• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
University of Warwick Featured Masters Courses
Cass Business School Featured Masters Courses
Imperial College London Featured Masters Courses
University of Bath Featured Masters Courses
"msc" AND "microelectroni…×
0 miles

Masters Degrees (Msc Microelectronics)

We have 33 Masters Degrees (Msc Microelectronics)

  • "msc" AND "microelectronics" ×
  • clear all
Showing 1 to 15 of 33
Order by 
Our MSc MicroElectronics System Design degree is a cutting edge course, allowing you to choose from a wide range of modules based on digital integrated circuit design and analogue integrated circuit design. Read more

Our MSc MicroElectronics System Design degree is a cutting edge course, allowing you to choose from a wide range of modules based on digital integrated circuit design and analogue integrated circuit design. This one year course equips you with highly sought after skills to undertake further research or work in industry.

Introducing your degree

The field of microelectronics systems design embodies many of the key skills relating to integrated circuit design and electronic systems engineering.

Overview

This cutting-edge MSc programme offers a wide choice of modules based on digital integrated circuit design and analogue integrated circuit design. It examines aspects of system integration and discrete device properties. It is an excellent platform for further research in the Nano or Electronic and Software Systems groups.

View the programme specification document for this course

Career Opportunities

This programme produces highly regarded graduates who are sought after by commercial enterprises and universities worldwide. We do have very close links with all the major UK Design companies who recruit many of our graduates.

This programme provides an excellent platform for further research in either industry or academia.

Graduates from our MSc programme are employed worldwide in leading companies at the forefront of technology. ECS runs a dedicated careers hub which is affiliated with over 100 renowned companies like IBM, Arm, Microsoft Research, Imagination Technologies, Nvidia, Samsung and Google to name a few.  Visit our careers hub for more information.

Through an extensive blend of networks, mentors, societies and our on-campus startup incubator, we also support aspiring entrepreneurs looking to build their professional enterprise skills. Discover more about enterprise and entrepreneurship opportunities.



Read less
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems. Read more
On this well-established MSc programme you willdevelop advanced knowledge and skills in key aspects of telecommunications and wireless systems.

The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

The first two sections consist of lectures, laboratory classes and seminars, with a final section devoted to an individually supervised project.

We cover the following core (compulsory) topics during the MSc:

Embedded computer systems
Digital system design
IC design
Microprocess systems
Research skills and project management.
To meet the increasing demands for MSc students with industry experience, the Department of Electrical Engineering and Electronics has introduced a 2-year MSc programme for graduates of the highest calibre, to develop advanced knowledge and skills in microelectronic systems and give students the opportunity to put their knowledge into practice through valuable work experience during a one year industrial placement.

Graduates will be capable of undertaking research and development work in microelectronic Systems and also developing and managing R&D programmes.

This 2-year MSc programme EEMI shares the same taught modules with its equivalent 1-year MSc in Microelectronic Systems (EEMS) in year 1. But unlike the 1-year MSc students who do their MSc project over the summer, students on the 2 year MSc (EEMI) are required to undertake an industrial project and placement (either in the UK or overseas) in year 2, typically 30 weeks from September to next June.

This opportunity to work in industry will help students strengthen their career options by

Undertaking the project work in an industrial setting;
Applying theory learnt in the classroom to real-world practice;
Developing communications and interpersonal skills;
Building networks and knowledge which will be invaluable throughout their career.

The placement

During the placement year students will spend time working in a relevant company suitable for the MSc. This is an excellent opportunity to gain practical engineering experience which will boost students’ CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University’s Careers and Employability Services (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews. Placements can be near or far in the UK or overseas.

The University has very good links with industry; companies (such as ARM Plc) have offered our MSc students competitive placements. Although industry placements are not guaranteed, the University offers students opportunities and support throughout the process to ensure that the chance for a student to find a placement is high.

If a student is unable to secure a suitable placement by the end of April during year 1, the student will be transferred onto the 1-year MSc to undertake the MSc project over the summer and graduate after one year.

Read less
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. Read more
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. It is suitable for a computer science or electrical/electronic engineering graduate who wishes to specialise in the high-speed technology of embedded microelectronics and wireless systems including mobile communications.

As a leading university we are committed to the advancement of embedded microelectronic systems. Research in the University is carried out in several faculty research centres such as Transport & Mobility, Manufacturing & Material Engineering and Cogents Lab, where advances in fields associated with embedded microelectronics and wireless systems include designing real-time wireless networks, the application of systems modelling, statistical and artificial intelligence techniques.

