• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Cranfield University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"molecular" AND "patholog…×
0 miles

Masters Degrees (Molecular Pathology)

We have 131 Masters Degrees (Molecular Pathology)

  • "molecular" AND "pathology" ×
  • clear all
Showing 1 to 15 of 131
Order by 
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. Read more
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. With a vision of creating the next generation of leaders in Molecular Pathology, this programme will provide the state of the art training programme for Molecular Pathology, in order to facilitate the pathologists, clinical scientists, trainees, and to those in the related health professions, to acquire essential knowledge, skills and attributes in the current and future diagnosis that incorporates molecular knowledge.

Why this programme

● In August 2014, MRC published a review of the UK Molecular Pathology Landscape, in which the critical needs and challenges are pin downed in the delivery of improved diagnostics incorporating the molecular approaches.

● With a vision of creating the next generation of leaders, this programme provides state of the art training for Molecular Pathology

● We are one of the few centres where molecular pathology and diagnostic histopathology are amalgamated on one site, permitting the delivery of a clinically relevant molecular pathology course.

● The areas of main focus include diagnostic molecular pathology, clinical trials and translational research in molecular pathology, pathology bioinformatics and digital pathology. The core courses (PgCert) are designed to cover the intended learning outcomes within Royal College of Pathologists curriculum for Specialty Training in Histopathology 2015.

● The programme is led by the national leaders directly engaged in the various molecular pathology initiatives. Students are kept up-to-date with information and the current needs identified by the professional societies, research councils and charity organizations.

● You will be trained at the purpose-built Laboratory Medicine Building at the Queen Elizabeth University Hospital, which provides services to 52% of the Scottish population. This is one of the largest NHS department of pathology in Europe, accommodating about 50 consultant pathologists.

● The courses will be delivered by a range of professionals with expertise from geneticists, pathologists, clinical, lab scientists and academics, informaticians and clinicians provided across hospital practice and primary care. They are experts based in QEUH and those nationally and internationally recognized experts of molecular pathology.

Programme structure

The main aims of the MSc Molecular Pathology programme are to enable students:

• to fully provide a high quality service in molecular pathology diagnosis
• to participate in research in the area of molecular pathology
• to participate in the training of future generations of molecular pathologists

The "Blended Learning" programme offers the maximum flexibility for students who wish to study Molecular Pathology while on clinical duties and pathology training. "Moodle-Based Learning" sessions offer an advantage allowing clinicians to study within their own schedule. "In person review" sessions will enable active interactions with the course contributors and other students. Case-based and "hands-on" sessions facilitate the knowledge and skills acquired in clinical diagnosis as the programme proceeds, so it is easy to keep motivated throughout the course.

Core Courses

– 3 x compulsory, 20-credit courses; 1 per semester

• Fundamentals of Molecular Biology and Genetics for Histopathology (20 credits)
• Molecular Tests and Techniques for Histopathology (20 credits)
• Multidisciplinary Approaches to Molecular Pathology (20 credits)

The first three core components will provide the minimum requirement for students to apply molecular knowledge and skill in pathology diagnosis currently on-going and in the immediate future.

These courses will form the PgCert.

Advanced Courses

- Courses must be selected from the following options to obtain a total of 60 credits.

• Translational Medical Research Approaches (10 credits)
• Medical and Research Ethics (10 credits)
• Molecular Pathology (20 credits)
• Omics technologies for biomedical sciences: from genomics and metabolomics (20 credits)
• Frontiers in Cancer Science (20 credits)
• Disease Screening in Populations (10 credits)
• Governance and ethics in education research (10 credits)

In the advanced component, students will further their training of Molecular Pathology to acquire the knowledge needed to get involved in research, or development and improvement of diagnostics. There are options for learning of advanced technologies, wider disease areas, research methods, in-depth bioinformatics, and health professional education.

Successful completion of core and advanced courses will be awarded with the PgDip.‌

Dissertation

- 1 x 60-credit project-based course assessed by a dissertation of approximately 8,000 words followed by an oral presentation.

The Masters dissertation project gives students the opportunity to conduct research in an area of Molecular Pathology with supervisor(s) assigned to each project. For example, the opportunity to conduct an independent research project, audit or critical review of the literature in selected topics in the area of Molecular Pathology, current and future diagnosis, clinical and scientific research.

Successful completion of all core and advanced courses and the dissertation will lead to the award of the MSc.

Read less
Our flexible, blended MSc Molecular Pathology course will enable you to take advantage of growing opportunities within this field, which is critically important for translational medicine, both in cancer and non-cancer diseases. Read more

Our flexible, blended MSc Molecular Pathology course will enable you to take advantage of growing opportunities within this field, which is critically important for translational medicine, both in cancer and non-cancer diseases.

