• University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Leicester Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Manchester Featured Masters Courses
"msc" AND "engineering" A…×
0 miles

Masters Degrees (Msc Engineering Geology)

We have 112 Masters Degrees (Msc Engineering Geology)

  • "msc" AND "engineering" AND "geology" ×
  • clear all
Showing 1 to 15 of 112
Order by 
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
Your programme of study. A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. Read more

Your programme of study

A crucial part of the oil and gas industry, energy and marine based industries, Subsea Engineering is an essential and highly trained area of work involving all discipline areas within Engineering. University of Aberdeen has gained an industry reputation in the energy industry which is located in the City due to extensive research and collaboration since the industry grew in the 1970s. This level of research and work within industry who also advise on many of the vocational/academic programmes at the University ensures a level of rigour which will carry you as a professional right throughout your career.

You combine technical knowledge with understanding of systems, types of risks, challenges in very hard to reach areas, integrity, inspection, maintenance, controls, flow assurance, reliability and mechanics of various structures and facilities. The industry continuously changes as more technology comes on board to support integrity and reliability issues, but the basics remain the same in requiring solid engineering skills, knowledge, analysis and problem solving ability.

Careers in this area can include: Analysis Engineer, Marine Contractor, Subsea Field Engineer, Subsea Installation Engineer, and similar positions in the energy industry. There are also other industries which involve Subsea Engineering and knowledge. You gain plenty of accreditations of professional standing as follows:

  • Institution of Structural Engineers
  • Institute of Mechanical Engineers
  • The Institute of Marine Engineering, Science and Technology
  • Institution of Civil Engineers
  • Institute of Highway Engineers
  • Chartered Institution of Highways and Transportation
  • Energy Institute

University of Aberdeen offers this programme on campus and online to allow some level of flexibility in studying from different locations. The University is highly regarded in the energy industry and offers programmes which are tailored to operations, facilities and professional management of the oil and gas industry. There are world renowned experts who teach on specific programmes at the University such as Energy Economics, MBA, Energy Law, Engineering, Geology and other subject areas such as strategic planning and risk management.

You can study both on campus or online.

Courses listed for the programme

Subsea Engineering (Campus)

Semester 1

  • Offshore Structures and Subsea Systems
  • Subsea Control
  • Subsea Integrity
  • Subsea Construction, Inspection and Maintenance

Semester 2

  • Pipelines and Soil Mechanics
  • Risers Systems and Hydrodynamics
  • Flow Assurance
  • Engineering Risk and Reliability Analysis

Semester 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Campus programme

Subsea Engineering (Online)

Year 1

  • Offshore Structural and Subsea Systems
  • Subsea Construction, Inspection and Maintenance
  • Pipelines and Soil Mechanics
  • Engineering Risk and Reliability Analysis

Year 2

  • Subsea Control
  • Subsea Integrity
  • Risers Systems and Hydrodynamics
  • Flow Assurance

Year 3

  • Subsea Engineering Individual Project

Find out more detail by visiting the programme web page

Online programme

Why study at Aberdeen?

  • Aberdeen is recognised as a Global Centre of Excellence for Subsea development and operations. The programme is fully accredited professionally and overseen by an Industry Advisory Board
  • You learn from the industry and the university in the 'World Energy City' of Aberdeen getting the chance to visit industry relevant events, networking opportunities and events on campus

Where you study

International Student Fees 2017/2018

  • Scotland/EU £5500
  • Other UK £5500
  • International £20 000

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Find out more about fees

Scholarships

View all funding options on our funding database via the latest opportunities page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and Living costs

Other engineering disciplines you may be interested in:



Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Read more

Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Petroleum reservoir engineering, well drilling, petroleum chemistry and economics of the oil and gas sector are just some of the topics covered.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Petroleum Engineering – one year full time
  • MSc Petroleum Engineering – two years part time
  • MSc Petroleum Engineering (with Advanced Practice) two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Petroleum Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

The programme of lectures and project work encompasses a range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems.

Professional accreditation

Our one-year MSc Petroleum Engineering course is accredited by the Energy Institute under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC. 

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification. The earning potential of chartered petroleum engineers can exceed £100,000 a year.

The two-year MSc Petroleum Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title. 