WHY CHOOSE THIS COURSE?

-Electrical and electronic research carried out in the Faculty is recognised as world-leading, 45% Internationally Excellent (RAE 2008)
-Excellent links with a number of industrial organisations enable access to the use of high-cost equipment for real-time investigations

WHAT WILL I LEARN?

The MSc in Embedded Microelectronics and Wireless Systems curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of both parts leads to the award of MSc in Embedded Microelectronics and Wireless Systems. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Object Orientated Programming
-Digital Communications
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Embedded Operating Systems
-Wireless Intelligent Systems
-Microprocessor Applications
-Individual Project

Prospective students should be aware that most of the mandatory modules include an element of programming, usually in the C/C++ language.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Embedded Microelectronics and Wireless Systems are now ever-present in all aspects of technological life for example automotive, biotechnology, communications fixed and mobile networks, information technology, industrial electronics process control, security, and computer technology.

So much so that there is a demand for top graduates in the fields of embedded microelectronics and wireless systems to work either in their development or in the vast number of industries that employ these technologies.

Opportunities also exist to complete a PhD research degree upon completion of the master’s course. More information can be found on our Research page.

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
You will cover subject specific subjects such as Digital Signal Processing and Artificial Intelligence alongside cohort taught subjects to develop their management skills and their employability. Read more
You will cover subject specific subjects such as Digital Signal Processing and Artificial Intelligence alongside cohort taught subjects to develop their management skills and their employability.

On the Msc in Microelectronics and Computer Engineering, the development of skills and advancement of knowledge focus on developing strong design skills for the seamless integration of software and hardware subsystems through the adoption of software-hardware co-design methodologies.

This will enable you to gain experience of designing digital systems for sustainable and smart applications, using DSP/FPGA/ASIC technology. Students will be aware of alternatives to the mainstream superscalar approach to computer design and instil in them design skills for a variety of acceleration intelligence techniques.

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies. You can expect to work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

-Gain experience of designing digital systems for sustainable and smart applications.
-Microelectronics is developing as technology expands at an increasing rate and we are at the forefront for this subjects.
-Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.
-We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

You will typically be employed to evaluate, select and deploy appropriate software tools to create/manage or simulate applications/systems. Within your area of expertise, you will be making independent design decisions on mission-critical systems.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Modules
-Advanced Reconfigurable Systems and Applications
-Artificial Intelligence
-Computer Architecture Design
-Digital Signal Processing and Processes
-MSc Project
-Mixed Mode and VLSI Technologies
-Operations Management
-Operations Research
-Sustainability and Smart Systems Engineering

Read less
Oxford’s MSc in Microelectronics, Optoelectronics and Communications offers a fantastic opportunity to study a part-time engineering conversion course, helping students to gain the key skills needed to embark on an engineering career. Read more
Oxford’s MSc in Microelectronics, Optoelectronics and Communications offers a fantastic opportunity to study a part-time engineering conversion course, helping students to gain the key skills needed to embark on an engineering career. The course is designed to fit around busy working schedules, and offers both foundational and advanced modules in the three sub-disciplines.

This conversion course aims to provide students with all the essential transferrable skills and analytical abilities needed to progress in the engineering sector.

This is a joint programme drawing on the Department of Engineering Science's research expertise with the flexible learning approach offered by the Department for Continuing Education's Continuing Professional Development Centre.

Topics

Fundamentals of Microelectronics and Communications
Advanced Microelectronics
Wireless Communications
Fundamentals of Optoelectronic Devices and Applied Optics
Optical Communications
Engineering in Society or
Organic Electronics and Nanotechnology for Optoelectronic Devices

Read less
This course covers all aspects relevant to the modern microelectronics industry, including semiconductor theory, fabrication technology, digital techniques, VLSI design and reconfigurable hardware design. Read more
This course covers all aspects relevant to the modern microelectronics industry, including semiconductor theory, fabrication technology, digital techniques, VLSI design and reconfigurable hardware design.

The course covers the main areas of microelectronics:
-Semiconductor theory and fabrication
-Digital and VSLI design
-Application areas

Our graduates are equipped for a career in any area of the industry, while having an appreciation of other aspects of the subject.

You have access to an advanced range of facilities including clean rooms and a characterisation laboratory. Work in more application-related areas involves the use of modern design software. This includes the industry-standard CADENCE suite and a full range of FPGA design facilities.

