• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Dundee Featured Masters Courses
EURECOM Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"msc" AND "software" AND …×
0 miles

Masters Degrees (Msc Software Engineering)

We have 975 Masters Degrees (Msc Software Engineering)

  • "msc" AND "software" AND "engineering" ×
  • clear all
Showing 1 to 15 of 975
Order by 
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. Read more

Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk.

This programme will:

  • Teach you advanced techniques in program design
  • Allow you to study key issues of interactive system design
  • Teach you the mathematical foundations of software and the practical application of these techniques
  • Focus on discovering ways of mitigating risk in large scale software engineering projects
  • Enable you to pursue roles in areas such as software design and engineering, web development, project management and IT consulting.

We have a new MSc Software Engineering and Security pathway to the MSc Software Engineering degree. If you are interested in this pathway, you need to apply for the MSc Software Engineering programme and take the pre-requisite modules and then you would be able to graduate with the MSc Software Engineering and Security.

Security, authentication and identity management have grown substantially in importance in recent years, and there is significant demand in both the commercial and national/local government sectors for software engineers with a good grasp of these areas hence introducing a pathway in Security.

NB: Students will need to take and pass the following modules in order to be eligible for the pathway title MSc in Software Engineering with Security.

ECS726P - Security and Authentication (semester 2)

ECS760 - Distributed Systems and Security semester 2)

ECS715P - Program Specifications (semester 1)

ECS737P - Software Analysis and Verification (semester 2)

ECS738 - Bayesian Decision and Risk Analysis (semester 2)

Why study your MSc in Software Engineering at Queen Mary?

Our research-led approach

Your tuition will be delivered by field leading academics engaged in world class research projects in collaboration with industry, external institutions and research councils.

Our strong links with industry

  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • Industrial projects scheme - To support industrial experience development, you can do your final project in collaboration with an industrial partner.

Structure

Programme structure

MSc Software Engineering is currently available for one year full-time study, two years part-time study.

Full-time

Undertaking a masters programme is a serious commitment, with weekly contact hours being in addition to numerous hours of independent learning and research needed to progress at the required level. When coursework or examination deadlines are approaching independent learning hours may need to increase significantly. Please contact the course convenor for precise information on the number of contact hours per week for this programme.

Part-time

Part-time study options often mean that the number of modules taken is reduced per semester, with the full modules required to complete the programme spread over two academic years. Teaching is generally done during the day and part-time students should contact the course convenor to get an idea of when these teaching hours are likely to take place. Timetables are likely to be finalised in September but you may be able to gain an expectation of what will be required.

Important note regarding Part Time Study

We regret that, due to complex timetabling constraints, we are not able to guarantee that lectures and labs for part time students will be limited to two days per week, neither do we currently support any evening classes. If you have specific enquiries about the timetabling of part time courses, please contact the MSc Administrator

Semester 1 (Maximum of 4 modules to be taken in Semester 1)

Select at least one from:

 Functional Programming

 Program Specifications

 Big Data Processing

 

Further options:

 Machine Learning

 Introduction to IOT

 Semi-Structured Data and Advanced Data Modelling

 Introduction to Object-Oriented Programming

Semester 2 (Maximum of 4 modules to be taken in Semester 2)

Select at least two from:

 Real Time & Critical Systems

 Interactive Systems Design

 Software Analysis and Verification

 Bayesian Decision and Risk Analysis

 

Further options from:

 Mobile Services

 Security and Authentication 

 The Semantic Web

 Advanced Object Oriented Programming

 Cloud Computing

 Data Analytics

 Parallel Computing

 Distributing Systems

Semester 3

 Project



Read less
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. Read more

Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk.

This programme will:

  • Teach you advanced techniques in program design
  • Allow you to study key issues of interactive system design
  • Teach you the mathematical foundations of software and the practical application of these techniques
  • Focus on discovering ways of mitigating risk in large scale software engineering projects
  • Enable you pursue roles in areas such as software design and engineering, web development, project management and IT consulting.

We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements.

We have a new MSc Software Engineering and Security pathway to the MSc Software Engineering degree. If you are interested in this pathway you need to apply for the MSc Software Engineering programme and take the pre-requisite modules and then you would be able to graduate with the MSc Software Engineering and Security.

Security, authentication and identity management have grown substantially in importance in recent years, and there is significant demand in both the commercial and national/local government sectors for software engineers with a good grasp of these areas hence introducing a pathway in Security.

NB: Students will need to take and pass the following modules in order to be eligible for the pathway title MSc in Software Engineering with Security.

ECS726P - Security and Authentication (semester 2)

ECS760 - Distributed Systems and Security semester 2)

ECS715P - Program Specifications (semester 1)

ECS737P - Software Analysis and Verification (semester 2)

ECS738 - Bayesian Decision and Risk Analysis (semester 2)

Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

Why study your MSc in Software Engineering at Queen Mary?

