• Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
University of Worcester Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Northumbria University Featured Masters Courses
"ms" AND "computer" AND "…×
0 miles

Masters Degrees (Ms Computer Science)

  • "ms" AND "computer" AND "science" ×
  • clear all
Showing 1 to 15 of 89
Order by 
The Department of Computer Science at Binghamton University aims to provide all graduates with a strong foundation in computer science while also offering the opportunity to pursue specific interests within computer science and/or interests in other disciplines. Read more
The Department of Computer Science at Binghamton University aims to provide all graduates with a strong foundation in computer science while also offering the opportunity to pursue specific interests within computer science and/or interests in other disciplines. The program provides students with an understanding of the theory and practice of automating the representation, storage and processing of information, while emphasizing experimental research to design and engineer a wide variety of computer and information systems.

The Master of Science in Computer Science (MSCS) is intended for students with a strong background in computer science and a desire to prepare for research studies or professional practice. If you have bachelor's degree in computer science or a related field, you're invited to apply for admission to our MSCS program.

The doctoral program leads to a PhD in Computer Science. Students admitted into the program typically have a master's degree in computer science or a closely related discipline. Students with a bachelor's degree and a strong academic record may also be directly admitted.

Recent doctoral graduates have gone on to careers in as software engineering at Intel, eBay, Cisco Systems, positions at Hewlett Packard, Microsoft, Twitter, Bloomberg, the Air Force Research Lab, and the U.S. Census. Academic placements include assistant professorships at California State University at Fullerton, Valdosta State University, and Harran University, Turkey.

The Master's program leads to a Master of Science in Computer Science. It is intended for students with a strong background in computer science and a desire to prepare for research studies or professional practice. Holders of the baccalaureate degree in computer science or a related field are invited to apply for admission to the MSCS program. Students whose undergraduate degree is not in computer science may be required to complete some preparatory work in addition to fulfilling the requirements listed below.
Program requirements include four core courses taken over the first two semesters of study. These courses are Computer Organization and Architecture, Operating Systems, Programming Languages and Design & Analysis of Computer Algorithms. Three graduating options are offered: a thesis option, a project option and a comprehensive exam. Beyond the 4 core courses, these options require students to complete 4, 5 and 6 elective courses, respectively, chosen from a broad set of courses offered by the Department.

Applicant Qualifications

- Undergraduate major in computer science or related field desirable for admission
- Applicants are additionally expected to have completed coursework in the following areas:
*Algorithms and data structures
*Computer organization and architecture
*Operating systems
*Programming languages
*Discrete mathematics

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university you have attended
- Two letters of recommendation (three letters of recommendation for PhD applicants)
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business. Read more

Program overview

The computer science program is designed for students who have an undergraduate degree (or minor) in computer science, as well as those who have a strong background in a field in which computers are applied, such as engineering, science, or business.

The degree is offered on a full- or part-time basis. Courses are generally offered in the afternoons and evenings to accommodate part-time students. Full-time students take three or four courses per semester and may be able to complete the course work in three semesters. Full-time students who are required to take additional bridge courses may be able to complete the course work in four semesters. Part-time students take one or two courses per semester and may be able to complete the course work in four to five semesters. The time required to complete a master's project is one semester, but can vary according to the student and the scope of the topic. Two semesters is typical.

Plan of study

The program consists of 30 credit hours of course work, which includes either a thesis or a project. Students complete one core course, three courses in a cluster, four electives, and a thesis. For those choosing to complete a project in place of a thesis, students complete one additional elective.

Clusters

Students select three cluster courses from the following areas (see website for individual area information):
-Computer graphics and visualization
-Data management
-Distributed systems
-Intelligent systems
-Languages and tools
-Security
-Theory

Electives

Electives provide breadth of experience in computer science and applications areas. Students who wish to include courses from departments outside of computer science need prior approval from the graduate program director. Refer to the course descriptions in the departments of computer science, engineering, mathematical sciences, and imaging science for possible elective courses.

Master's thesis/project

Students may choose the thesis or project option as the capstone to the program. Students who choose the project option must register for the Project course (CSCI-788). Students participate in required in-class presentations that are critiqued. A summary project report and public presentation of the student's project (in poster form) occurs at the end of the semester.

Curriculum

Thesis/project options differ in course sequence, see the website for a particular option's modules and a particular cluster's modules.

Other admission requirements

-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit scores from the Graduate Record Exam.
-Have a minimum grade point average of 3.0 (B), and complete a graduate application.
-International applicants, whose native language is not English, must submit scores from the Test of English as a Foreign Language. A minimum score of 570 (paper-based) or 88 (Internet-based) is required.
-Applicants must satisfy prerequisite requirements in mathematics (differential and integral calculus, probability and statistics, discrete mathematics, and computer science theory) and computing (experience with a modern high-level language [e.g., C++, Java], data structures, software design methodology, introductory computer architecture, operating systems, and programming language concepts).