Academic staff in the School of Electrical and Electronic Engineering have an international reputation for their research work. The School carries out world-leading research in microelectronic technologies. You will have the opportunity to interact with this work, particularly during your individual project. After graduation there may be opportunities for you to work towards a PhD by joining one of our research groups.

Delivery

This course consists of compulsory and optional modules, and an individual project. Assessment is by written examination at the end of each semester, coursework, and a project and dissertation conducted in association with one of the School's research groups.

Employability

We collect information from our graduates six months after they leave University. This is part of the Destination of Leavers from Higher Education (DLHE) survey that every UK higher education institution takes part in.

Accreditation

The course is accredited by the Institution of Engineering and Technology (IET) and Engineering Council, and therefore provides a good foundation for professional registration.

Facilities

Facilities include two clean rooms of class 100-1000 and 100-10000, with capabilities in:
-Lithography
-Deposition
-Thermal and plasma processing
-Packaging

There is a characterisation lab with comprehensive device test facilities. Leading CAD software for modelling and device design is available, some of which originates from researchers at Newcastle.

For VLSI design, you have access to the industry-standard CADENCE suite, and a variety of novel tools developed at Newcastle. There is also a comprehensive range of design tools for FPGA-based systems.

Read less
The far STEM route is for chemistry, biotechnology, biochemistry, food science or similar first degrees where statistical analysis was a dominant feature of their analytical studies. Read more
The far STEM route is for chemistry, biotechnology, biochemistry, food science or similar first degrees where statistical analysis was a dominant feature of their analytical studies. You will spend four semesters studying towards a General Engineering Transition Masters, studying appropriate Level 5 modules in the first semester then joining the Near STEM cohort, again with the opportunity to specialise in the above options at L6 or L7.7.

Electrical and Electronics degrees available through the Transition Masters:
-MSc in Embedded Intelligent Systems
-MSc in Radio and Mobile Communication System
-MSc in Microelectronics and Computer Engineering
-MSc in Power Electronics and Control
-MSc in Mechatronics
-MSc in Communications and Information Engineering

Why choose this course?

The School has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field;We offer extensive lab facilities for engineering students, including the latest software packages;Study leading-edge applications such as biometric authentication and speech-based interaction.

Structure

Year 1
Core Modules
-Computer Architecture Design
-Computer Programming for Electronics Engineers
-Digital Design & Embedded Systems
-Digital Signal Processing and Processes
-Electrical and Electronic Theory
-Electronic Engineering Practice
-Engineering Application of Mathematics
-Operations Management

Year 2
Core Modules
-Advanced Reconfigurable Systems and Applications-
-Artificial Intelligence
-Individual Masters Project
-Manufacturing Strategy
-Microelectronics and VLSI
-Operations Research
-Quality Reliability & Maintenance

Read less
The near STEM route is for admission of mathematics, physics, astrophysics or other relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts. Read more
The near STEM route is for admission of mathematics, physics, astrophysics or other relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts. After accreditation of prior experiential learning (APEL) at Level 5, you will spend three semesters studying towards a General Engineering Transition Masters with the opportunity to specialise in the above options at Level 6 and/or 7.

The Electronics and Communications MScs are also accredited by the Institution of Engineering and Technology (IET) as meeting the academic requirements for Chartered Engineer status.

To obtain a Master's degree, you will need to complete an in-depth independent research project.

Courses

-MSc in Embedded Intelligent Systems
-MSc in Radio and Mobile Communication System
-MSc in Microelectronics and Computer Engineering
-MSc in Power Electronics and Control
-MSc in Mechatronics
-MSc in Communications and Information Engineering

Why choose this course?

The School has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field;We offer extensive lab facilities for engineering students, including the latest software packages;Study leading-edge applications such as biometric authentication and speech-based interaction.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition our staff are active in research and useful elements of it are reflected on the learning experience. Learning tools such as StudyNet, unique to the University of Hertfordshire, are extremely useful for the learning environment of the student.

Structure

Year 1
Core Modules
-Digital Design & Embedded Systems
-Digital Mobile Communication Systems
-Information Theory and DSP in Communications
-Operations Management
-Optical Communication Technologies
-Quality Reliability & Maintenance
-Sustainability and Smart Systems Engineering
-Wireless, Mobile and Ad-hoc Networking

Year 2
Core Modules
-Advanced Reconfigurable Systems and Applications
-Individual Masters Project
-Microelectronics and VLSI

Read less
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Read more

This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Nanotechnology is rapidly establishing itself as a key technology, in industries ranging from microelectronics to healthcare, with a consequent demand for appropriately trained graduates.