Our research-led approach

Your tuition will be delivered by field leading academics engaged in world class research projects in collaboration with industry, external institutions and research councils.

Our strong links with industry

  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft.
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • We have collaborations, partnerships, industrial placement schemes and public engagement programmes with a variety of organisations, including Vodafone, Google, IBM, BT, NASA, BBC and Microsoft.
  • Full-time MSc with Industrial Experience option available on our taught MSc programmes. You have the option to complete over two years, with a year of work experience in industry.
  • Industrial projects scheme - To support industrial experience development, you can do your final project in collaboration with an industrial partner.

Structure

You will study four taught modules per semester followed by written examinations and the MSc research project (dissertation).

Full-time

Undertaking a masters programme is a serious commitment, with weekly contact hours being in addition to numerous hours of independent learning and research needed to progress at the required level. When coursework or examination deadlines are approaching independent learning hours may need to increase significantly. Please contact the course convenor for precise information on the number of contact hours per week for this programme.

Part-time

Part-time study options often mean that the number of modules taken is reduced per semester, with the full modules required to complete the programme spread over two academic years. Teaching is generally done during the day and part-time students should contact the course convenor to get an idea of when these teaching hours are likely to take place.

Year 1

Semester 1 (Maximum of 4 modules to be taken in Semester 1)

Select at least one from:

  • Big Data Processing
  • Functional Programming
  • Program Specifications

Further options:

  • Introduction to IOT
  • Introduction to Object-Oriented Programming
  • Machine Learning
  • Semi-Structured Data and Advanced Data Modelling

Semester 2 (Maximum of 4 modules to be taken in Semester 2)

Select at least two from:

  • Bayesian Decision and Risk Analysis
  • Interactive Systems Design
  • Real Time & Critical Systems
  • Software Analysis and Verification

Further options from:

  • Advanced Object Oriented Programming
  • Cloud Computing
  • Data Analytics
  • Distributing Systems
  • Mobile Services
  • Parallel Computing
  • Security and Authentication 
  • The Semantic Web

Semester 3

  •  Project

Year 2

  • Industrial Placement Project


Read less
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. Read more
Whether it's the computers in our offices, the smartphones in our pockets, the electrics in our cars or the technology that enables us to monitor patients in critical care, software is at the heart of our society. This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk.

This programme will:

-Teach you advanced techniques in program design
-Allow you to study key issues of interactive system design
-Teach you the mathematical foundations of software and the practical application of these techniques
-Focus on discovering ways of mitigating risk in large scale software engineering projects
-Enable you pursue roles in areas such as software design and engineering, web development, project management and IT consulting.
-We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. As a leading research School, we have excellent links with industry. We also employ dedicated staff to help you arrange your year in industry. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements. We are unable to guarantee all students secure an industrial placement, as our industrial partners conduct their own employment application and interview processes.

We have a new MSc Software Engineering and Security pathway to the MSc Software Engineering degree. If you are interested in this pathway you need to apply for the MSc Software Engineering programme and take the pre-requisite modules and then you would be able to graduate with the MSc Software Engineering and Security.

Security, authentication and identity management have grown substantially in importance in recent years, and there is significant demand in both the commercial and national/local government sectors for software engineers with a good grasp of these areas hence introducing a pathway in Security.

NB: Students will need to take and pass the following modules in order to be eligible for the pathway title MSc in Software Engineering with Security.

ECS726P - Security and Authentication (semester 2)

ECS760 - Distributed Systems and Security semester 2)

ECS715P - Program Specifications (semester 1)

ECS737P - Software Analysis and Verification (semester 2)

ECS738 - Bayesian Decision and Risk Analysis (semester 2)

Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Read less
This course aims to equip students for professional careers in this important field of software systems. It provides a practical understanding of the issues relating to the design, analysis and implementation of modern software systems. Read more

This course aims to equip students for professional careers in this important field of software systems. It provides a practical understanding of the issues relating to the design, analysis and implementation of modern software systems.

With the IT sector expanding rapidly around the world, there has never been a better time to develop specialist software engineering skills. This course will give you an understanding of the latest software engineering technologies used to address today's challenges in software development.

You will become familiar with a broad range of current scholarship work in software engineering, learning how to research and review published work. Your studies will also give you a practical understanding of the issues relating to the design, analysis and implementation of modern software systems, and you will have opportunities to meet speakers from the industry, including potential employers. In short, this course prepares you for a professional career or research in this important field.

