical behaviors. Faculty members work on problems of both static and dynamic natures with different types of evolutions. These problems also involve multi-field coupling on different scales of time and length, from micro-second to long time creep processes and from a very small carbon nanotube or a cell to macroscopic scale composite materials and electro-mechanical devices/systems.

Materials Technology
Materials engineering focuses on characterizing and processing new materials, developing processes for controlling their properties and their economical production, generating engineering data necessary for design, and predicting the performance of products. Research topics include: smart materials, biomaterials, thin films, composites, fracture and fatigue, residual life assessment, materials issues in electronic packaging, materials recycling, plastics flow in injection molding, advanced powder processing, desktop manufacturing, and instrumentation and measurement techniques.

Energy/Thermal Fluid and Environment Engineering
Research in energy, thermal/fluids and environmental engineering includes fuel cells and batteries, advanced renewable energy storage systems, thermoelectric materials and devices, nanoscale heat and mass transfer, transport in multicomponent and multiphase systems, innovative electronics cooling systems, energy efficient buildings, and contaminant transport in indoor environments.

Design and Manufacturing Automation
These elements lie at the heart of mechanical engineering in which engineers conceive, design, build, and test innovative solutions to "real world" problems. Research is being conducted in the areas of geometric modeling, intelligent design and manufacturing process optimization, in-process monitoring and control of manufacturing processes, servosystem control, robotics, mechatronics, prime-mover system control, sensor technology and measurement techniques, and bio-medical systems design and manufacturing.

Microsystems and Precision Engineering
Micro ElectroMechanical Systems (MEMS) is a multidisciplinary research field which has been making a great impact on our daily life, including various micro sensors used in personal electronics, transportation, communication, and biomedical diagnostics. Fundamental and applied research work is being conducted in this area. Basic micro/nanomechanics, such as fluid and solid mechanics, heat transfer and materials problems unique to micro/nanomechanical systems are studied. New ideas to produce microsystems for energy, biomedicine and nanomaterials, micro sensors and micro actuators are explored. Technology issues related to the micro/nanofabrication of these devices are being addressed.

Aerospace Engineering
Aerospace engineering is a major branch of engineering concerned with research, development, manufacture and operation of aircraft and spacecraft. Within the aerospace engineering group, fundamental and applied research is being conducted in areas such as aerodynamics, aeroacoustics, aircraft and engine noise and performance, combustion dynamics, thermoacoustics, atomization and sprays, and aircraft design and optimization. Advanced experimental facilities and high-fidelity computational methods are being developed and used. The group boasts two world-class anechoic wind tunnels for aerodynamics and aeroacoustics research, and is home to a major research center on aircraft noise technology.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X