• New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Cass Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
"mre"×
0 miles

Masters Degrees (Mre)

  • "mre" ×
  • clear all
Showing 1 to 5 of 5
Order by 
Do you want to be involved in the defence, protection and management of the world’s coastlines? Aimed at engineers and physical scientists, our MSc Coastal Engineering combines the theory of waves and tides with coastal modelling, port engineering and management. Read more
Do you want to be involved in the defence, protection and management of the world’s coastlines? Aimed at engineers and physical scientists, our MSc Coastal Engineering combines the theory of waves and tides with coastal modelling, port engineering and management. Supported by a team of experienced staff in one of the largest coastal engineering research groups in the UK, you’ll gain expertise to help progress your future career.

Key features

-Broaden your coastal engineering expertise by selecting from a range of options, including port policy and management, modelling of coastal processes, remote sensing and GIS, mechanics of marine renewable energy structures, and assessment of coastal resource impacts.
-Deepen your knowledge through collaboration with our large, internationally-recognised research group.
-Be inspired by our new £19 million Marine Building, housing the acclaimed COAST laboratory which offers facilities for teaching water and coastal engineering as well as conducting world-class research.
-Benefit from a degree accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. See http://www.jbm.org.uk for further information.
-Recent graduates work as scientists, researchers or engineers at graduate destinations such as: Arup, Mott MacDonald, Environment Agency, Symprove, HR Wallingford, Mining Searches UK, Canterbury Council and JBA Consulting.
-Take part in an integral work placement year and conduct the programme over two years.

Course details

You’ll study the theory of waves, tides, surges and modern techniques in coastal data collection and analysis, including GIS and remote sensing. You’ll study core topics in coastal and port engineering, gain research skills, be introduced to numerical modelling techniques and obtain hands-on experience of using state-of-the-art software tools. Towards the end of the programme, you’ll have the opportunity to undertake a substantial research project focused on an aspect of coastal engineering, supervised by academic staff actively researching this field. You may also have the option of undertaking a placement year in industry.

Core modules
-MAR513 Research Skills and Methods
-BPIE500 Masters Stage 1 Placement Preparation
-COUE506 Port and Harbour Engineering
-PRCE505 MSc Dissertation
-COUE507 Coastal Engineering

Optional modules
-MAR706 Port Policy and Management
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR512 Assessment of Coastal Resources and Impacts
-MAR518 Remote Sensing and GIS

Final year
Core modules
-BPIE504 Civils Masters Industrial Placement

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Read more
Renewable energy is a cornerstone of the green economy and marine wind, wave and tidal energy are key elements of the UK, European and global renewable energy roadmaps. Begin your voyage to being a part of this vital transformation by studying on the UK’s first MSc Marine Renewable Energy programme. Building on our international reputation for marine research and teaching along with regional and national initiatives, this distinctive degree focuses on the growing marine renewable energy sector.

Key features

-Be at the forefront of the emerging field of marine renewable energy at a time when such expertise is increasingly sought after.
-Develop knowledge and confidence in the critical areas which will help you to be an integral part of the effort to develop and promote marine renewable energy.
-Benefit from our research team’s expertise – our staff achieved ratings of ‘world leading’ and ‘internationally excellent’ in the UK Government’s most recent Research Excellence Framework (REF 2014).
-Take advantage of Plymouth University’s active role in the Southwest Marine Energy Park and the Offshore Renewables Development Programme to stay abreast of the latest developments and make contacts with key players in the field.
-Gain experience in the use of world leading facilities such as the COAST Lab test tanks and the Falcon Spirit research vessel as part of your taught programme and your research.
-Learn in an environment which benefits from PRIMaRE investment in new staff expertise and facilities.
-Benefit from a programme fully-integrated with the £42 million wave hub project, the world's largest wave energy test site, off north Cornwall.
-Live and study in ‘Britain’s Ocean City’, with easy access to businesses and the natural environment involved in your area of study this is an ideal location to study marine renewables.
-Take the opportunity to study abroad in the research project phase and be supported by one Plymouth University supervisor and one supervisor overseas.

Course details

The taught modules in the first period are compulsory and are designed to provide you with a broad background on marine renewable as well as a solid basis for the option modules in period two. You’ll undertake three modules in period one that provide a background in marine renewable energy: introduction to marine renewable energy, economics, law and policy for marine renewable energy, research skills and research methods. In period two you can choose three options from a choice of five: assessment of coastal resources and impacts, marine planning, economics of the marine environment, mechanics of marine renewable energy structures, and wave and current modelling for marine renewable energy. During period three you’ll undertake a research project and dissertation. Due to the extensive staff research expertise there is a wide range of potential projects spanning marine science, engineering and socio-economics. You may also carry out projects with external organisations that have interests in marine renewable energy.