The Internship Course seeks to provide the same rigorous and challenging programme of professional practice as the MSc Software Engineering but has the added advantage of including a 6 months internship incorporated into the period of study. This makes it ideal for students seeking to add a practical dimension to their studies and understand the demands of workplace supervision and management. Internship opportunities exist throughout the computing industry within the UK.

Course detail

This course is suitable for you if you have a background in IT and want to specialise in software engineering. It helps you build the skills needed to work with modern software systems in an industrial context, and to develop an appreciation of all features of commercial software engineering. You will use industry-standard technologies, and have the opportunity to specialise in topics ranging from software project management to implementation techniques. The internship will come at the end of the course following the successful completion of all taught modules.

During the Internship you will work for 6 months with an employer. The internship allows you to apply your theoretical knowledge to a practical work-based situation. It will allow you to improve existing skills and acquire new ones, explore various career opportunities, network and be part of a team. This will improve your understanding of the world of work and professional practice in the workplace. It will also enhance your career prospects, allowing you to focus on your potential career path.

Modules

This is an indicative listing of modules for the course:

  • Mobile Web Component Development 
  • Distributed Application Development 
  • Advanced Topics in Software Engineering 
  • Research Methods 
  • Employability Skills & Employment 
  • Learning and Professional Development
  • Dissertation 
  • HCI for Information Systems (Optional) 
  • Principles of Project Management (Optional) 
  • Consultancy and Technical Innovation (Optional)
  • Security Management (Optional) 
  • Programming Support (Optional) 
  • Enterprise Architecture (Optional)
  • Knowledge Management (Optional)
  • Data Architecture (Optional)

Assessment

course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Jobs and placements

The School of Computing and Engineering has several links with industry, creating opportunities for work placements and internships for our best students. We have set up a number of successful knowledge transfer partnerships, where we provide our expertise to real-world projects.

Career and study progression

This course aims to help you towards a rewarding position in the software industry, such as software architect, solution architect, project manager or senior software developer.

You can go on to further study at the level of MPhil / PhD. We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course.

Scholarships and bursaries

Information about scholarships and bursaries can be found here.



Read less
This course aims to equip students for professional careers in this important field of software systems. It provides a practical understanding of the issues relating to the design, analysis and implementation of modern software systems. Read more

This course aims to equip students for professional careers in this important field of software systems. It provides a practical understanding of the issues relating to the design, analysis and implementation of modern software systems.

With the IT sector expanding rapidly around the world, there has never been a better time to develop specialist software engineering skills. This course will give you an understanding of the latest software engineering technologies used to address today's challenges in software development.

You will become familiar with a broad range of current scholarship work in software engineering, learning how to research and review published work. Your studies will also give you a practical understanding of the issues relating to the design, analysis and implementation of modern software systems, and you will have opportunities to meet speakers from the industry, including potential employers. In short, this course prepares you for a professional career or research in this important field.

Course detail

This course is suitable for you if you have a background in IT and want to specialise in software engineering. It helps you build the skills needed to work with modern software systems in an industrial context, and to develop an appreciation of all features of commercial software engineering. You will use industry-standard technologies, and have the opportunity to specialise in topics ranging from software project management to implementation techniques.

Modules

  • Mobile Web Component Development 
  • Distributed Application Development 
  • Advanced Topics in Software Engineering 
  • Research Methods 
  • Employability Skills & Employment 
  • Learning and Professional Development
  • Dissertation 
  • HCI for Information Systems (Optional) 
  • Principles of Project Management (Optional) 
  • Consultancy and Technical Innovation (Optional)
  • Security Management (Optional) 
  • Programming Support (Optional) 
  • Enterprise Architecture (Optional)
  • Knowledge Management (Optional)
  • Data Architecture (Optional)

Format

Diverse methods are used to explore all aspects of the field. A strong supportive culture exists amongst the course tutors which enable students achieve their potential.

Learning materials used: good levels of access to computer facilities. The academic and professional elements are well supported by the university library and a good range of digital resources.

Assessment

Course assessed work is a significant part of the total assessment. There is practical work, report writing, critical academic writing and the skills and knowledge gained in these contribute to a capacity to deliver a high quality dissertation.

There are a number of end of module exams. Course tutors provide appropriate support throughout the module to ensure candidates are well prepared.

Career and study progression

This course aims to help you towards a rewarding position in the software industry, such as software architect, solution architect, project manager or senior software developer.

Outstanding graduates have gone on to further study at the level of MPhil and PhD at UWL and at other institutions.

We actively encourage students with potential for research to make their interest known early on in their course.

How to apply

Click the following link for information on how to apply to this course.

Scholarships and bursaries

Information about scholarships and bursaries can be found here.