About this degree

The programme introduces students to and provides training in the skills essential for almost all fields of nanotechnology research, including key laboratory skills and techniques in planning, building devices, analysis, and results comparison. The core lecture programme covers essential topics in physics, electrical and electronic engineering, and biology.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered. The diploma consists of six core modules (75 credits) and three optional modules (45 credits).

Core modules

  • Physical Science for Nanotechnology
  • Nanoscale Processing and Characterisation for Advanced Devices
  • Experimental Techniques for Nanotechnology
  • Nanotechnology and Society
  • Electrical Transport in Nanosystems
  • Photonics in Nanosystems

Optional modules

  • Quantum Computation and Communication
  • Order and Excitations in Condensed Matter
  • Molecular Biophysics
  • Molecular Physics
  • Entrepreneurship: Theory and Practice
  • Bioprocess Microfluidics
  • Physics and Optics of Nano-Structures
  • Materials and Nanomaterials
  • Innovation Practices
  • Physics of Advanced Materials

Dissertation/report

All students undertake an extensive research project on an experimental or theoretical topic which is assessed through an interim report, dissertation and oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, laboratory classes, tutorials and seminars. Student performance is assessed through coursework, laboratory notebooks, case studies, written examination, a dissertation, and written and oral presentations.

Further information on modules and degree structure is available on the department website: Nanotechnology MSc

Careers

Recent graduates have gone on to work as engineers for companies including EDF Energy and Intel, as analysts and consultants for firms including Standard Bank PLC and DN Capital, or to undertake PhD study at the Universities of Oxford, Bath and Glasgow.

Recent career destinations for this degree

  • Business Analyst, Efficio
  • EngD in Molecular Modelling and Materials Science, UCL
  • PhD in Diamond Electronics, UCL
  • Researcher, SCS (Sensor Coating Systems) and studying PhD in Materials, Imperial College London
  • Junior Electronics Engineer, Samsung

Employability

This MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of nanotechnology, from the basis of the fabrication of nanostructures for advanced device applications, to fundamental quantum information and molecular biophysics, from nanotechnology in life science to nanotechnology in healthcare, and from experimental technology to theoretical modelling. Nanotechnology MSc graduates are expertly equipped either to pursue PhD study or become consultants or engineers in a wide range of nanotechnology fields.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The London Centre for Nanotechnology (LCN) is a new UK-based multidisciplinary enterprise operating at the forefront of science and technology.

Forming a bridge between the physical and biomedical sciences, it brings together two of the world's leading institutions in nanotechnology, UCL (University College London) and Imperial College London.

The centre aims to provide leading-edge training in nanotechnology and students on this programme benefit from excellent new facilities, including a £14 million research building furnished with state-of-the art equipment, and a £1 million teaching facility in UCL Electronic & Electrical Engineering.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world. Read more
With an ever growing demand for skilled electronic engineers, our course will equip you with the skills and expertise you’ll need to meet the challenges of a constantly changing industrial world.

Your course will have a new home in Compass House, which will extend our campus along East Road. You’ll have the latest technology at your fingertips and be able to collaborate with other students on innovative projects to hone your skills.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course covers a number of contemporary topics, including power electronics, signal processing, renewable systems, holistic modeling of electronic systems and image processing. Building on your previous experience, and with developed practical skills, you’ll leave with the expert knowledge and understanding to practice safely and effectively in a wide range of environments.

Cambridge is home to the Silicon Fen, Europe’s largest high-technology commercial research and development centre. We have excellent, established links with many employers in the sector including:

- ARM Ltd
- British Computer Society
- Cambridge Network
- Cambridge Silicon Radio
- E2V
- Ford Motor Company
- Selex Sensors and Airborne Systems
- South East Essex PCT

Our specially equipped laboratories provide you with the essential tools you need in the field of industrial electronics and microelectronics. Among other features they are equipped with wind and solar energy systems, development boards with FPGA circuits and power electronics modules. You’ll also have access to our CAD laboratories with the very latest software.

This programme is CEng accredited and fulfils the educational requirements for registration as a Chartered Engineer when presented with a CEng accredited Bachelors programme.