Core modules
-MAR513 Research Skills and Methods
-MAR526 Introduction to Marine Renewable Energy
-MAR527 Economics, Law and Policy for Marine Renewable Energy
-MAR524 MSc Dissertation

Optional modules
-MAR529 Marine Planning
-MATH523 Modelling Coastal Processes
-MAR528 Mechanics of MRE Structures
-MAR507 Economics of the Marine Environment
-MAR512 Assessment of Coastal Resources and Impacts

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Do you want to forge your future in the marine industry? Develop an advanced understanding of both marine engineering and naval architecture on a course that will equip you with a refined knowledge of nautical design and mechanics. Read more
Do you want to forge your future in the marine industry? Develop an advanced understanding of both marine engineering and naval architecture on a course that will equip you with a refined knowledge of nautical design and mechanics. Our accreditation means you’ll be ready to apply for Chartered Engineer status upon graduation, primed for a variety of careers in the marine industry.

You will lay strong foundations for a successful career using our extensive industry links to secure a paid, one-year work placement. You’ll distinguish yourself professionally with a degree accredited by the Royal Institution of Naval Architects (RINA), the Institute of Mechanical Engineering (IMechE) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council.

Key features

-Progress to Chartered Engineer status - upon graduation you’ll have fulfilled the education requirements.
-Distinguish yourself professionally with a degree accredited by the Royal Institution of Naval Architects (RINA), the Institute of Mechanical Engineering (IMechE) and the Institute of Marine Engineering, Science and Technology (IMarEST) on behalf of the Engineering Council. The course fully satisfies the educational base for a Chartered Engineer (CEng).
-Increase your opportunities with a solid base in mechanical engineering and an emphasis on design, opening up a variety of possible careers.
-Lay strong foundations for a successful career using our extensive industry links to secure a paid, one-year work placement. Gain the confidence, real-world know-how and vital industry experience employers are looking for.
-Work with the latest industry-standard software, in our high specification laboratories. Both will help you develop a strong understanding of fundamental principles, while honing your skills at the same time.
-Access the support you need. The Women in Technology Network (WiTNet) is a support network for all female students in technology and science subjects where women are in a minority.

Course details

Year 1
Year 1 shares modules with the MEng courses in mechanical engineering. You’ll study design, a central theme of the course, introduced through case-study and problem-based learning, materials, mechanics, thermo-fluids, electrical principles, business and mathematics. You’ll also gain practical experience through a hands-on module in manufacturing methods.

Core modules
-THER104 Introduction to Thermal Principles
-MECH119 Skills for Design and Engineering (Marine)
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In your second year you’ll study structures, fluids and thermodynamics, control, mathematics and business. You’ll learn about the stability and propulsion of marine craft, and about the marine environment. You’ll advance your existing design skills through application within a marine context.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-THER207 Applied Thermodynamics
-STO208 Business for Engineers
-MARN203 Stability and Hydrodynamics

Optional placement year
Taking an optional placement year will provide you with valuable, paid, professional experience. A placement could lead to a company sponsoring your final year project and provide opportunities for your future employment. We’ll support you in finding a suitable position.

Core modules
-BPIE335 Mechanical Engineering Related Placement

Year 3
During this year you’ll use industry typical software and use design and computational methods to further develop your design skills. You’ll specialise in your chosen discipline of naval architecture, marine engineering and marine systems. Finally, you’ll carry out an in-depth investigation into a specialist topic of personal interest as part of your individual honours project.

Core modules
-HYFM322 Computational Fluid Dynamics
-MARN338 Naval Architecture
-MARN340 Marine Systems Engineering
-PRME307 Honours Project
-MECH340 Engineering Design
-MARN306 Marine Engineering

Final year
Your final year refines the skills you have developed over the course of your studies, and includes additional technical modules. Finally, you'll work on an interdisciplinary project, drawing on your design and engineering abilities.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering. Read more
Could you see yourself designing high performance bikes, working with racing car teams or producing ground breaking medical components? You could follow in the footsteps of some of our graduates and begin shaping your own exciting career in mechanical engineering.

You will distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.

Key features

-Open the door to a successful future. Our graduates have gone on to work for Ferrari, Honda, British Cycling, Rolls-Royce, Williams Grand Prix Engineering, Activa, Babcock Marine, Princess Yachts and more.
-Primed for your career: 82 per cent of our students are in a professional or managerial job six months after graduation. (Source: unistats)
-Benefit from an optional 48 week paid work placement.
-Distinguish yourself professionally with a degree accredited by the Institution of Mechanical Engineers (IMechE) and the Institute of Materials, Minerals and Mining (IoM3) for Chartered Engineer status. You can apply to either of these institutions for membership as a Chartered Engineer.
-Develop a strong foundation in mechanical engineering principles and materials science.
-Choose from specialist modules in composites engineering, design and manufacture.
-Experience modern laboratory facilities for practical work which is a core part of the degree.
-Benefit from working on industrially relevant problems within composite materials and design of composite structures.

Course details

Year 1
In Year 1, you’ll acquire a sound foundation in design, mechanics, materials, electrical principles, thermo-fluids, mathematics and business, learning by active involvement in real engineering problems. You‘ll undertake a popular hands-on module in manufacturing methods. Modules are shared with the MEng and BEng (Hons) in Mechanical Engineering and the MEng and BEng (Hons) Marine Technology.