Read less
Software engineers create and maintain software applications using best practice from computer science, project management, engineering, application domains and other fields. Read more
Software engineers create and maintain software applications using best practice from computer science, project management, engineering, application domains and other fields. Students will learn how to apply state-of-the-art techniques and methodologies to develop high quality software to professional standards.

The aim of this MSc programme is to impart the understanding and skills to engineer software at an advanced level to professional standards. Students can specialise in particular areas such as the development of dependable systems or mobile applications or advanced interactive systems like games or novel applications using biologically inspired models of computing

Graduates from the programme can expect to be able to get employment with software houses, IT companies, research and development divisions of companies, financial services organisations, defence contractors or government IT agencies and as researchers or research students within universities.

Full-time students take 4 courses each semester and must normally take courses marked with **

Semester 1
Computer Network Security
**Information Systems Methodologies
Mobile Communications & Programming
**Rigorous Methods for Software Engineering
Software Engineering Foundations
Systems Programming & Scripting

Semester 2
Advanced Interaction Design
**Advanced Software Engineering
Biologically Inspired Computation
Computer Games Programming
**Research Methods & Project Planning
Software Simulation & Modelling

After semester 2 students continue full-time on the MSc project.

Project
In the third semester (May-August) students undertake a specialist MSc project which is written up as a 15000 word dissertation. This project enables further development and consolidation of skills introduced in the taught courses, applying them to a challenging practical problem in this subject area.

Read less
This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk. Read more
This MSc programme focuses on advanced theoretical and practical techniques in program design, and the management of software project risk. It includes training in vital areas such as security, specification, risk management, usability, and design integrity.

You will learn advanced techniques in program design (including software patterns and component technologies) and information handling (structured information, databases). You can study key issues of interactive system design, leading to the ability to identify issues and trade-offs in the design of human-computer interaction, and to invent and evaluate alternative solutions to design problems. You will gain knowledge in the mathematical foundations of software and the practical application of these techniques. You will develop skills to manage software project risks and learn about the development of tools to support decision-making.

The programme will enable you to become competitive in the most technically oriented branches of software engineering. Typical jobs after graduation include software risk analyst, system designer, software quality assurance, software engineer, programmer, usability consultant, systems analyst, and software architect.
Programme outline

Central modules can include:
Design for Human Interaction
Functional Programming
Program Specifications
Real Time & Critical Systems
Software Analysis and Verification
Software Risk Assessment
MSc Project

Further options can include:
Machine Learning
XML and Structured Documents
Advanced Program Design
Advanced Database Systems & Technology
Distributed Systems and Security
Mobile Services
Security and Authentication
Business Technology Strategy
Interactive Systems Design
The Semantic Web
High Performance Computing

Please note that module availability is subject to change.

Read less
Course aims. Read more
Course aims
Financial services are not only one of the most dynamic sectors of the economy but also one of the two largest customers of IT! This MSc is offered together with the Department of Economics in order to give you both a command of the software technologies that financial institutions require to "embrace the challenge of change" and of the business context and organisational structures that IT systems need to support.

This MSc programme concentrates on architectures for building scalable financial software systems, thus preparing software engineers for a plethora of jobs in the financial industry. In particular it considers technologies and techniques that are particularly relevant for the challenges of the financial market, predominantly a need to migrate from mission-critical, monolithic legacy systems to more flexible architectures that allow speedy reaction to customer and business partner’s needs. The technical aspect must be seen in the context of the business environment, where software engineers typically interact with a world of financial jargon and departments with specialised roles and needs.

Course modules
This specialist course consists of five core modules and three option modules. For the MSc there is also a project.

Core Modules
Corporate Finance
Financial Information Systems
Personal and Group Skills
Service-Oriented Architectures
System Re-engineering

Start Dates
October and January each year.

Read less
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. Read more
Software engineers are in high demand, and Bristol is home to many high-tech companies seeking suitable graduates. The MSc Software Engineering gives you the latest knowledge and skills and guides you in applying them to develop different kinds of large, complex software systems. The faculty's Software Engineering Research Group (SERG) reviews the course each year to ensure it provides what students and employees need. Students can link to SERG research and development activities and attend monthly research seminars from senior academics and key industrial professionals.

UWE Bristol's links with industrial partners encourage research and studies, and support the next step into PhD studies and further research. You will be taught by academics and professionals at the cutting edge of research and in collaboration with key partners such as Airbus, P3 Germany, SogeClair France, have the chance to develop advanced knowledge in the engineering of complex software systems, 'systems of systems' and critical aspects of the software development process. The course develops your knowledge and understanding of fundamental and advanced concepts of software engineering, using state-of-the-art techniques and research findings.

Key benefits

This course is accredited by the British Computer society (BCS) and fulfils the academic requirements for registration as a Chartered IT Professional. It also partially meets the academic requirements for CEng status.