Additional information

Bridge courses:
If an applicant lacks any prerequisites, bridge courses may be recommended to provide students with the required knowledge and skills needed for the program. If any bridge courses are indicated in a student's plan of study, the student may be admitted to the program on the condition that they successfully complete the recommended bridge courses with a grade of B (3.0) or better (courses with lower grades must be repeated). Generally, formal acceptance into the program is deferred until the applicant has made significant progress in this additional course work. Bridge program courses are not counted as part of the 30 credit hours required for the master's degree. During orientation, bridge exams are conducted. These exams are the equivalent to the finals of the bridge courses. Bridge courses will be waived if the exams are passed.

Faculty:
Faculty members in the department are actively engaged in research in the areas of artificial intelligence, computer networking, pattern recognition, computer vision, graphics, visualization, data management, theory, and distributed computing systems. There are many opportunities for graduate students to participate in these activities toward thesis or project work and independent study.

Facilities:
The computer science department provides extensive facilities that represent current technology, including:
-A graduate lab with more than 15 Mac’s and a graduate library.
-Specialized labs in graphics, computer vision, pattern recognition, security, database, and robotics.
-Six general purpose computing labs with more than 100 workstations running Linux, Windows, and OS X; plus campus-wide wireless access.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. Read more

Program overview

Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. The curriculum, leading to a master of science degree in color science, educates students using a broad interdisciplinary approach. This is the only graduate program in the country devoted to this discipline and it is designed for students whose undergraduate majors are in physics, chemistry, imaging science, computer science, electrical engineering, experimental psychology, physiology, or any discipline pertaining to the quantitative description of color. Graduates are in high demand and have accepted industrial positions in electronic imaging, color instrumentation, colorant formulation, and basic and applied research. Companies that have hired graduates include Apple Inc., Benjamin Moore, Canon Corp., Dolby Laboratories, Eastman Kodak Co., Hallmark, Hewlett Packard Corp., Microsoft Corp., Pantone, Qualcomm Inc., Ricoh Innovations Inc., Samsung, and Xerox Corp.

The color science degree provides graduate-level study in both theory and practical application. The program gives students a broad exposure to the field of color and affords them the unique opportunity of specializing in an area appropriate for their background and interest. This objective will be accomplished through the program’s core courses, selection of electives, and completion of a thesis or graduate project.The program revolves around the activities of the Munsell Color Science Laboratory within the College of Science. The Munsell Laboratory is the pre-eminent academic laboratory in the country devoted to color science. Research is currently under way in color appearance models, lighting, image-quality, color-tolerance psychophysics, spectral-based image capture, archiving, reproduction of artwork, color management, computer graphics; and material appearance. The Munsell Laboratory has many contacts that provide students with summer and full-time job opportunities across the United States and abroad.

Plan of study

Students must earn 30 semester credit hours as a graduate student to earn the master of science degree. For full-time students, the program requires three to four semesters of study. Part-time students generally require two to four years of study. The curriculum is a combination of required courses in color science, elective courses appropriate for the candidate’s background, and either a research thesis or graduate project. Students require approval of the program director if they wish to complete a graduate project, rather than a research thesis, at the conclusion of their degree.

Prerequisites: The foundation program

The color science program is designed for the candidate with an undergraduate degree in a scientific or other technical discipline. Candidates with adequate undergraduate work in related sciences start the program as matriculated graduate students. Candidates without adequate undergraduate work in related sciences must take foundation courses prior to matriculation into the graduate program. A written agreement between the candidate and the program coordinator will identify the required foundation courses. Foundation courses must be completed with an overall B average before a student can matriculate into the graduate program. A maximum of 9 graduate-level credit hours may be taken prior to matriculation into the graduate program. The foundation courses, representative of those often required, are as follows: one year of calculus, one year of college physics (with laboratory), one course in computer programming, one course in matrix algebra, one course in statistics, and one course in introductory psychology. Other science courses (with laboratory) might be substituted for physics.

Curriculum

Color science, MS degree, typical course sequence:
First Year
-Principles of Color Science
-Computational Vision Science
-Historical Research Perspectives
-Color Physics and Applications
-Modeling Visual Perception
-Research and Publication Methods
-Electives
Second Year
-Research
-Electives

Other admission requirements

-Submit scores from the Graduate Record Examination (GRE).
-Submit official transcripts (in English) for all previously completed undergraduate and graduate course work.
-Submit two professional recommendations.
-Complete an on-campus interview (when possible).
-Have an average GPA of 3.0 or higher.
-Have completed foundation course work with GPA of 3.0 or higher (if required), and complete a graduate application.
-International applicants who native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 94 (internet-based) are required. International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.

Additional information

Scholarships and assistantships:
Students seeking RIT-funded scholarships and assistantships should apply to the Color Science Ph.D. program (which is identical to the MS program in the first two years). Currently, assistantships are only available for qualified color science applicants to the Ph.D. program. Applicants seeking financial assistance from RIT must submit all application documents to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Read less
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students. Read more
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students.