See the website http://www.anglia.ac.uk/study/postgraduate/electronic-and-electrical-engineering

Our course is designed to address the challenges of the modern industrial world. It focuses on power electronics, renewable systems, signal processing, holistic modelling of electronic systems and image processing. The main aims of the course are to:
• Meet a local, national and international demand for skilled electronic and electrical engineers.
• Provide an opportunity for students to gain in-depth relevant specialist knowledge in electronics systems design.
• Synthesise formal solutions through the application of specialist knowledge to design and create innovative electronic and electrical circuits.
• Perform and develop objective and critical analysis skills necessary to synthesis effective solutions when presented with a set of specifications.
• Equip you with the appropriate depth in understanding of electronic engineering development tools and techniques.

Upon completion of the course you will be able to:
• Exercise an in-depth understanding of the design mechanisms which can be used to create electronic and electrical designs and critically evaluate their effectiveness.
• Demonstrate an ability to deal with complex and interdependent design issues both systematically and creatively in a sustainability context.
• Analyse and devise strategies to design, evaluate and optimise microelectronics based systems.
• Critically evaluate the tools and techniques required to create microelectronics circuits which satisfy specifications.
• Analyse current research and technical problems within the discipline for further reflection for evaluation and critique.
• Recognise your obligations to function in a professional, moral and ethical way.
• Synthesise original circuit design from a knowledge of current tools, methodologies and strategies.
• Critically survey current and recent practice in the field of electronic and electrical engineering, in a sustainability context, in order to identify examples of best practice and to propose new hypotheses.
• Develop the ability to act autonomously to plan and manage a project through its life cycle, and to reflect on the outcomes.
• Define the goals, parameters and methodology of a research and development activity.

Careers

The possibilities that are open to you range from design or systems engineering, to medical electronics, environmental monitoring, sound technology biophysics or microelectronics. Across industry, whether it’s in process control, construction and building or services, teaching and beyond, there’ll be opportunities to find your own specialist niche.

Core modules

Sustainable Technologies
DSP Applications and ARM® Technology
Digital Systems Design with VHDL and FPGAs
Power Conversion Systems
Remote Sensing and the Internet of Things
Research Methods
Major Project

Assessment

You’ll be assessed through exams and written assignments based on case studies and scenarios.

Facilities

Our Department has specialist laboratories for electronics and microelectronics, equipped with wind and solar energy systems, power electronics modules, development boards with FPGA circuits and more. Our laboratories are designed, maintained, and operated by an in-house team of technical experts. Students also benefit from access to a wide range of central computing and media facilities.

We also operate modern electronic Computer Aided Design labs loaded with the latest software that includes Integrated Synthesis Environment Design Suite, Matlab, Simulink and other relevant software.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. Read more
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. The Microelectronics group at the University of Bristol has many collaborative links with multinational companies in the microelectronics industry that have identified a shortfall in graduates with the necessary qualifications and professional skills to work in the sector. This programme has been designed to meet this need.

A range of taught subjects cover core topics such as advanced architectures and system design using FPGA and DSP platforms, before progressing into more specialised areas such as digital and analogue ASIC design, integrated sensors and actuators and mixed-signal design. Changes are made periodically to reflect important emerging disciplines, such as electronics for internet of things, bio-medical applications and neuromorphic computing.

The programme offers you the opportunity to learn from experts in micro- and nanoelectronics and computer science, to allow you to start working straight after your degree or continue your studies via a PhD. Special emphasis is put on providing you with a range of contemporary design skills to supplement theoretical knowledge. Lectures are accompanied by lab exercises in state-of-the-art industrial EDA software to give you experience of a professional environment.

Programme structure

The course consists of 120 credits of taught units and an individual research project worth 60 credits. The following core subjects, each worth 10 credit points (100 learning hours), are taken over autumn and spring:
-Design Verification
-Analogue Integrated Circuit Design
-Integrated Circuit Electronics
-Digital Filters and Spectral Analysis (M)
-Advanced DSP & FPGA Implementation
-VLSI Design M
-Embedded and Real-Time Systems
-Wireless Networking and Sensing in e-Healthcare

Additionally students are able to choose any two out of the following four 10-credit units (some combinations may not be possible due to timetabling constraints).

-Device Interconnect - Principles and Practice
-Advanced Computer Architecture
-Sustainability, Technology and Business
-Computational Neuroscience
-Bio Sensors

In the spring term, students also take Engineering Research Skills, a 20-credit unit designed to introduce the fundamental skills necessary to carry out the MSc project.