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase industrial networking opportunities for students.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

You select your master’s research project from titles suggested by either industry or our academic staff but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Employability

This course provides specialist education tailored to the upstream and downstream petroleum industry. The relevance of this education, combined with our careful selection of candidates, has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation. As a result, it is expected that recruitment will continue, especially if you have the motivation and appropriate qualifications.



Read less
Join us for our. Master Open Day. to find out more about our courses. Please note. From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. Read more

Join us for our Master Open Day to find out more about our courses.

Please note: From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. If you meet the usual entry requirements, we will hold your application until we can assess whether further places can be offered. This will likely be the end of July-early August 2017 when we can be more confident of numbers. Please contact our if you have any questions.

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields appropriate to civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work.

Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites.

They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change.

Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

  • Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
  • The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society.
  • Complete a 4 month individual dissertation project often involving organisations outside the University such as consulting engineers, civil engineering contractors and the British Geological Survey.
  • The School's £23m building gives you access to world-class research, teaching and laboratory facilities, many of which will be available to you throughout your studies.

Benefit from our strong connections with industry:

  • We have been training Engineering Geologists over 50 years and maintain links with alumni who can be found in many companies across the globe.
  • Industry colleagues contribute to the taught programme and an Industry Advisory Board informs the content of this course.

Accreditation

When you choose a degree with accredited status, you can be assured that the teaching is of the highest standard. The quality and relevance of our teaching has been recognised by an independent body of academics and industrialists through our Geological Society of London Professional Accreditation.

If you have an appropriate degree, our Geological Society accreditation will reduce the amount of experience required for you to reach Chartered Geologist (CGeol) status, an important career step in Geoscience.

Our designation as a “Technical MSc” through Engineering Council means that if you have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree, the degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng). In addition the degree is also an accredited European Engineering degree. 



Read less
The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. Read more

The Civil Engineering Graduate Diploma enables applicants with a degree in a related subject (for example mathematics, physics or geology) to take a qualifying year before moving into a Civil or Structural Engineering MSc programme. It offers a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a career in civil engineering as a chartered engineer.

About this degree

This bespoke programme provides grounding in fluids, soils, structures and materials engineering, and consists of second and third-year undergraduate core civil engineering subjects. Students are also allocated a civil engineering project which they are required to complete in pairs.

Students undertake modules to the value of 120 credits.

The programme consists of six core modules, one optional module and a research project.

Core modules

  • Structural Analysis and Design
  • Materials II and Applied Fluid Mechanics II
  • Soil Mechanics and Engineering Geology
  • Civil Engineering in Practice
  • Structure and Materials
  • Civil Engineering Project

Optional modules

You will need to choose one module from the optional list:

  • Mathematics Modelling II
  • Fluids & Soils III

Dissertation/report

Students conduct a civil engineering research project over two terms, usually working in pairs. 

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, seminars and laboratory classes. The civil engineering project involves individual research and can include laboratory, computational or fieldwork depending on the nature of your project and your supervisor. It is usually completed in pairs. The programme also includes a field trip and a one-week Constructionarium visit.

Fieldwork

Constructionarium

  • Constructionarium is held as a 6 day working field course. The participants construct scaled down versions of bridges, buildings, dams and civil engineering projects. Students are assessed on the final day in terms of budgetary control, methodology and timely completion.
  • The basic model consists of a university, contractor and consultant working in partnership to deliver a unique learning experience, where students gain practical site experience.
  • Students are supported and mentored by employees from two partner organisations. One is a contractor and the other a consulting agent.

Further information on modules and degree structure is available on the department website: Civil Engineering Grad Dip

Careers

Civil engineering graduates are readily employed by consultancies, construction companies and government departments.

Students who complete both this pre-qualifying year and a Civil Engineering MSc or an Earthquake Engineering and Disaster Management MSc, have excellent career prospects with leading civil and structural engineering companies.

Employability

The are excellent employment prospects for our graduates. There is international demand for multi-skilled, solutions-focused professionals who can take a holistic approach to solving problems.

Why study this degree at UCL?

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting multidisciplinary department with a long tradition of excellence in teaching and research, situated at the heart of London.

Our innovative research is at the forefront of engineering development. Our staff are leaders in their fields and often called upon for their detailed knowledge by the media, industry and policymakers.