The number of academic pathologists trained in molecular pathology has steadily declined over the past 20 years. As such, it has been identified as an area requiring support and development by the Medical Research Council (MRC) and the Royal College of Pathologists, creating careers opportunities for students and professionals alike.

Our master's course is aimed at medical students, biomedical scientists, medical practitioners and trainee pathologists who want to learn more about molecular pathology. Trainee pathologists can take our course as part of an existing training programme.

You will benefit from a unique focus on the molecular analysis of tissue samples and take optional units in various areas of laboratory medicine and emerging diagnostic methods, such as proteomics and chemical pathology.

Students will also become part of Manchester's world leading precision medicine research community, learning practical skills that will be directly applicable to this emerging field.

In addition, you will benefit from our association with the network of MRC and Engineering and Physical Sciences Research Council funded Molecular Pathology nodes, which have been partly established to train more scientists to work in this field. This will enable you to connect with colleagues and related opportunities across the UK.

Aims

This course aims to provide you with a wide and detailed understanding of the various aspects of molecular pathology.

Provided as part of The University of Manchester MRC/EPSRC Molecular Pathology node (Manchester Molecular Pathology Innovation Centre), we recognise the need for providing more training in molecular pathology among histopathology trainees, clinical scientists and biomedical scientists.

As such, the course addresses a wide audience, and has a broad range of both core and non-core course units to facilitate the different learning and training needs of different groups of professionals.

In addition to the taught components, which will give an in-depth understanding of molecular pathology and associated disciplines (including genomics and bioinformatics), the full MSc course will also develop your experience of and skills in scientific investigation, analytical thought and scientific criticism.

Special features

Professional input into course content

This course has been designed to take into consideration the training requirements of biomedical scientists, clinical scientists and medical histopathologists. We have consulted with local Postgraduate Deaneries and associated professional bodies including the Institute of Biomedical Scientists (IBMS) and the Royal College of Pathologists to tailor the content.

Flexible learning

The option to take the course over four years will particularly appeal to specialist trainee pathologists, who will be able to fit study around their clinical training. They can also use Year 4 to undertake the research project over three months on a full-time, salaried basis, as per RCPath regulations and Deanery funding.

Teaching and learning

Teaching is largely delivered through face-to-face, interactive sessions, consisting of some lecture material, with discussions and group work, and with a range of audio-visual stimuli including PowerPoint slides, images and videos.

All units are supported by the use of Blackboard (a virtual learning environment) on which staff post lecture slides, reading lists and other accompanying material.

Each unit on Blackboard also has its own discussion board, where you can interact with staff and other students on the course, for example, by posting and responding to questions, and making comments related to the course.

For students completing the full MSc, a significant amount of teaching and learning will take place through the dissertation research unit (60 credits or 30 credits), in which you will be expected to take a lead role in developing a research project with regular support, input, and mentorship from your project supervisor.

Coursework and assessment

Formative assessments will be given throughout the taught component of the course and will take the form of MCQs, short answer questions, verbal presentations, data and method analysis exercises.

A range of summative assessments will be employed to assess your knowledge and understanding, and the development of your intellectual and transferable skills including:

  • verbal presentations;
  • written assignments;
  • data analysis and interpretation exercises;
  • analytical method analysis;
  • evaluation and formal unseen written examinations consisting of short answer questions and essays.

The assessment methods employed by each unit will vary and will be tailored to match the material delivered and stated ILOs of that particular unit.

Your ability to gather information from a wide range of sources, evaluate and critically analyse information, make considered judgments about that information and synthesise material into logical and coherent pieces of work will all be assessed. 

Examples of the marking proformas used in the assessment of verbal and written assignments will be provided in student handbooks and on Blackboard, the University's virtual learning environment.

As per the postgraduate taught degree regulations, students exiting with a postgraduate diploma (or postgraduate certificate) may be permitted to rescind this award and upgrade to a master's (or postgraduate diploma) by successfully completing the appropriate further component of the course, providing the following conditions are met:

  • the rescinding occurs within five years of your initial registration on the original course, subject to the course still being available;
  • an overall pass at the appropriate standard to assure admission to a master's course has been obtained for the postgraduate diploma (or postgraduate certificate), including any capped or compensated grades.