- Master of Science–Thesis Option (http://cs.ua.edu/graduate/ms-program/#thesis)
- Master of Science–Non-Thesis Option (http://cs.ua.edu/graduate/ms-program/#nonthesis)
- Timetable for the Submission of Graduate School Forms for an MS Degree (http://cs.ua.edu/graduate/ms-program/#timetable)

Visit the website http://cs.ua.edu/graduate/ms-program/

MASTER OF SCIENCE–THESIS OPTION (PLAN I):

30 CREDIT HOURS
Each candidate must earn a minimum of 24 semester hours of credit for coursework, plus a 6-hour thesis under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

Credit Hours
The student must successfully complete 30 total credit hours, as follows:

- 24 hours of CS graduate-level course work

- 6 hours of CS 599 Master’s Thesis Research: Thesis Research.

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory). These courses must be taken within the department and selected from the following:
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours, as follows:

- 6 hours of CS 599 Master’s Thesis Research

- 24 hours of CS graduate-level course work with a grade of A or B, including the following courses completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

MASTER OF SCIENCE–NON-THESIS OPTION (PLAN II):

30 CREDIT HOURS
Each candidate must earn a minimum of 30 semester hours of credit for coursework, which may include a 3-hour non-thesis project under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

The student must successfully complete 30 total credit hours, as follows:

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory).
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours of CS graduate-level course work with a grade of A or B, as follows:

- The following courses will be completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

TIMETABLE FOR THE SUBMISSION OF GRADUATE SCHOOL FORMS FOR AN MS DEGREE
This document identifies a timetable for the submission of all Graduate School paperwork associated with the completion of an M.S. degree

- For students in Plan I students only (thesis option) after a successful thesis proposal defense, you should submit the Appointment/Change of a Masters Thesis Committee form

- The semester before, or no later than the first week in the semester in which you plan to graduate, you should “Apply for Graduation” online in myBama.

- In the semester in which you apply for graduation, the Graduate Program Director will contact you about the Comprehensive Exam.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
See the department website - http://www.cis.rit.edu/graduate-programs/master-science. The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Read more
See the department website - http://www.cis.rit.edu/graduate-programs/master-science

The master of science program in imaging science prepares students for positions in research in the imaging industry or in the application of various imaging modalities to problems in engineering and science. Formal course work includes consideration of the physical properties of radiation-sensitive materials and processes, the applications of physical and geometrical optics to electro-optical systems, the mathematical evaluation of image forming systems, digital image processing, and the statistical characterization of noise and system performance. Technical electives may be selected from courses offered in imaging science, color science, engineering, computer science, science, and mathematics. Both thesis and project options are available. In general, full-time students are required to pursue the thesis option, with the project option targeted to part-time and online students who can demonstrate that they have sufficient practical experience through their professional activities.

Faculty within the Center for Imaging Science supervise thesis research in areas of the physical properties of radiation-sensitive materials and processes, digital image processing, remote sensing, nanoimaging, electro-optical instrumentation, vision, medical imaging, color imaging systems, and astronomical imaging. Interdisciplinary efforts are possible with other colleges across the university.

The program can be completed on a full- or a part-time basis. Some courses are available online, specifically in the areas of color science, remote sensing, medical imaging, and digital image processing.

Plan of study

All students must earn 30 credit hours as a graduate student. The curriculum is a combination of required core courses in imaging science, elective courses appropriate for the candidate’s background and interests, and either a research thesis or graduate paper/project. Students must enroll in either the research thesis or graduate paper/project option at the beginning of their studies.

Core courses

Students are required to complete the following core courses: Fourier Methods for Imaging (IMGS-616), Image Processing and Computer Vision (IMGS-682), Optics for Imaging (IMGS-633), and either Radiometry (IMGS-619) or The Human Visual System (IMGS-620).

Speciality track courses

Students choose two courses from a variety of tracks such as: digital image processing, medical imaging, electro-optical imaging systems, remote sensing, color imaging, optics, hard copy materials and processes, and nanoimaging. Tracks may be created for students interested in pursuing additional fields of study.

Research thesis option

The research thesis is based on experimental evidence obtained by the student in an appropriate field, as arranged between the student and their adviser. The minimum number of thesis credits required is four and may be fulfilled by experiments in the university’s laboratories. In some cases, the requirement may be fulfilled by work done in other laboratories or the student's place of employment, under the following conditions:

1. The results must be fully publishable.

2. The student’s adviser must be approved by the graduate program coordinator.

3. The thesis must be based on independent, original work, as it would be if the work were done in the university’s laboratories.

A student’s thesis committee is composed of a minimum of three people: the student’s adviser and two additional members who hold at least a master's dgeree in a field relevant to the student’s research. Two committee members must be from the graduate faculty of the center.