This programme offers applicants without a first degree in civil engineering a unique opportunity to be awarded a fully recognised Civil Engineering MSc after two years of study, opening the path to a civil engineering career as a chartered engineer.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Civil, Environmental & Geomatic Engineering

60% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry. Read more

There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on essential aspects of the subject: 

  1. Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
  2. Engineering geology and site investigation
  3. Analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

Course details

This course is offered in both full-time and part-time modes:

  • Masters degree/MSc: 12 months full-time, 24-36 months part-time
  • Postgraduate Diploma: 10 months full-time, 24-36 months part-time
  • Postgraduate Certificate: 10 months full-time, 24-36 months part-time

This programme has developed an excellent reputation since its inception in 1956. Its purpose is to provide advanced training to civil engineers and geologists who wish to widen their knowledge or to specialise in the field of geotechnical engineering. The programme includes lectures, design studies, laboratory classes, a site visit and individual projects. In addition, external lectures are provided by experts and leaders from industry.

With an excellent reputation across the industry, the course focuses on essential aspects of the subject, including: physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing; engineering geology and site investigation; analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

The research project allows for detailed study into a particular area of geotechnical engineering and can focus upon laboratory testing, numerical modelling or management of geotechnical processes/applications.

Related links

Learning and teaching

Assessment 

Candidates must pass the written examinations, achieve a satisfactory project assessment, submit satisfactory coursework, satisfy practical training requirements and comply with University Regulations. Successful candidates are awarded the degree of Master of Science (Geotechnical Engineering) at the Degree Congregation held in December following the end of the Programme.

Candidates who score an overall average of 70% or more are awarded a degree of Master of Science with Distinction

Staff details

The course is taught by University staff and visiting lecturers who provide material that is enhanced by a depth of research and industrial experience. The University staff teaching on the programme include:

  • Professor David Chapman
  • Professor Ian Jefferson
  • Dr Gurmel Ghataora
  • Dr Dexter Hunt
  • Dr Nicole Metje
  • Dr Alexander Royal

Visiting include:

  • Professor Peter Braithwaite (Independent consultant)
  • Professor Martin Culshaw (British Geology Survey)
  • Professor Terry Ingold (Independent consultant)
  • and many other leading industrialists in the geotechnical engineering

Employability

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
This programme is designed to support high-level training and enhance both the technical and managerial skills of graduates and experienced personnel who work in or aspire to a career in the construction or related industries. . Read more

This programme is designed to support high-level training and enhance both the technical and managerial skills of graduates and experienced personnel who work in or aspire to a career in the construction or related industries. 

There is a wide range of opportunity in the Civil Engineering profession for geotechnical specialists, particularly those who combine geotechnical knowledge with essential managerial skills aspects associated with the Construction Industry.

Modern structures, such as buildings, embankments and dams, must satisfy exacting stability and deformation criteria, and they may have to be sited on weak or compressible ground. It is the responsibility of the geotechnical engineer to plan and direct the necessary ground investigations and laboratory testing, interpret the results, and propose methods of design and construction to overcome difficulties caused by inadequate ground.

The long-term performance of the structure must be predicted, and instruments may have to be installed to check the prediction. This needs a sound knowledge of engineering geology, soil and rock mechanics, current civil engineering design, and of construction management and practice.

This MSc programme is designed to support high level training and enhance both the technical and managerial skills of recent graduates or experienced personnel who work in, or aspire to a career in, the construction or related industries. This programme is aimed at Civil Engineers and Geologists who wish to widen their professional scope or to specialise in geotechnical engineering with the addition of modern managerial skills. To summarise the detailed information above, the teaching concentrates on four essential aspects of the subject:

  1. Physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing
  2. Engineering geology and site investigation
  3. Analysis, design and construction of foundations, retaining walls, embankments and slopes including methods of ground reinforcement and improvement.
  4. Managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process

Course details

This course is offered in both full-time and part-time modes:

  • Masters degree/MSc: 12 months full-time, 24-36 months part-time
  • Postgraduate Diploma: 10 months full-time, 24-36 months part-time
  • Postgraduate Certificate: 10 months full-time, 24-36 months part-time

This programme is designed to support high-level training and enhance both the technical and managerial skills of graduates and experienced personnel who work in or aspire to a career in the construction or related industries. It is aimed at civil engineers and geologists who wish to widen their professional scope, or to specialise in geotechnical engineering with the addition of modern managerial skills. 