After completing the taught units satisfactorily, all students undertake a final project which involves researching, planning and implementing a major piece of work relating to microelectronics systems design. The project must have a significant scientific or technical component and may involve on-site collaboration with an industrial partner. The thesis is normally submitted by the end of September.

The programme structure is under continual discussion with the National Microelectronics Institute and our industrial advisory board in order that it remains at the cutting edge of the semiconductor industry. It is therefore subject to small changes on an ongoing basis to generally improve the programme and recognise important emerging disciplines.

Careers

This course gives graduating students the background to go on to a career in a variety of disciplines in the IT sector, due to the core and specialist units that cover key foundational concepts as well as advanced topics related to hardware design, programming and embedded systems and system-level integration.

Typical careers are in soft fabrication facilities and design houses in the semiconductor industry, electronic-design automation tool vendors, embedded systems specialists and software houses. The course also covers concepts and technologies related to emerging paradigms such as neuromorphic computing and the Internet of Things and prepares you for a career in academic research.

Read less
Queen's University Belfast is ranked among the. top 100 in the world for Electrical and Electronic Engineering.  (QS World Rankings) and we are also consistently ranked top 10 in UK University League tables for these subjects. . Read more

Queen's University Belfast is ranked among the top 100 in the world for Electrical and Electronic Engineering (QS World Rankings) and we are also consistently ranked top 10 in UK University League tables for these subjects. 

Our world-class Masters (MSc) in Electronics will develop your skills and expertise in cutting edge technologies such as Digital Signal Processing, High Frequency Communication, Technology and Design, Intelligent Systems and Control, MEMS Devices and Technology, Wireless Communication Systems and Wireless Sensor Networks.

Our £40m Institute of Electronics, Communications and Information Technology specialises in key areas of advanced digital and communications technology.

ECIT is also home to the Centre for Secure Information Technologies (CSIT), a £30m innovation and knowledge centre, which develops secure solutions to problems such as the protection of mobile phone networks and the creation of secure “corridors” for the seamless and rapid transit of people.

Our facilities have recently undergone a £10m refurbishment and include laboratories for Microengineering, Electronics, Communications, Circuits, Instrumentation, Virtual Reality, Software Engineering, Renewable Energy, Power and Machines. The Queen's Advanced Micro-engineering Centre (QAMEC) is a Centre of Excellence for research and development employing silicon technology and MEMS technology.

Electrical and Electronic Engineering at Queen's is ranked among the Top 10 in the UK for research, with 93 per cent of research rated as either 'World-leading' or 'Internationally Excellent' (REF 2014). An example of our research includes our work in the area of space technologies, where we are involved in a number of projects with the European Space Agency, the new UK Space Applications Catapult Centre, the European High Power Radio-Frequency Space Laboratory and companies such as Astrium, Thales and QinetiQ.

Aim

This programme is designed as a specialised extension to the study of electronics at undergraduate level. The programme provides students with specialist expertise across a wide range of electronic subjects including microelectronics, hardware design, communications, computer design and digital hardware. The programme is normally full-time, starts at the end of September and lasts for 12 months. Electronics with Professional Internship students have the opportunity to complete an industrial placement of up to six months as part of their studies.

Programme Content

Modules for both programmes are selected from the list below:

  • Digital Signal Processing
  • Intelligent Systems and Control
  • High Frequency Technology and Design
  • Microelectronic Devices & Technology
  • MEMS Devices & Technology
  • Wireless Communications Systems
  • Wireless Sensor Systems

In any given year further specialist topics may be available for selection or listed topics may not be offered.

Assessment

Assessment for MSc in Electronics: Coursework and written examination in six modules, dissertation on project.

Postgraduate Diploma: Coursework and written examination in six modules.

Career Opportunities

Our graduates have found that holding a prestigious MSc qualification from one of the UK's top engineering schools has significantly enhanced their job opportunities and employment prospects.

Graduates typically find employment in a wide range of fields including with semiconductor companies, electronic equipment manufacturers, design and service providers, software houses and in other electronic engineering-based industries.



Read less
This programme offers distinct specialisation areas in electronics. analogue VLSI design, bioelectronics and analogue and digital systems. Read more

This programme offers distinct specialisation areas in electronics: analogue VLSI design, bioelectronics and analogue and digital systems.

In analogue VLSI design, our facilities include a unique custom designed analogue integrated circuit specifically designed to support laboratory based teaching. Our advanced design and prototyping laboratories, advanced micro and nano fabrication facilities and state-of-the-art digital system laboratories use the latest industry standard software tools.