Graduate paper/project option

Students with demonstrated practical or research experience, approved by the graduate program coordinator, may choose the graduate project option (3 credit hours). This option takes the form of a systems project course. The graduate paper is normally performed during the final semester of study. Both part- and full-time students may choose this option, with the approval of the graduate program coordinator.

Admission requirements

To be considered for admission to the MS in imaging science, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution (undergraduate studies should include the following: mathematics, through calculus and including differential equations; and a full year of calculus-based physics, including modern physics. It is assumed that students can write a common computer program),

- Submit a one- to two-page statement of educational objectives,

- Submit official transcripts (in English) of all previously completed undergraduate or graduate course work,

- Submit letters of recommendation from individuals familiar with the applicant’s academic or research capabilities,

- Submit scores from the Graduate Record Exam (GRE) (requirement may be waived for those not seeking funding from the Center for Imaging Science), and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 600 (paper-based) or 100 (Internet-based) are required. Students may also submit scores from the International English Language Testing System. The minimum IELTS score is 7.0. International students who are interested in applying for a teaching or research assistantship are advised to obtain as high a TOEFL or IELTS score as possible. These applicants also are encouraged to take the Test of Spoken English in order to be considered for financial assistance.

Applicants seeking financial assistance from the center must have all application documents submitted to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Additional information

- Bridge courses

Applicants who lack adequate preparation may be required to complete bridge courses in mathematics or physics before matriculating with graduate status.

- Maximum time limit

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
USF offers a three-year MS in Computer Science Bridge program that provides a unique opportunity for motivated students from a non-computer science background to pursue a Master's in Computer Science. Read more
USF offers a three-year MS in Computer Science Bridge program that provides a unique opportunity for motivated students from a non-computer science background to pursue a Master's in Computer Science. Students who successfully complete the first year of preparatory classes then continue in the standard two-year MS in Computer Science program.

Real-World Experience - By completing an internship at a technology company, working on a faculty research project, or contributing to an open-source project, the practicum course helps students gain real world experience.

San Francisco Advantage - Located in the heart of San Francisco and close to Silicon Valley, which boasts more tech companies than any other region in the US.

Faculty - Comprising of distinguished researchers and accomplished experts from the Bay Area’s tech companies, the MSCS faculty bring real world computing experience into the classroom.

Small Classes - Close interaction with full-time faculty is a hallmark of the program. Our cohort model enhances the experience during our students’ first year, allowing them to take core courses at the same time.

International Students - may be eligible to work for 36 months in the U.S. after completion of the MSCS program via the OPT program and STEM extension.

Who Can Apply?

Applicants with basic introductory programming background in variables, control structures, structured data types, and functions are eligible to apply. These prerequisites can be completed through introductory programming courses at a local community college, university, online, or through self-study.

Read less
The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening… Read more

Program overview

The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening their ability to successfully formulate solutions to current technical problems, and offers a significant independent learning experience in preparation for further graduate study or for continuing professional development at the leading edge of the discipline. The program accommodates applicants with undergraduate degrees in computer engineering or related programs such as electrical engineering or computer science. (Some additional bridge courses may be required for applicants from undergraduate degrees outside of computer engineering).

Plan of study

The degree requires 30 semester credit hours and includes Analytical Topics in Computer Engineering (CMPE-610), two core courses, four graduate electives, two semesters of graduate seminar, and the option of completing either a thesis research or a graduate project. The core courses and graduate electives provide breadth and depth of knowledge. The Computer Engineering Graduate Seminar (CMPE-795) provides students with exposure to a variety of topics presented by researchers from within RIT, industry, and other universities, and guides students to choose either a thesis or project as their culminating experience. The Project/Thesis Initiation Seminar (CMPE-796) guides students to complete their thesis proposal or project execution plan with their faculty adviser.

Students who pursue the thesis option complete nine semester credit hours of thesis research (CMPE-790) to conduct research with a faculty adviser to answer a fundamental science/engineering question that contributes to new knowledge in the field. Students are expected to formulate the problem under the faculty adviser's guidance and conduct extensive quantitative or qualitative analyses with sound methodology. Research findings should be repeatable and generalizable, with sufficient quality to make them publishable in technical conferences and/or journals. Students who pursue the project option take six semester credits of graduate electives directly related to their project deliverables and three semester credits of Graduate Project (CMPE-792) to professionally execute a project under the supervision of a faculty adviser. The project generally addresses an immediate and practical problem, a scholarly undertaking that can have tangible outcomes, where students are expected to give a presentation or demonstration of the final deliverables of the project.