The programme consists of taught modules (lectures, seminars, laboratory classes and workshops), a site visit and a research project. External lectures are provided by experts and leaders from industry to supplement the key academic parts of the programme.

With an excellent reputation across the industry, the course focuses on essential aspects of the subject, including: physical, chemical and mechanical properties of soils and rocks; ground investigation; field and laboratory testing; engineering geology and site investigation; analysis, design and construction of foundations, retaining walls, tunnels, embankments and slopes including methods of ground reinforcement and improvement.

The Management programme also covers managerial skills for the construction industry, including groundworks and risk management, BIM in infrastructure and infrastructure planning process.

The research project allows for detailed study into a particular area of geotechnical engineering and can focus upon laboratory testing,

numerical modelling or management of geotechnical processes/applications.

Related links

Learning and teaching

Assessment 

Candidates must pass the written examinations, achieve a satisfactory project assessment, submit satisfactory coursework, satisfy practical training requirements and comply with University Regulations. Successful candidates are awarded the degree of Master of Science (Geotechnical Engineering and Management) at the Degree Congregation held in December following the end of the Programme.

Candidates who score an overall average of 70% or more are awarded a degree of Master of Science with Distinction

Staff details

The course is taught by several University staff and by visiting lecturers who provide material that is enhanced by a depth of research and industrial experience. The University staff teaching on the programme include:

  • Professor David Chapman
  • Professor Ian Jefferson 
  • Dr Gurmel Ghataora
  • Dr Dexter Hunt
  • Dr Nicole Metje
  • Dr Alexander Royal

Visiting include:

  • Professor Peter Braithwaite (Independent consultant)
  • Professor Martin Culshaw (British Geology Survey)
  • Professor Terry Ingold (Independent consultant)
  • and many other leading industrialists in the geotechnical engineering

Employability

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
Your programme of study. This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. Read more

Your programme of study

This is a flexible online programme which offers you a variety of study options to gain your MSc in Petroleum Engineering from as little as 36 months to a maximum of 72 months to complete with 10-12 hours of study per week on average. You can study this programme from anywhere in the world and it offers the same academic rigour you would expect if you were studying on campus at University of Aberdeen but you can fit it around a busy life, work, other responsibilities and much more.

If have an engineering, science or mathematics degree and you are considering work in the oil and gas industry worldwide Petroleum Engineering can provide you with a wide range of knowledge and skills within the upstream oil and gas extraction area. The programme mainly focuses on the skills you need to extract oil which can be the initial geoscience knowledge through to core analysis and reservoir engineering. Within reservoir and well engineering there are several areas of analysis, testing and development you then specialise in. This ensures you have a very robust approach to offshore production with the type of advanced skills to problem solve and troubleshoot different situations.

The programme also develops your skills in formation evaluation, simulation, and appraisal plus safe production and enhancing the recovery of hydrocarbon oil and gas. This programme is highly regarded in the industry internationally and it is recognised by all major players in the oil and gas industry. Careers can be anything from Drilling, Operations, Piping Specification, Production, Reservoir, Subsurface and Wellhead Engineer. The degree hold accreditation from the Energy Institute and Institute of Mechanical Engineers

Courses listed for the programme

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • The programme is fully flexible to allow you to study wherever you are online
  • You will acquire skills and knowledge from a programme closely linked to industry needs
  • You study with a university situated in the heart of the European and world Energy Industry, many companies are located here
  • You study with two highly regarded departments in Geology and Engineering and at University of Aberdeen which is very well known in the oil and gas industry globally
  • You can pay by module and take the degree over a longer period up to six years

Where you study

  • Online Learning
  • 5 Months, 27 Months, or 30 Months
  • Part Time
  • September or January start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

You may be also interested in the campus delivery of this programme

Related Postgraduate Degrees

Other engineering disciplines you may be interested in:



Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more

Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students. 

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills

MSc candidates

  • Research Project

Modules offered may vary.

Teaching

How you learn

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery. 

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs. 

Petroleum Experts Ltd has donated to Teesside University a network system and 10 educational licences for the IPM suite (Integrated Production Modelling software) which includes Prosper, Gap, Mbal, Pvtp, Reveal and Resolve. This £1.3m system and software is used by our students to design complete field models including the reservoir tanks, all the wells and the surface gathering system.