Alternatively, students may specialise in the emergent discipline of bioelectronics where our research and teaching interests include access to the fabrication facilities at the Scottish Microelectronics Centre. For students who wish to study a more general electronics course including digital systems, a prescribed course selection is available.

Programme structure

This programme is run over 12 months, with two semesters of taught courses, followed by a research project, leading to a masters thesis. There is a great deal of flexibility in our degree programme with three distinct streams as follows:

  • Analogue
  • Analogue and Digital
  • Bioelectronics

Analogue Stream

Compulsory courses:

  • Analogue IC Design
  • Analogue VLSI A
  • Discrete-time Signal Analysis (MSc)
  • Power Electronics (MSc)
  • Principles of Microelectronic Devices
  • Analogue Circuit Design
  • Analogue VLSI B
  • Research Project Preparation
  • Electronics: Project and Thesis

Optional courses: A choice of either :

  • Sigma Delta Data Converters

or

  • Microfabrication Techniques and
  • Technology and Innovation Management

Analogue and Digital Stream

Compulsory courses:

  • Analogue IC Design
  • Analogue VLSI A
  • Discrete-time Signal Analysis
  • Principles of Microelectronic Devices
  • Digital Systems Design
  • Digital Systems Laboratory
  • Research Project Preparation
  • Electronics: Project and Thesis

Optional courses: Either

  • Power Electronics or
  • Digital Systems Laboratory A

Plus one of:

  • Microfabrication Techniques
  • Modern Economic Issues in Industry
  • Technology and Innovation Management

And either:

  • Sigma Delta Data Converters

or

  • Embedded Mobile and Wireless Systems (EWireless)

Bioelectronics Stream

Compulsory courses:

  • Analogue Circuit Design
  • Analogue IC Design
  • Biosensors
  • Introduction to Bioelectronics (MSc)
  • Lab-on-Chip Technologies
  • Analogue VLSI A
  • Biosensors and Instrumentation
  • Microfabrication Techniques
  • Applications of Sensor and Imaging Systems
  • Research Project Preparation
  • Electronics: Project and Thesis

Optional courses: A choice of either:

  • Principles of Microelectronic Devices

or

  • Digital Systems Laboratory A

Career opportunities

You will gain significant practical experience in analogue and digital laboratories and become familiar with the latest industry standard design software and environments. Having been exposed to concepts such as design re-use and systems on chip technology, you will be able to cooperate with others in electronic system design. Recent graduates are now working as applications, design, field, test and validation engineering for employers such as BMW, Guangzhou Hangxin Avionics and Kongsberg Maritime.



Read less
The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. Read more

The Masters in Nanoscience & Nanotechnology teaches skills desired by modern industry for scientists and engineers doing research, development and production in nanoscience and nanofabrication. This multidisciplinary programme complements backgrounds in electronics, materials science, or physics.

Why this programme

  • The University of Glasgow is a recognised pioneer in many of the most exciting aspects of nanotechnology, with an international reputation in micro and nanofabrication for applications including nanoelectronics, optoelectronics and bioelectronics.
  • You will have access to the James Watt Nanofabrication Centre (JWNC) cleanrooms and the Kelvin Nanocharacterisation Centre. The JWNC holds a number of world records in nanofabrication including records for the performance of nanoscale electronic and optoelectronic devices.
  • Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017). It was also ranked 1st in Scotland in the Guardian and Complete University Rankings 2018.
  • This MSc caters to a growing demand for scientists and engineers who can fabricate systems of sensors, actuators, functional materials and who can integrate electronics at the micro and nano scale. As a graduate you will also possess the necessary insights in nanoscience to develop new products using these skills.
  • You will be taught by experts in the field and have access to research seminars given by our international collaborators, many of whom are world leaders in nanoscience.

Programme structure

Modes of delivery of the MSc in Nanoscience and Nanotechnology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work. 

Core courses

  • Electronic devices
  • Introduction to research in nanoscience and nanotechnology
  • Micro- and nano-technology
  • Nanofabrication
  • Research methods and techniques
  • MSc project.

Optional courses

  • Applied optics
  • Cellular biophysics
  • Microwave electronic & optoelectronic devices
  • Microwave and mm wave circuit design
  • Microscopy and optics
  • Nano and atomic scale imaging
  • Semiconductor physics.

Career Prospects

Companies actively recruit from Glasgow and our research in nanosciences, nanofabrication, nanoelectronics, optoelectronics and nanotechnology means you will have access to industry networks.