Research tracks/Graduate electives

Students may select four graduate electives from within the following research tracks. Students are encouraged to choose most of their graduate electives within a single research track. At least two of the electives must be from the computer engineering department (computer engineering department courses begin with the prefix CMPE). Courses outside the lists below may be considered with approval from the department of computer engineering. Research tracks are available in the following areas (see website for research track details):
-Computer architecture
-Computer vision and machine intelligence
-Integrated circuits and systems
-Networks and security
-Signal processing, control and embedded systems
-Additional graduate-level math courses

Curriculum

Thesis and project options differ in course sequence, see website for a particular option's module information.

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have an GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS).

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less
The Master of Science in Computer Science (MSCS) program provides students with a broad background in software development and other core disciplines of computer science, ranging from systems, networking, and distributed programming to algorithms and theory. Read more
The Master of Science in Computer Science (MSCS) program provides students with a broad background in software development and other core disciplines of computer science, ranging from systems, networking, and distributed programming to algorithms and theory.

Program Highlights

Real-world experience - By completing an internship at a technology company, working on a faculty research project, or contributing to an open-source project, the practicum course helps students gain real world experience.

San Francisco Advantage - Located in the heart of San Francisco and close to Silicon Valley, which boasts more tech companies than any other region in the US.

Faculty - Comprising of distinguished researchers and accomplished experts from the Bay Area’s tech companies, the our faculty bring real world computing experience into the classroom.

Small Classes - Close interaction with full-time faculty is a hallmark of the program. Our cohort model enhances the experience during our students’ first year, allowing them to take core courses at the same time.

International Students - may be eligible to work for 36 months in the U.S. after completion of the MSCS program via the OPT program and STEM extension.

Read less
Human-computer interaction (HCI) addresses the design, evaluation, and implementation of interactive computing and computing-based systems for the benefit of human use. Read more

Program overview

Human-computer interaction (HCI) addresses the design, evaluation, and implementation of interactive computing and computing-based systems for the benefit of human use. HCI research is driven by technological advances and the increasing pervasiveness of computing devices in our society. With an emphasis on making computing technologies more user-friendly, HCI has emerged as a dynamic, multifaceted area of study that merges theory from science, engineering, and design––as well as concepts and methodologies from psychology, anthropology, sociology, and industrial design––with the technical concerns of computing.

The master of science degree in human-computer interaction provides the knowledge and skills necessary for conceptualizing, designing, implementing, and evaluating software applications and computing technologies for the benefit of the user, whether the user is an individual, a group, an organization, or a society. Human, technological, and organizational concerns are interwoven throughout the curriculum and addressed in team- and project-based learning experiences.

Plan of study

The program is comprised of four required core courses, up to three program electives (depending upon capstone option chosen), two application domain courses, and a capstone project or thesis.

Core courses

The core courses provide knowledge and skills in the conceptual and methodological frameworks of HCI and HCI research. Emphasis is on understanding human cognition as it applies to information systems plus interaction design, interface prototyping, and usability evaluation.

Electives

Student choose up to three electives, depending on which capstone option they choose to complete.

Program electives

Students will select two courses from the program electives list. In select cases, students can petition for approval to include a course complementray to the degree program as a program elective. See website for further details of available electives: https://www.rit.edu/programs/human-computer-interaction-ms

Application domain courses

To gain breadth in a technical area to which HCI concepts can be applied, students complete two courses in any of the following application domain areas. A special topics option is also available, with faculty approval, for individuals with interest in other HCI-related areas. See website for further details of available domain courses: https://www.rit.edu/programs/human-computer-interaction-ms

Thesis/Capstone project

Students may complete a thesis or capstone project. (Student who choose the capstone will complete one additional elective.) This experience is meant to be an empirical study of a HCI problem, which can be the development of a software product through user-centered design processes. The results are either published in a peer-reviewed journal or publicly disseminated in an appropriate professional venue.

Curriculum

Course sequence differs according to selected thesis/project option, see website for further details of a particular option's modules and electives: https://www.rit.edu/programs/human-computer-interaction-ms

Other admission requirements

-Have a minimum cumulative GPA of 3.0* (B average).
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Have prior study or professional experience in computing; however, study in other disciplines will be given consideration.
-Complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 570 (paper-based) or 88 (Internet-based) are required.
-Applicants with undergraduate degrees from foreign universities are required to submit GRE scores.

*Applicants with a GPA below 3.0 may be considered, but are required to submit standard Graduate Record Exam (GRE) scores.

Additional information

Prerequisites:
The program requires strong technical and social science skills. Knowledge of quantitative statistical methodologies is important since students review research studies as well as analyze the results of their own usability evaluations. Students are also expected to have a solid background in computer programming. These competencies may be demonstrated by previous course work, technical certifications, or comparable work experience. Bridge courses are available to fulfill any gaps in an applicant's qualifications. Applicants will be made aware of any areas where additional course work may be necessary.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Online option:
The program can be completed on campus or online.