Petroleum laboratory facilities

Enhanced oil recovery and core analysis laboratory

The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification. 

Petrophysics laboratory

The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory

The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory

The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 



Read less
The M.S. Program in Environmental Geology Graduate work leading to the M.S. Read more

The M.S. Program in Environmental Geology Graduate work leading to the M.S. degree in Environmental Geology is offered in Newark for full- and part-time students in collaboration with the Department of Earth and Planetary Sciences at Rutgers-New Brunswick and the Department of Civil and Environmental Engineering at NJIT.

Certificate in Environmental Geology at Rutgers-Newark is offered to graduate students admitted to the Rutgers-New Brunswick Geological Sciences Graduate Programs and to students admitted to the NJIT Department of Civil and Environmental Engineering Graduate Programs or other NJIT environmental science or engineering graduate programs provided these students successfully complete 9 credits from the following 3-cr. graduate courses offered at Rutgers-Newark:

  • Environmental Geology
  • Seminar in Environmental Geology
  • Hydrogeology
  • Environmental Geophysics
  • Soil Geochemistry; Geomorphology
  • Analytical Methods in Environmental Geology

Learning goals

The Department of Earth and Environmental Sciences (DEES) Graduate Program in Environmental Science strives to have students complete degrees that allow them to become leaders in their areas of expertise in governmental agencies, non-governmental organizations (NGO’s) and industry. The MS program in Environmental Geology and Environmental Science at Rutgers-Newark focuses on the following three learning goals.

Learning Goal 1 for Students: Obtain advanced knowledge in geoscience and environmental science

Upon graduation:

  • MS students will have acquired advanced knowledge in earth sciences, particularly biogeochemistry, geochemistry and geophysics.
  • MS students will have developed theoretical or practical research skills in biogeochemistry, geochemistry and geophysics.

Learning Goal 2 for Students: Engage in and conduct original, publishable research (for those students pursuing the thesis option only)

Upon graduation:

  • MS students will have completed a dissertation, or equivalent, demonstrating personal integration of, and original intellectual contribution to, a field of knowledge.
  • MS students will have made an original research contribution
  • MS students will have submitted for publication one international journal subject to rigorous peer review.

Learning Goal 3 for Students: Professional career preparation

Upon graduation:

  • MS students will have presented their research to a scientific audience.
  • MS students will have participated in professional organizations and activities.
  • MS students will find employment in the professional sector based on their degree.

Environmental Geology Certificate

Certificate in Environmental Geology at Rutgers University-Newark is offered to graduate students admitted to the Rutgers-New Brunswick Geological Sciences Graduate Programs and to students admitted to the NJIT Department of Civil and Environmental Engineering Graduate Programs or other NJIT environmental science or engineering graduate programs provided these students successfully complete 9 credits from the following 3-cr. graduate courses offered at Rutgers University-Newark:

 

  • Environmental Geology
  • Seminar in Environmental Geology
  • Hydrogeology
  • Environmental Geophysics
  • Soil Geochemistry; Geomorphology
  • Analytical Methods in Environmental Geology


Read less
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. Read more
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. It provides you with advanced conceptual understanding, detailed factual knowledge, specialist technical skills and an awareness of responsibilities to society and the environment.

Your degree will cover areas such as:
-Engineering geology principles and applications
-Site investigation, testing, interpretation and reporting processes
-Analysing diverse geological evidence to assess hazards and risks arising from natural and man-made phenomena
-Geotechnical design

By studying at Newcastle you undertake research with students from civil engineering, geological and other scientific backgrounds. Cross-pollination of academic training and experience is actively encouraged.

Delivery

You will study compulsory modules with a choice of optional modules in blocks of one or two weeks. Assessment is by formal written examinations, course work and oral presentations. You will write up your research project as a dissertation. A full range of teaching methods are used on the course:
-Lectures
-Tutorials
-Seminars
-Open learning
-Group projects
-Computing workshops
-Laboratory
-Fieldwork
-Site visits

Numerous contributions are made to the course by prominent visitors from the construction industry.

At the end of semester two you will benefit from an overseas residential field trip. This allows you to apply your technical knowledge and explore a wide range of exemplar sites.