Former Glasgow graduates in the subject area of nanoscience and nanotechnology are now working for companies including Intel, TSMC, IBM, ST Microelectronics, Freescale, Oxford Instruments Plama Technology, ASM, and Applied Materials.



Read less
This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. Read more

This Masters in Sensor and Imaging Systems (SIS) focuses on the technologies and techniques that underpin a vast range of societal, research and industrial needs. It is delivered and awarded jointly by the Universities of Glasgow and Edinburgh. Sensing and sensor systems are essential for advances in research across all fields of physics, engineering and chemistry and are enhanced when multiple sensing functions are combined into arrays to enable imaging. Industrial applications of sensor systems are ubiquitous: from mass-produced sensors found in modern smart phones and every modern car to the state-of-the-art, specialist high-value sensors routinely used in oil and gas recovery, scientific equipment, machine tools, medical equipment and environmental monitoring. This is an industry-focused programme, designed for people looking to develop skills that will open up opportunities in a host of end applications.

Why this programme

  • This is a jointly taught and awarded degree from the University of Glasgow and the University of Edinburgh, developed in with conjunction with CENSIS.
  • CENSIS is a centre of excellence for Sensor and Imaging Systems (SIS) technologies, CENSIS enables industry innovators and university researchers to collaborate at the forefront of market-focused SIS innovation, developing products and services for global markets.
  • CENSIS, the Innovation Centre for Sensor and Imaging Systems, is one of eight Innovation Centres that are transforming the way universities and business work together to enhance innovation and entrepreneurship across Scotland’s key economic sectors, create jobs and grow the economy. CENSIS is funded by the Scottish Funding Council (£10m) and supported by Scottish Enterprise, Highlands and Islands Enterprise and the Scottish Government.
  • CENSIS has now launched its collaborative MSc in Sensor and Imaging Systems, designed to train the next generation of sensor system experts.
  • This programme will allow you to benefit from the commercial focus of CENSIS along with the combined resources and complementary expertise of staff from two top ranking Russell Group universities, working together to offer you a curriculum relevant to the needs of industry.
  • The Colleges of Science and Engineering at the University of Glasgow and the University of Edinburgh delivered power and impact in the 2014 Research Excellent Framework. Overall, 94% of Edinburgh’s and 90% of Glasgow’s research activity is world leading or internationally excellent, rising in Glasgow’s case to 95% for its impact.
  • Fully-funded places and bursaries are available to Scottish/EU candidates. Further information on funded places.

Programme structure

The programme comprises a mix of core and optional courses. The curriculum you undertake is flexible and tailored to your prior experience and expertise, your particular research interests, and the specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme.

Graduates receive a joint degree from the universities of Edinburgh and Glasgow.

Programme timetable

  • Semester 1: University of Glasgow
  • Semester 2: University of Edinburgh
  • Semester 3: MSc project, including the possibility of an industry placement

Core courses

  • Circuits and systems
  • Fundamentals of sensing and imaging
  • Technology and innovation management
  • Research project preparation.

Optional courses

  • Biomedical imaging techniques
  • Biophysical chemistry
  • Biosensors and instrumentation
  • Chemical biology
  • Digital signal processing
  • Electronic product design and manufacture
  • Electronic system design
  • Entrepreneurship
  • Lab-on-chip technologies
  • Lasers and electro-optic systems
  • Microelectronics in consumer products
  • Microfabrication techniques
  • Nanofabrication
  • Physical techniques in action
  • Waves and diffraction.

Career prospects

You will gain an understanding of sensor-based systems applicable to a whole host of markets supported by CENSIS.

Career opportunities are extensive. Sensor systems are spearheading the next wave of connectivity and intelligence for internet connected devices, underpinning all of the new ‘smart markets’, e.g., grid, cities, transport and mobility, digital healthcare and big data.

You will graduate with domain-appropriate skills suitable for a range of careers in areas including renewable energy, subsea and marine technologies, defence, automotive engineering, intelligent transport, healthcare, aerospace, manufacturing and process control, consumer electronics, and environmental monitoring.

Globally, the market for sensor systems is valued at £500Bn with an annual growth rate of 10%. The Scottish sensor systems market is worth £2.6Bn pa. There are over 170 sensor systems companies based in Scotland (SMEs and large companies), employing 16,000 people in high-value jobs including product R&D, design, engineering, manufacturing and field services.



Read less

Show 10 15 30 per page



Cookie Policy    X