Read less
See the department website - https://www.rit.edu/cast/packaging/ms-packaging-science. The MS degree in packaging science is designed to meet the needs of professionals who are employed in the field or students who wish to pursue a graduate program immediately upon earning a bachelor's degree. Read more
See the department website - https://www.rit.edu/cast/packaging/ms-packaging-science

The MS degree in packaging science is designed to meet the needs of professionals who are employed in the field or students who wish to pursue a graduate program immediately upon earning a bachelor's degree.

Plan of study

The program requires the completion of 36 credit hours comprised of six required core courses, elective courses, plus a thesis or project. Faculty advisers assist students in selecting the thesis or project option and the corresponding plan of study is approved by the graduate program chair.

- Elective courses

All elective courses are approved by the student’s adviser and must meet degree requirements. In certain circumstances, with pre-approval by the graduate adviser and where individual need indicates appropriateness, a limited number of upper-level undergraduate courses may be used to fulfill elective credit. Students, with adviser permission, may include independent study as part of their elective credits. However, independent study may not be used toward the required packaging core course work. Courses selected for elective credit can be combined to create special areas of focus with program chair approval.

- Thesis/Project/Comprehensive Exam

The thesis option requires 6 credit hours and develops and tests a hypothesis by scientific method and is grounded in a theoretical framework. Individuals who can capture, interpret, and apply information by this method can add value to their roles as contributors in the workplace. The thesis option is for students seeking to pursue careers that offer a greater opportunity for further research or advanced study in the field of packaging science. It is meant to provide depth of study, emphasizing the research process. The thesis option is by invitation only.

The project option is 3 credit hours and has a practical, application-oriented grounding in literature. It is considered secondary research or the compilation of existing information presented in a new way. The project option is for students who desire advanced study in packaging science, but who do not intend to pursue a research career or further studies beyond the master’s level. Students choosing the project option are required to complete one additional elective course.

The comprehensive exam option is 0 credit hours and allows students to complete an exam in place of a thesis or project. Students who choose this option take two additional elective courses.

The student’s graduate committee makes the final decision regarding the proposal idea and whether it meets the program’s requirements as a graduate project or thesis; or if a student is best served by completing the comprehensive exam.

Admission requirements

Graduate Record Exam (GRE) scores are not required. However, in cases where there may be some question of the capability of an applicant to complete the program, applicants may wish to submit scores to strengthen their application.

Students who do not have an equivalent bachelor’s degree in packaging science will be evaluated and the appropriate undergraduate bridge courses will be prescribed. These courses may not be used for credit toward the MS degree.

Applicants are required to have one semester of physics (mechanics focus), one semester of calculus, one year of chemistry (including organic chemistry), statistics, and basic computer literacy.

Students who do not have an equivalent bachelor’s degree in packaging science will be evaluated and the appropriate undergraduate bridge courses will be prescribed. These courses may not be used for credit toward the MS degree.

Additional information

- Advising

Students are appointed an academic adviser who works with the program coordinator to develop a program of study. Students follow an outlined curriculum to complete their degree requirements and, with adviser approval, choose packaging electives to enhance their career objectives. Students choose a faculty adviser with approval from their program coordinator for their thesis or project. The faculty adviser guides the student on topic choice and works with the program coordinator for approval and timely completion of the thesis or project.

Read less
Habitat loss, global climate change, water and air pollution, ozone depletion, species invasions, loss of biodiversity, and the accumulation of toxic wastes are among the many environmental dilemmas our society faces. Read more

Program overview

Habitat loss, global climate change, water and air pollution, ozone depletion, species invasions, loss of biodiversity, and the accumulation of toxic wastes are among the many environmental dilemmas our society faces. These complex problems pit environmental limits against economic development, diverse cultures, ethics, values, and social stability and therefore require an understanding of science, policy, society, history, and economics. Environmental scientists must use integrated and holistic approaches to understand and find sustainable solutions to these problems. Graduates of the environmental science program are well prepared for a variety of environmental careers including consulting, research, policy, and outreach, or further graduate work towards a doctoral degree.

Plan of study

Built on the concept that environmental issues are inherently interdisciplinary, the program is offered in collaboration with the College of Liberal Arts. The curriculum provides students with a deep understanding of the science behind our environmental problems, the complex set of circumstances that impact environmental issues, and how environmental decisions and policies must attempt to find a balance between environmental conservation, human well-being, and economic development. Students augment their hands-on classroom work with in-depth experiential learning through an individual thesis or project that provides students with the chance to work on real-world environmental problems under the guidance of skilled environmental scientists. The program includes a core curriculum and electives chosen to reflect the student’s background and career goals. A minimum of 34 semester credit hours beyond the bachelor’s degree is required. All students must propose, conduct, and report on an original research thesis or project.