Core modules
-MECH120 Skills for Design and Engineering (Mechanical)
-THER104 Introduction to Thermal Principles
-BPIE115 Stage 1 Mechanical Placement Preparation
-MECH117 Mechanics
-MECH118 Basic Electrical Principles
-A5MFT1 Mech BEng 1 MFT Session
-MATH187 Engineering Mathematics
-MATS122 Manufacturing and Materials
-MECH121PP Team Engineering (Engineering Design in Action)

Year 2
In Year 2, you’ll build your knowledge of composite materials in preparation for specialist modules in the final year. The central role of design integrates with other modules like structures and materials. You'll also study modules on thermodynamics, fluid mechanics, business dynamics, mathematics and control and quality management.

Core modules
-BPIE215 Stage 2 Mechanical Placement Preparation
-CONT221 Engineering Mathematics and Control
-HYFM230 Fluid Mechanics 1
-STRC203 Engineering Structures
-MECH232 Engineering Design
-MFRG208 Quality Management l
-MATS234 Materials
-THER207 Applied Thermodynamics
-STO208 Business for Engineers

Optional placement year
In Year 3, you're strongly encouraged to do a year’s work placement to gain valuable paid professional experience. We will support you to find a placement that is right for you. Our students have worked for a variety of companies from BMW Mini, Bentley, Babcock Marine to NASA. A successful placement could lead to sponsorship in your final year, an industrially relevant final year project, and opportunities for future employment.

Optional modules
-BPIE335 Mechanical Engineering Related Placement

Year 4
In Year 4, you’ll specialise in composites design, engineering and manufacture. You’ll undertake an group design project. Additional modules of study include statistics and quality management. You'll also develop your knowledge and skills through an in-depth project on a topic of your choice.

Core modules
-HYFM322 Computational Fluid Dynamics
-MFRG311 Quality Management II
-MATS347 Composites Design and Manufacture
-PRME307 Honours Project
-MATS348 Composites Engineering
-MECH340 Engineering Design

Final year
In your final year, you'll extend your existing skills in engineering design, analysis and control theory. Broaden your knowledge by studying subjects such as entrepreneurship, advanced information technology, robotics and marine renewable energy. You’ll also work in a design team with students from other engineering disciplines working on projects such as design, materials and environmental issues related to bioenergy production, gas/nuclear power stations, energy from the sea and eco villages.

Core modules
-MECH532 Applied Computer Aided Engineering
-MECH533 Robotics and Control
-MECH534 Product Development and Evaluation
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
This new engineering masters has been developed specifically for graduate engineers. Build your skills, knowledge and understanding of engineering design practice, modern design tools, and advanced engineering technologies. Read more
This new engineering masters has been developed specifically for graduate engineers. Build your skills, knowledge and understanding of engineering design practice, modern design tools, and advanced engineering technologies. Advance your professional competency and readiness to tackle complex engineering challenges, whilst fulfilling the educational requirements of the Chartered Engineer Standard (CEng).

Key features

-Designed so that graduate engineers can fulfil the educational requirements of the CEng Standard.
-Advance your professional competency and work place readiness.
-Develop a rigorous understanding of engineering design methodology; modern design tactics and practice; and the theory of technical systems.
-Acquire deeper understanding of computer aided engineering techniques; the modelling and analysis of engineering systems; and verification, validation and optimisation techniques.
-Deepen your knowledge and understanding of a technological subject or aspect of professional practice that is pertinent to your own professional development needs.
-Demonstrate innovation and creativity to solve a complex engineering problem in your dissertation project.
-Exploit the broad range of engineering research and technical facilities of the University.
-Study over one year full time or two years part time.

Course details

This programme (subject to validation) involves 180 credits of study at Level 7 with a flexibility to meet your individual development needs. The core modules in advanced engineering design will be complemented by negotiated study options and a 60 credit individual dissertation project.

The advanced engineering design modules will allow you to explore systems design, product modelling, design management, and the strategies and tactics of modern design practice. Through a project-based learning approach, you'll have the opportunity to develop competency in computer aided engineering and design optimisation tools. The negotiated study options allow you to deepen your knowledge of an engineering topic and/or professional practice, whilst the dissertation project will allow you to use your innovation and creativity to develop solutions to complex problems.

You'll be expected to maintain a record of your continuing professional development to assist you in your application for CEng.

Core modules
-MECH537 Advanced Engineering Design II
-MECH539 Computer Aided Engineering
-MECH541 Engineering Design Dissertation
-MECH542 Product Failure and Materials Optimisation
-MECH536 Advanced Engineering Design I

Optional modules
-MAR528 Mechanics of MRE Structures
-PRCE513 Interdisciplinary Design
-MECH543 Nanotechnology and Medical Engineering
-MECH544 Data Processing, Simulation and Optimisation of Engineering Systems

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X