Accreditation

The course is accredited by the Joint Board of Moderators (JBM) (comprising ICE, IStructE, CIHT and IHIE), as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for students with an Accredited CEng (Partial) BEng Honours degree or Accredited IEng (Full) BEng/BSc Honours.

It is also accredited by the Geological Society (GeolSoc).

Read less
Study online for an MSc in Engineering. Designed for Engineers working in the Energy Industry, the Professional Engineering Programme aims to broaden and deepen students’ knowledge and understanding of a variety of engineering-based facets of the industry and to support their career development and progression. Read more

Study online for an MSc in Engineering. Designed for Engineers working in the Energy Industry, the Professional Engineering Programme aims to broaden and deepen students’ knowledge and understanding of a variety of engineering-based facets of the industry and to support their career development and progression.

The programme is flexible with regards to module choice, allowing selection from a range of topics from the School of Engineering. 

Students are able to take modules for Continuing Professional Development (CPD) purposes or to accumulate credits towards an exit or final award. Three awards are available within the Professional Engineering Programme:

  • Master of Science Engineering (8 modules plus a project)
  • Postgraduate Diploma Engineering (8 modules)
  • Postgraduate Certificate Engineering (4 modules)

This programme has been designed to encourage a variety of applicants who wish to further their career through CPD, gain a wider appreciation of other disciplines or gain accreditation to a professional body as part of a further learning plan.

Applicants may be:

  • A qualified Engineer who is undecided on which Engineering MSc discipline to choose, may undertake a number of modules to inform their choice while still working towards an MSc,
  • A qualified Engineer who would like to take a number of modules from different Engineering MSc courses,
  • Companies seeking a tailored set of modules to suit the training needs of their employees.

Please visit the website to find out how to apply.



Read less
Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives. Read more

About the course

Flooding affects millions worldwide. It ruins homes, destroys livelihoods and threatens lives.

Our new Flood and Coastal Engineering MSc has been developed with the Environment Agency to maintain and enhance the skills and experience of professionals to deliver successful flood management to protect communities from flooding. The course is sponsored by the Environment Agency, supported by local authorities across the UK, and is delivered in cooperation with HR Wallingford, a renowned independent civil engineering and environmental hydraulics organisation with expertise in flood risk assessment and management.

On the course you’ll develop your knowledge of structural design, geotechnics and how to manage and mitigate risk against extreme flood events through environmental assessment and strategic management. You’ll also develop your skills in hydraulic modelling, flood estimation and engineering design.

This course is for graduates who have usually studied engineering, mathematics, environmental science, geography or geology and are now looking to become chartered engineers. The course engages students in knowledge, understanding and application of engineering solutions, and is closely aligned to environmental, social and climatic issues affecting our world today.

Course Content

Advanced River and Coastal Science
Advanced River and Coastal Engineering
Flood and Coastal Management, Governance and Risk
Mathematical Methods, Data and GIS
Design Projects
Structures, Soil Mechanics and Design

Special Features

The Flood and Coastal Engineering MSc provides the basis for developing a career as a professional engineer, and is pending accreditation by the Joint Board of Moderators (representing the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation, and the Institute of Highway Engineers) and the Chartered Institution of Water and Environmental Management.

Brunel University London is ranked a UK top 10 engineering university (U.S. News & World Report, Best Global Universities 2016).

The course sits alongside our other well-established and fully-accredited Civil Engineering degree programmes, which were ranked fourth in London (Complete University Guide 2017).

You’ll benefit from our strong links with industry through the Environment Agency and HR Wallingford, the world-leading hydraulics and engineering research organisation, who work closely with Brunel University London and the Environment Agency.

Teaching

You’ll be introduced to subject material including key concepts, information and approaches through lectures and seminars, laboratory practicals, field work, self-study and individual research reports. A personal tutor will be allocated to you to support you during your time at Brunel.

Assessment

You’ll be assessed in a variety of ways including assignments, lab and design reports, project work, presentations, posters and examinations.

Read less
Why this course?. This unique course, running since 2008 – the first of its kind in Europe – meets the needs of graduate students who want to contribute to environmental improvement and the circular economy, and learn how to identify and evaluate business opportunities. Read more

Why this course?