Curriculum

Course sequence differs according to thesis/project option, see website for a particular option's modules
http://www.rit.edu/programs/environmental-science-ms

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have a minimum GPA of 3.0 (overall and in science/math).
-Submit a statement outlining the candidate's research/project interests, career goals, and suitability to the program.
-Submit three letters of recommendation, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 600 (paper-based) is required. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.
-The Graduate Record Examination (GRE) is recommended but not required for applicants with an undergraduate degree from a US institution.The GRE is required for International applicants.
-Students are strongly encouraged to contact program faculty before applying to discuss thesis topics and research projects. Students will be matched with a potential thesis advisor at the time of admission.

Additional information

Facilities and equipment:
The program provides a wide range of research opportunities. Many faculty members are engaged in field-based projects and the college boasts excellent laboratory facilities that support field research, including wet laboratories and computer facilities (traditional and geographic information systems). For a list of past and present projects, and faculty research interests, please visit the program website.

Monitoring, mapping, and field equipment:
ArcGIS and IDRISI GIS software, ENVS and ERDAS Remote Sensing software, Garmin and Trimble GPS receivers, soil sampling and analysis equipment, water sampling devices, multisonde water quality probes and dissolved oxygen meters, SCT meter, ponar dredges, Li-Cor light meter, plankton samplers, macroinvertebrate nets/samplers, and a library of field reference texts.

Other equipment:
Fluorimeter, Raman Spectrometer, UV-Vis-IR, GC-MS, ICP, atomic absorption, polarimeter, centrifuge, electrochemical equipment, gas chromatographs, HPLC, viscometer, ESR (built in-house), confocal microscope, infrared carbon dioxide analyzer, Unisense microelectrode system, Lachat autoanalyzer, incubators, capillary electrophoresis, DSCs, DMA, NMR, drying oven, Wiley mill.

Read less
The graduate programs in Electrical and Computer Engineering are designed to prepare students for a broad range of careers by providing a foundation of study in several technical areas. Read more
The graduate programs in Electrical and Computer Engineering are designed to prepare students for a broad range of careers by providing a foundation of study in several technical areas. Your course of study will be individualized to suit your interests, with intensive training in numerous specializations, such as all aspects of computer engineering, control systems, signal processing and communications, information assurance, VLSI, microelectronics, electro-optics, and power/energy.

The Master's of Science (MS) degree program prepares students for development-oriented engineering careers and/or continuation onto doctoral studies by providing a balance of advanced theory and practical engineering knowledge. The typical time for completion of the MS is 18–24 months of full-time study.

Applicant Qualifications

- Undergraduate major in electrical engineering, computer engineering or related field
- Previous coursework experience in each of the following (or equivalent) areas:
*Calculus through differential equations
*Computer programming
*Electrical circuits
*Electronics
*Digital design logic
*Laboratory experience

- Qualified applicants with non-ECE backgrounds may be extended an offer of conditional admission which will last until they fulfill the department's requirements for regular admission (generally, completion of specific undergraduate courses)
- Minimum GRE quantitative scores of 700 (old scale; 155 new scale); (750 old scale preferred; 169 new scale). GRE scores not required for graduates of ABET-accredited engineering programs
- Minimum TOEFL score of 80 (internet-based exam) for students whose native language is not English. A minimum score of 100 is desirable for students seeking teaching assistantships

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university at which you earned a degree
- Two letters of recommendation (except PhD applicants, as described above)
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Read less
UA’s Department of Electrical and Computer Engineering offers dynamic programs for students interested in a traditional electrical engineering degree or those who desire a specialization in computer engineering. Read more
UA’s Department of Electrical and Computer Engineering offers dynamic programs for students interested in a traditional electrical engineering degree or those who desire a specialization in computer engineering.

MISSION

UA’s Department of Electrical and Computer Engineering will

- provide high-quality and broad-based undergraduate and graduate education in electrical and computer engineering
- conduct high-quality research programs that will advance the state of knowledge
- contribute to the engineering profession and to society through service activities

Visit the website http://ece.eng.ua.edu/graduate/ms-program/

Master of Science–Thesis Option (PLAN I):

30 Credit Hours
A minimum of 24 credit hours of coursework is required. Constraints on these 24 hours shall include:
- A minimum of 12 hours of closely related Electrical and Computer Engineering (ECE) designated courses in the student’s area of concentration, as defined by the advisory committee.

- A minimum of 9 hours of courses in an elective area approved by the advisory committee.

- A minimum of 3 hours of Mathematics (MATH or GES) or Science (Physics, Chemistry, or Biology) courses at the 500 level or above.

- No more than 6 hours may be from courses at the 400 level. In order to receive degree credit, 400-level courses require written application and approval by the Graduate School (http://graduate.ua.edu/) prior to the semester in which any 400-level course is to be takentaken.

A minimum of 6 hours of thesis research (ECE 599) is required.

A student’s curriculum and thesis must be approved by the student’s graduate advisory committee. The student must pass a final comprehensive examination, which is typically a presentation and defense of the thesis. In addition, the student must satisfy all University requirements defined in the current edition of The University of Alabama Graduate Catalog (http://graduate.ua.edu/catalog/index.html).