Course unit details

Course content for Year 1

Core units:

  • Professional and Research Skills (S1)
  • Molecular Pathology of Cancer (S2)
  • Omics Techniques and their Application to Genomic Medicine (S2)

Optional units (max 1 per semester):

  • Introduction to Clinical Biochemistry (S1)
  • Analytical Methods (S1)
  • Bioinformatics, Interpretation, Statistics and Data Quality Assurance (S2)
  • Diseases of Major Organs (S2)

Course content for Year 2

Core units:

  • Molecular Pathology of Non-malignant Disease (S1)
  • Diagnostic Histopathology and Molecular Diagnostic Pathology (S2)

Optional units (max 1 per semester):

  • Pharmacogenomics and Stratified Healthcare (S1)
  • Immunology and Infection (S1)
  • Diseases of Major Organs (S2)
  • Health Economics (S2)


Read less
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine. Read more

Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine.

This MSc Molecular Pathology of Cancer is an exciting, innovative blended learning programme aimed to enhance the participant’s theoretical knowledge and practical skills in MP and to empower them to pursue a career in academia, healthcare or industry. The course has a strong focus on innovation and entrepreneurship; emphasising MP’s central role in molecular diagnostics, clinical trials and biotech/biopharma.

This Masters programme has been developed with a number of options in order to provide maximum flexibility of training. Candidates can take the Certificate/Diploma/MSc in Molecular Pathology of Cancer which will provide a solid foundation for those wishing to study MP at PhD level. The full-time MSc is also available as an intercalated degree for Medical and Dental students. Additionally, the three modules which are offered by Distance Learning are available as a ‘stand-alone’ Certificate in Pathology Informatics and Business Application.

Semester 1

All candidates will undertake traditional ‘face to face’ teaching for the three modules in Semester 1. This will be timetabled teaching. Some of the teaching sessions within the modules also form aspects of formal teaching for other PG programmes, providing the students with the opportunity to interact with other Masters students from different disciplines, which we feel enhances the student experience. Collectively, the modules would be sufficient for a Certificate in Molecular Pathology

(1) Cancer Biology, Immunology and Genomics (15 CATs)

(2) Molecular Pathology – Diagnostics and Technologies (25 CATs)

(3) Translational Research (20 CATs)

Semester 2

Candidates will complete three modules which will be available ‘online’ as distance learning modules. Successful completion of Semester 1 modules plus Semester 2 modules without the research dissertation would be sufficient for a Diploma in Molecular Pathology. Collectively, the modules in Semester 2 without the Semester 1 modules would be sufficient for a Certificate in Pathology Informatics and Business Application.

(1) Digital Molecular Pathology (20 CATs)

(2) Biostatistics and Bioinformatics (20 CATs)

(3) Academia/Industry Interface (20 CATs)

Research component

Students will be able to plan their research project and work on their literature review during semester 1; beginning the practical work for their research project in Semester 2. Research projects will be available across a variety of subjects. Potential project areas for the MSc will include – Molecular Neuropathology; Cancer Immunology; Liquid Biopsies; Digital Pathology; Biobanking; Molecular Diagnostics; Bioinformatics. A number of projects will be put forward from the network of CRUK Accelerator Partners for those students with CRUK Accelerator bursaries who may wish to undertake their research as a placement at one of the partner sites.



Read less
The practice of medicine, especially in the disciplines of Pathology and Genetics is increasingly reliant on Genomic technology. Read more

The practice of medicine, especially in the disciplines of Pathology and Genetics is increasingly reliant on Genomic technology. The aim of this programme is to increase the knowledge and capability of scientific and clinical staff using genetic data in their daily work allowing them to engage confidently with the scientific concepts of Molecular Pathology and Genomic Medicine, and to use their skills to improve patient care. The programme could also provide a foundation for those students interested in developing a clinical academic career.

The University of Edinburgh is at the forefront of Genomic Technology. To adequately realise the potential of these technologies in a diagnostic setting this programme will cover the scientific underpinning and clinical application of genomic technology to enable clinicians and scientists to provide maximum benefit to patients.

The programme will provide a structured environment for students wishing to develop cutting edge knowledge and practical skills in Clinical Genomics and Molecular Pathology. The programme structure is designed around three central themes: scientific foundation, diagnostics, and patient management and treatment.

Programme structure

The PG Cert is comprised of four compulsory courses, totalling 60 credits.

Students will learn via a mixture of guided online activities, in-person tutorials, and in course four, an extended project. In addition to structured learning, students are expected to conduct independent study and read around the subject area.

Students will develop their critical analysis skills through evaluation of primary research articles and reviews. Students will learn how to perform variant analysis and next generation sequencing data analysis using relevant bioinformatics tools. Students can also expect to develop the communication skills required for interacting with the major stakeholders of genomic information: clinical scientists, doctors and patients.