Course detail

You'll learn the ethical issues involved in the engineering of software systems and undertake in-depth research in particular areas of software engineering. You'll also acquire the technical skills necessary for requirements engineering, architectural modelling of enterprise systems, implementation, configuration management, quality management, and effective project management applied in a group-based context.

You'll take a reflective and critical approach to your work and develop key transferable skills, such as critical thinking, problem management and research skills and methods underpinned by key emerging topics in software engineering and the MSc dissertation by research and development.

Modules

• Lifecycle Models and Project Management (15 credits)
• Requirements engineering (15 credits)
• Object-oriented analysis, design and programming (15 credits)
• Quality and Configuration Management (15 credits)
• Enterprise and System Architecture Modelling and Development (15 credits)
• Group Software Development Project (30 credits)
• Emerging Topics in Software Engineering (15 credits)
• Dissertation by Research and Development (60 credits)

Format

All modules are classroom-based, with extensive use of UWE Bristol's virtual learning environment, Blackboard. You also attend the campus to sit your exams.

Assessment

Most taught modules have written coursework and exam components. Coursework includes, but is not limited to, critical problem-solving components, advanced programming tasks, critical essays in relation to particular software engineering aspects, and group projects.

Careers / Further study

Graduates have a range of options for starting their software engineering careers, or for further advanced programmes of study. Possible industrial careers include senior roles as software engineers, requirements engineers, enterprise and software architects, configuration and quality managers, and software project managers.

This course paves the way for PhD research studies in software engineering at UWE Bristol, or elsewhere. If you take the PhD route at UWE Bristol, you will have opportunities to work with senior SERG researchers and use some of your MSc Software Engineering modules for some of the 60-credit requirements for the PhD degree.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The ICMA Centre’s financial engineering degree is highly respected by quantitative analysts and their employers. The credit crunch and subsequent events have emphasised the need to develop better pricing and better hedging models for all complex products. Read more

The ICMA Centre’s financial engineering degree is highly respected by quantitative analysts and their employers. The credit crunch and subsequent events have emphasised the need to develop better pricing and better hedging models for all complex products. The practical and quantitative skills that you will develop on the programme will equip you to meet this challenge.

Our compulsory modules provide a firm grounding in probability theory, stochastic calculus, derivatives pricing, quantitative and numerical methods, structuring products, volatility analysis, and the modelling of credit, equity, foreign exchange and interest rate derivatives. We also provide a thorough training in C++ and other programming tools.

Optional modules will allow you to focus on risk analysis, portfolio management, designing trading strategies or econometric analysis. This newly structured degree aims to further enhance the strong reputation of its precursor – the MSc in Financial Engineering and Quantitative Analysis, which was established back in 1999. A good background in mathematics is required for acceptance to this programme (see entry requirements below).

Highlights

  • A highly technical programme for those with strong mathematical skills
  • Gain knowledge of derivatives pricing tools and methods, as well as the use of programming languages like C++ and VBA
  • Designed with the support of industry practitioners to equip students with the skills and knowledge needed to succeed
  • Graduates are able to make an early contribution through the unique combination of hands-on, practical skills and the necessary underlying finance theory
  • Benefit from the combined expertise of both the ICMA Centre and the Department of Mathematics

Course structure

October – December: Part 1 Autumn Term

January: Part 1 Exams

January-April: Part 2 Spring Term

May – June: Part 2 Exams

June – August (12 month programme only): Part 3

August/Sep (12 month programme only): Part 3 Coursework deadlines

Course content

Part 1 compulsory modules

Part 2 compulsory modules

Part 2 optional modules

Students on the 9-month (12-month) programme can select 40 (20) credits from the following modules:

Part 3 optional modules

Optional modules

Students on the 12-months programme should take 20 credits from the following:

Learning options

Full-time: 9 months Full-time: 12 months

Students will be resident and undertake full-time study in the UK. Under both, the 9 and 12-month programmes students take compulsory and/or elective modules in Part 2.

The 12 month option involves taking an elective 20 credit module between July and August, which would also mean a 20 credit reduction in the number of taught modules taken in the spring term.

Careers

Many of our financial engineering graduates are now working as Quants in large London banks and other financial institutions. Others have pursued PhDs and have successful academic careers. Financial instruments are becoming ever more sophisticated, so graduates that understand complex modelling techniques are always in great demand. The high quantitative content of this programme opens many doors to a wide range of careers. You could structure and develop new debt or equity solutions to meet clients funding and hedging needs, or you could become a proprietary trader in exotic derivatives, or a software specialist or a quantitative analyst supporting the traders.