[[Master of Science–Non-Thesis Option (PLAN II):]
30 Credit Hours
A minimum of 30 credit hours of coursework is required. Constraints on these 30 hours shall include:
- A minimum of 15 hours of closely related Electrical and Computer Engineering (ECE) designated courses in the student’s area of concentration, as defined by the advisory committee.

- A minimum of 12 hours of courses in an elective area approved by the advisory committee.

- A minimum of 3 hours of Mathematics (MATH or GES) or Science (Physics, Chemistry, or Biology) courses at the 500 level or above.

- No more than six (6) hours may be courses at the 400 level. In order to receive degree credit, 400-level courses require written application and approval by the Graduate School prior to the semester in which any 400-level course is to be taken taken.

A student’s curriculum must be approved by the student’s graduate advisory committee. The graduate advisory committee must also approve the submission of a manuscript, authored or co-authored by the candidate, to a refereed journal or conference proceeding. This publication submission shall constitute The University of Alabama Graduate School culminating experience requirement for an MS Plan II degree in electrical and computer engineering.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
Developers of computing systems and practitioners in all computing disciplines need an understanding of the critical importance of building security and survivability into the hardware and software of computing systems they design, rather than trying to add it on once these systems have been designed, developed, and installed. Read more

Program overview

Developers of computing systems and practitioners in all computing disciplines need an understanding of the critical importance of building security and survivability into the hardware and software of computing systems they design, rather than trying to add it on once these systems have been designed, developed, and installed.

The MS in computing security gives students an understanding of the technological and ethical roles of computing security in today's society and its importance across the breadth of computing disciplines. Students can develop a specialization in one of several security-related areas by selecting technical electives under the guidance of a faculty adviser. The program enables students to develop a strong theoretical and practical foundation in secure computing, preparing them for leadership positions in both the private and public sectors of the computing security industry, for academic or research careers in computing security, or to pursue a more advanced degree in a computing discipline.

Plan of study

The program is designed for students who have an undergraduate computing degree in an area such as computing security, computer science, information technology, networking, or software engineering, as well as those who have a strong background in a field in which computers are applied, such as computer or electrical engineering. The curriculum consists of three required core courses, up to 6 technical electives (depending on the capstone option chosen), and a capstone thesis, project, or capstone course for a total of 30 semester credit hours.

Electives

Students are required to choose up to six technical electives, from:
-Advanced Computer Forensics
-Web Server and Application Security Audits
-Mobile Device Forensics
-Information Security Risk Management
-Sensor and SCADA Security
-Computer System Security
-Computer Viruses and Malicious Software
-Network Security
-Covert Communications
-Information Security Policy and Law
-Information Assurance Fundamentals
-Secure Data Management
-Secure Coding
-Foundations of Cryptography
-Foundations of Security Measurement and Evaluation
-Foundations of Intelligent Security Systems
-Advanced Cryptography
-Hardware and Software Design for Cryptographic Applications

Curriculum

Thesis/project/capstone course options differ in course sequence, see the website for a particular course's module information.

Other admission requirements

-Have a minimum grade point average equivalent to a 3.0/4.0.
-Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.
-Submit a minimum of two recommendations from individuals who are well-qualified to assess the applicant's potential for success, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 570 (paper-based) or 88 (Internet-based) are required. Applicants who have completed undergraduate study at foreign universities must submit Graduate Record Examination (GRE) scores. GRE scores are also recommended for applicants whose undergraduate GPA is below 3.0.
-Applicants must satisfy prerequisite requirements in mathematics (integral calculus, discrete mathematics), statistics, natural sciences (physics, chemistry, etc.), and computing (programming, computer networking theory and practice, and systems administration theory and practice).

Bridge program

Students whose undergraduate preparation or employment experience does not satisfy the prerequisites required for the program may make up deficiencies through additional study. Bridge course work, designed to close gaps in a student's preparation, can be completed either before or after enrolling in the program as advised by the graduate program director. Generally, formal acceptance into the program is deferred until the applicant has made significant progress through this additional preparation.

If completed through academic study, bridge courses must be completed with a grade of B (3.0) or better. Courses with lower grades must be repeated. Bridge courses are not counted toward the 30 credit hours required for the master's degree. However, grades earned from bridge courses taken at RIT are included in a student's graduate grade point average. A bridge program can be designed in different ways. Courses may be substituted based upon availability, and courses at other colleges may be applied. All bridge course work must be approved in advance by the graduate program director.

Additional information

Study options:
Students may pursue the degree on a full-time basis, on-campus only.

Faculty:
The program faculty are actively engaged in consulting and research in various areas of secure computing and information assurance, such as cryptography, databases, networking, secure software development, and critical infrastructure security. There are opportunities for students to participate in research activities towards capstone completion or as independent study work.

Maximum time limit:
University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less

Show 10 15 30 per page



Cookie Policy    X