This unique course, running since 2008 – the first of its kind in Europe – meets the needs of graduate students who want to contribute to environmental improvement and the circular economy, and learn how to identify and evaluate business opportunities. It’s a collaboration between:

  • Department of Civil & Environmental Engineering
  • Hunter Centre for Entrepreneurship

The course has contributions from six other departments: 

  • Law School 
  • Design, Manufacture & Engineering Management 
  • Mechanical & Aerospace Engineering 
  • Economics 
  • Naval Architecture, Ocean & Marine Engineering 
  • Management Science 

Throughout the course, you’ll develop skills that'll allow you to launch new ventures, strategies, products, and technologies that address society's environmental and natural resource problems.

Although this course is offered by an engineering department, it is unique as it accepts students from all backgrounds (social sciences, arts, engineering, law, chemistry, maths, physics, geology, biology and business). Students are able to select class options from a wide range of subjects to suit their background.

The course is suitable for anyone who'd like to refocus their career on environmental or sustainable entrepreneurship.

Opportunity to do MSc dissertation linked to Malawi

The Department has strong links with Malawi. Professor Bob Kalin takes students to Malawi every year for their dissertation/project. This is mainly offered to the students in the MSc in Hydrogeology but there is the potential for students from this MSc to also take part.

You’ll study

You'll follow a curriculum of four core modules and a wide range of optional modules. Each module is taught for two to three hours per week over eight to 11 weeks. Following successful completion of the taught component, you’ll undertake a MSc dissertation from June to August.

Work placement

The Client-Based Environmental Entrepreneurship in Practice class has been developed for this MSc. This class has no formal teaching and instead sees you carry out a four month project of interest to a client, while at the same contributing to ecopreneurship in practice. 

In addition, as part of the class “Independent Study in Collaboration with Industry” you can apply to work with industry projects (such as the Carbon Clinic in collaboration with Carbon Trust).

Strathclyde Enterprise Pathway

You'll benefit from our innovative enterprise related initiative, Enterprise Pathway, which provides you with the opportunity to develop and enhance your transferable skills and learn business basics from real life entrepreneurs.

Facilities

Our £6 million state-of-the-art laboratory facilities are well-equipped with high-technological instrumentation and available space to investigate:

  • environmental & molecular microbiology
  • environmental chemistry
  • analytical chemistry
  • geomechanics & soil quality
  • structural design & material science

Discover more about our facilities.

Living Laboratory for Sustainability

You'll benefit from this innovative initiative which encourages students and researchers to carry out projects that aim to work towards the enhancement of the university’s sustainability. Check out some of our students’ projects and dissertations.

Flexible learning

Home students can also choose to study through Flexible Learning. This is initially a non-graduating route. You register for one module at a time and have the option to build up credits eventually leading to a Postgraduate Certificate, Postgraduate Diploma or MSc. You can take up to five years to achieve the qualification.

This option is popular with students in employment, who may wish to undertake modules for Continuing Professional Development purposes.

Home students who do not meet the normal MSc entry requirements for this programme are welcome to apply through the Flexible Learning route.

Strathclyde Entrepreneurial Network

The University is home to the Strathclyde Entrepreneurial Network, a global support network for current students and graduates. The network has supported many internationally successful student and graduate businesses and yours could be next! Via the , international students, who have an innovative business idea and want to work in the UK, can apply for 12-24 months stay in the UK thanks to the University of Strathclyde endorsement.

Learning & teaching

The Client-Based Environmental Entrepreneurship in Practice class has been developed for this MSc. The class has no formal teaching and instead sees you, working in small groups to carry out a project of interest to a client while at the same contributing to ecopreneurship in practice. The project has a four-month duration, carried out between January and April.

Careers

This MSc course in Environmental Entrepreneurship is not only for those graduates who see their future in small and medium sized enterprises. It can also lead to traditional graduate employment in large companies who need employees who can think entrepreneurially and make a positive contribution to environmental issues.

As a graduate you may follow a broad range of careers including:

  • manufacturing
  • food industry
  • tourism
  • engineering
  • retailing
  • business
  • energy & technology sectors
  • local or central government

You may follow a consultancy path or choose to start your own business. If you want to start your own business, the Strathclyde Entrepreneurial Network (SEN) group gives practical help to graduates from this MSc in relation to innovative ideas in the area of environmental entrepreneurship. SEN is designed to support Strathclyde alumni with new business creation and business growth.



Read less

Show 10 15 30 per page



Cookie Policy    X