There are excellent opportunities on the buy-side, with hedge funds and investment institutions, as well as in investment banking and in software analytics. Opportunities in quantitative research, or with a rating agency, are among the many other attractive alternatives. Outside of mainstream banking and investment, you might also consider firms involved in commodity and energy trading, or the treasury divisions of leading multinationals and management consultancies.

Professional accreditation

ICMA Fixed Income Certificate

To obtain the requisite knowledge to pass the rigorous FIC exam, students are required to take the ICMA Centre Fixed Income Cash and Derivatives Markets module at Part 2. In order to receive the FIC certificate, students will need to register and pass the FIC exam through ICMA.



Read less
Our Software Systems Engineering (SSE) MSc provides an ideal foundation for PhD study. The UCL SSE group is regularly ranked in the top three groups in the world (Microsoft Academic Search), you will be taught by those who are setting the international agenda, and our research has been repeatedly rated as world-class. Read more

Our Software Systems Engineering (SSE) MSc provides an ideal foundation for PhD study. The UCL SSE group is regularly ranked in the top three groups in the world (Microsoft Academic Search), you will be taught by those who are setting the international agenda, and our research has been repeatedly rated as world-class. Fully-funded PhD scholarships are available for high-performing students.

About this degree

Students are trained in the principles and techniques of engineering large, complex software systems and gain the opportunity to apply these techniques in a realistic group project setting. The programme analyses current practice in software systems engineering, looking at the most significant trends, problems and results in complex software systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), and either a group project (60 credits) or three research modules (90 credits) including a project. Students will be able to select between one and three modules (15 to 45 credits) from electives.

Core modules

  • Professional Practice (15 credits)
  • Requirements Engineering and Software Architecture (15 credits)
  • Software Abstractions and Systems Integration (15 credits)
  • Tools and Environments (15 credits)
  • Validation and Verification (15 credits)

Optional modules

Students must take either the Group Project in Software Systems Engineering (60 credits) with 45 credits from electives, or Research Methods, Project and Seminar in Software Engineering (90 credits) with 15 credits from electives.

  • Research Methods in Software Engineering (15 credits)
  • Research Project in Software Engineering (60 credits)
  • Research Seminar in Software Engineering (15 credits)
  • OR
  • Group Project in Software Systems Engineering (60 credits)

Please note: the availability and delivery of optional modules may vary, depending on your selection.

A list of acceptable elective modules is available on the UCL Computer Science webpage.

Dissertation/report

Most students participate in a group industrial project, generally in close collaboration with one of our industrial partners. 

Other students undertake either an individual or small-group research project, under the supervision of academics in UCL's Software Systems Engineering group.

Teaching and learning

The programme is delivered through a combination of lectures, written and laboratory exercises, and group project supervision. Student performance is assessed through written exercises with modelling notations, laboratory exercises with tools and environments, unseen examination papers, and a significant, comprehensive group project.

Further information on modules and degree structure is available on the department website: Software Systems Engineering MSc

Funding

The department typically does not hire postgraduate students on research or teaching assistantships because the students need to work full-time on their studies for the programme.

Four MSc Scholarships, worth £4000 each, are made available by UCL Computer Science to UK/EU offer holders with a record of excellent academic achievement. The closing date is 30 June 2018. For more information, please see the department pages.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This professionally oriented programme provides an ideal foundation for graduates who wish to pursue a career as a software architect or leader of software development organisations. It also provides an excellent introduction for those who want to pursue research in software systems engineering.

Graduates from UCL are keenly sought after by the world's leading organisations, and many progress in their careers to secure senior and influential positions. UCL Computer Science (UCL-CS) graduates are particularly valued as a result of the department's strong international reputation, strong links with industry, and ideal location close to the City of London.

Graduates have found positions at global companies such as Barclays and RBS.

Recent career destinations for this degree

  • Software Developer, BNP Paribas
  • Technology Analyst, Morgan Stanley
  • IT Consultant, OnTrack
  • Software Analyst and Designer, Nok Technology
  • Security Science, UCL

Employability

There is, throughout the world, a strong demand for software engineers with solid foundations covering not only the programming aspects of software development, but also aspects related to requirements engineering, software architectures, system integration, and testing.

Following graduation, our students are generally hired as software engineers or software architects, sometimes by companies they have engaged with in the context of their MSc project.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Computer Science is recognised as a world-leader in teaching and research.

UCL received the highest percentage (96%) for quality of research in Computer Science and Informatics in the UK's most recent Research Excellence Framework (REF2014).

Our Master's programmes have some of the highest employment rates and starting salaries, with graduates entering a wide variety of industries from entertainment to finance.

We take an experimental approach to our subject and place a high value on our extensive range of industrial collaborations. In the recent past, students have worked on projects and coursework in collaboration with Microsoft, IBM, JP Morgan, Citigroup and BNP Paribas.

Accreditation:

CITPFL - Accredited by BCS. CEng (partial fulfilment) - Accreditation by the BCS.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Civil Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure

Finite Element Computational Analysis

Advanced Structural Design

Fluid-Structure Interaction

Entrepreneurship for Engineers

Computational Plasticity

Numerical Methods for Partial Differential Equations

Computational Case Study

Reservoir Modelling and Simulation

Dynamics and Transient Analysis

Coastal Engineering

Coastal Processes and Engineering

Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering



Read less
Software Development (Conversion). The MSc in Software Development provides a year of intensive education in software engineering and is ideal for graduates of disciplines other than computing. Read more

Software Development (Conversion)

The MSc in Software Development provides a year of intensive education in software engineering and is ideal for graduates of disciplines other than computing.

This course is designed to develop the technical, analytical and professional skills required to take on software development roles within the IT industry.

Software development skills, such as programming, are essential to the technological evolution and advancement of most sectors within the economy. As a result, there is a very strong demand for software professionals.

Aims

The programme aims to:

◦provide a solid understanding of software engineering principles and techniques

◦develop the ability to analyse software problems, create and evaluate software designs and develop and appropriately test software solutions

◦foster critical analysis and evaluative skills pertaining to software engineering

What way is Software Development being taught

The programme is separated into three parts; a foundational element covering the basics of software development and programming; an advanced element where you can tailor your area of specialism; and finally a substantial individual project.

Foundational Element

Most foundational modules are studied in the first semester and cover introductory programming using the Java programming language alongside the foundations of software engineering and databases. Coverage of more advanced algorithmic and object-oriented programming continues into the second semester. The foundation modules are intended to provide students with an essential grounding in software engineering in a manner that is consistent with Level M requirements.

Advanced Element

The second semester provides a number of advanced software engineering modules which permit specialism within key areas of software development. The advanced modules currently encompass aspects such as Requirements Engineering, Software Quality, Software Design Principles and Patterns, and Software Testing and Verification. Alongside these there is an opportunity to take an introductory module in Capital Markets which would help to prime students for software development roles within the financial sector.

The combination of lectures, laboratory work, tutorials and group-based projects employed throughout the foundational and advanced elements equips students with the skills needed to both design and implement complex software systems.

Project Element

Three month summer projects are taken individually with supervision from a member of the School's teaching staff. The projects permit students to combine and apply the skills gained within individual modules towards the creation of a significant software artefact. Projects can be selected by students from a list put forward by the local software industry and the School. Where appropriate an industrial co-supervisor will be assigned.

Modules

Semester 1

Programming

Databases

Software Testing and Verification

Semester 2

Programming

Web Development

Software Engineering

Assessment

The MSc in Software Development is, by its nature, an intensive and practical programme of study. Students build strong software development skills by putting theory into practice and this is reflected within the assessment. A mixture of individual and group based projects, assignments and practical examinations provide the primary means of assessment within modules, with written examinations also employed for some modules. The summer project is assessed through a written dissertation alongside the presentation and demonstration of the created software artefact.

Career Opportunities

The School has strong links with the local, national and international software companies situated around the University. Students have ample opportunity to meet and engage with employers through hosted careers fairs, guest lectures and industrial facing demonstrations. Where possible, MSc dissertations will be set and co-supervised by an industrial partner and may involve an on-site placement.

Employment opportunities in software engineering are excellent as evidenced through the consistent and continued growth of the software sector. A career within the profession is not only well remunerated but also rewarding, with software professionals able to select between a range of career progression paths. Given the diversity of career paths, the communicative, business-related, client-facing, analytical and evaluative skills gained from a primary degree are strongly valued by IT employers and will help augment the employment opportunities of graduates from this MSc.



Read less
Who is it for?. This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems and aiming at a high-quality career in the industry, e.g. Read more

Who is it for?

This industry-focused course is for Computer Science graduates and experienced professional programmers interested in developing high-quality, complex software systems and aiming at a high-quality career in the industry, e.g. software houses, consultancies, and major software users across different sectors.

Students will have a keen interest in designing complex software systems, coding them in a programming language using the latest technologies (SOA, cloud, etc.), and ensuring that they are of high quality and that they actually meet the needs of their stakeholders.

Objectives

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages, and evaluating and responding to recent trends in interoperability and software development.

The course focuses on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, like the C++ and Java programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, cloud computing, and big data. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering, which has one of the largest groups of academics working in this area in London, covering almost all aspects - from requirements, to designing reliable systems for the nuclear industry.

Accreditation

Accredited by BCS, The Chartered Institute for IT for the purposes of fully meeting the further learning academic requirement for registration as a Chartered IT Professional, and on behalf of the Science Council for the purposes of partially meeting the academic requirement for registration as a Chartered Scientist and a Chartered Engineer.

Internships

As a postgraduate student on a Computing and Information Systems course, you will have the opportunity to complete up to six months of professional experience as part of your degree.

Our longstanding internship scheme gives you the chance to apply the knowledge and skills gained from your taught modules within a real business environment. An internship also provides you with professional development opportunities that enhance your technical skills and business knowledge.

Internships delivered by City, University of London offer an exceptional opportunity to help you stand out in the competitive IT industry job market. The structure of the course extends the period for dissertation submission to January, allowing you to work full-time for up to six months. You will be supported by our outstanding Professional Liaison Unit (PLU) should you wish to consider undertaking this route.

Teaching and learning

Software Engineering MSc is available full-time (12 months) as well as part-time (up to 28 months).

Students successfully completing eight taught modules and the dissertation for their individual project will be awarded 180 credits and a Master's level qualification. Alternatively, students who do not complete the dissertation but have successfully completed eight taught modules will be awarded 120 credits and a postgraduate diploma. Successful completion of four taught modules (60 credits) will lead to the award of a postgraduate certificate.

Assessment

Each module is assessed through a combination of coursework and examination.

Modules

You will develop skills in analysing requirements and designing appropriate software solutions; designing and creating complex software systems to solve real-world problems, evaluating and using advanced software engineering environments, design methods and programming languages and evaluating and responding to recent trends in interoperability and software development.

The focus of the course is on advanced engineering concepts and methods, as well as design issues for the systematic development of high-quality complex software systems. These are explored using industrial strength technologies, such as the C++ and Java object-oriented programming languages and the UML modelling language.

The course covers significant trends in systems development, including service-oriented architecture, mobile and pervasive computing, cloud computing, big data, and XML-enabled interoperable services. The course is delivered by acknowledged experts and draws on City's world-class research in Systems and Software Engineering. City has one of the largest groups of academics working in the area in London, working on almost all aspects of the area - from requirements, to designing reliable systems for the nuclear industry.

Career prospects

The MSc in Software Engineering aims to meet the significant demand for graduates with a good knowledge of computing. This demand arises from consultancies, software houses, major software users such as banks, large manufacturers, retailers, and the public services, defence, aerospace and telecommunications companies.

Typical entrants to the course have a degree in an engineering or scientific discipline, and wish to either move into the software engineering field or to the development of software for their current field. Entrants must have previous exposure to computing, especially to programming (particularly in Java or C#) and relational databases (from either academic or professional experience).

From this base, the course provides solid technical coverage of advanced software development, including such widely used languages as C++, Java, UML and XML for which demand is particularly high. The course is therefore quite demanding; its success in providing advanced academic education along these lines is evident from the fact that recent graduates of the course are currently employed in a wide spectrum of organisations.

Of course, the employment value of a master's degree is not just short term. Although on-the-job training and experience as well as technology specific skills are valuable, they can be rather narrow and difficult to validate, and to transfer. The structure of this course ensures that there is a strong balance between the development of particular skills and a solid education in the enduring principles and concepts that underlie complex software system development.

SAP Certification

In parallel to your degree you will be able to register for a SAP TERP10 Certification course at a substantial discount, thus obtaining an additional, much sought-after qualification.



Read less
Our one year MSc Software Engineering degree will allow you to broaden your skills in traditional and contemporary software development with opportunities to study specialist subjects such as computer vision, critical systems, cryptography, distributed computing systems, e-business, intelligent agents, model checking and multimedia. Read more

Our one year MSc Software Engineering degree will allow you to broaden your skills in traditional and contemporary software development with opportunities to study specialist subjects such as computer vision, critical systems, cryptography, distributed computing systems, e-business, intelligent agents, model checking and multimedia.

Introducing your degree

Explore both traditional and contemporary approaches to software development to give a strong foundation to advance your ideas.

Overview

This programme covers formal methods as well as object-oriented programming. You will enhance your skills in software modelling, design, development, and testing, with opportunities to study specialist subjects such as:

  • computer vision
  • critical systems
  • cryptography
  • distributed computing systems
  • e-business
  • intelligent agents
  • model checking
  • multimedia

You will undertake both a major project and a dissertation, which will give you the opportunity to integrate the material covered in the taught modules.

View the programme specification document for this course

Career Opportunities

Graduates with this qualification typically go on to work in software engineering research or advanced software development projects.

"After my MSc in Software Engineering I went on to study the topic at PhD level because of the interest I developed while studying in ECS. This was helped by the guidance and support available from the faculty members and factors including programme’s ranking among the top in the UK." Ali Gondal MSc Software Engineering

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less

Show 10 15 30 per page



Cookie Policy    X