Teaching is performed by a variety of staff who are leaders in their field, as well as experienced educators. The core teaching team is comprised of staff from the NHS Lothian Clinical Genetics Service and Pathology departments. Additional teaching is performed by clinical and scientific staff from across Edinburgh University and the UK. In addition, the programme has a dedicated teaching teaching fellow, who will provide academic and pastoral support throughout all courses.

Postgraduate Professional Development (PPD)

Aimed at working professionals who want to advance their knowledge through a postgraduate-level course(s), without the time or financial commitment of a full Postgraduate Certificate.

You may take a maximum of 50 credits worth of courses over two years through our PPD scheme. These lead to a University of Edinburgh postgraduate award of academic credit. Alternatively, after one year of taking courses you can choose to transfer your credits and continue on to studying towards a higher award on the Postgraduate Certificate programme. Any time spent studying PPD will be deducted from the amount of time you will have left to complete a Postgraduate Certificate programme.

Learning outcomes

  1. Explain how genetic variation is involved in human disease and the development of cancer
  2. Critically evaluate molecular pathology diagnostics and select the appropriate diagnostic for disease stratification to determine patient treatment
  3. Analyse next generation sequence data in the context of germline mutations that cause human genetic disease, and somatic mutations involved in cancer
  4. Understand how genetic variation can be a major determinant of patient treatment and apply this knowledge to clinical scenarios in Genomic Medicine and Molecular Pathology

The programme will adopt a blended learning format, with teaching delivered via online as a eLectures and interviews, in-person tutorials, and online interactive content.

Programme materials and resources will all be available in the virtual learning environment, Learn. Learn provides an interactive forum for students to engage with other learners and the programme teaching staff. Multiple feedback opportunities will be integrated within each course and will comprise of weekly interactive online quizzes, discussion boards and office hours. In-person tutorials will also represent an important feedback opportunity for students. Assessment will vary slightly with each course, common assessment modalities include structured written assignments, presentations and data analysis reports.

Career opportunities

The programme is aimed primarily at NHS laboratory and clinical staff. It is designed for anyone wishing to expand their understanding of molecular pathology and how it applies to clinical diagnostics. The PG Cert will be of use to a wide range of individuals as it can be used to support FRC Path, Clinical Scientist Development and Genetic Technologist Registration. It can be used as a component of STP and could potentially contribute the first 60 credits of MSc. It will also provide the scientific underpinning for Genetic Counselling.



Read less
Our Clinical and Health Sciences with Molecular Pathology course offers you the ability to tailor your educational needs to your professional interests. Read more
Our Clinical and Health Sciences with Molecular Pathology course offers you the ability to tailor your educational needs to your professional interests. Designed for busy professionals, this online course offers a flexible, bespoke way for you to develop your career in Molecular Pathology.

The course is ideal for health professionals, clinical research support staff and people working in education and industry who wish to enhance their knowledge of contemporary methods of laboratory-based diagnosis and their applications in personalised and translational medicine. It will also be of interest to candidates who aspire to become independent researchers, clinical academics or clinical researchers.

This innovative course is aimed at those who already have a primary qualification (eg MBBS, BDS, BSc) and are working in health or life sciences field. It has been developed to provide a flexible approach, making it sustainable and compatible with modern career pathways whilst addressing the needs of a modern health service.

The courses are taught online, so you can choose to study anytime and anywhere. This flexibility means that you can fit your studies around your other commitments, plus develop your online literacy as a transferable skill. You can pick from over 30 modules in a diverse range of subjects to create your own bespoke course of study. You can choose to complete a single module for professional development or a full masters, working at your own pace in your own environment.

The e-learning course has been developed by Newcastle University and Newcastle Hospitals NHS Foundation Trust working in partnership under the MRC/EPSRC Molecular Pathology Node.

Delivery

You will be taught by academic staff with experience and expertise in Pathology and Molecular Pathology such as Dr Yvonne Bury, Consultant Histopathologist and Dr Julie Irving, Reader in Experimental Haematology.

You will be given an email address and an account on Blackboard, our managed learning environment. Blackboard is accessible across a variety of operating systems and browsers. Our materials and supporting reading are accessible across a variety of devices including desktop computers, tablets and mobile phones.

No campus attendance is needed, but you must have reliable access to a computer, internet connection, webcam, headset and printer. Recommended specifications:
-Operating system: Windows 7 and above (32 and 64 bit) or Mac OSX 10.6 and above
-Processor: Intel Pentium, Intel Celeron, Intel i3, Intel i5, Intel i7, or recent AMD processor
-RAM: At least 2GB
-Connectivity: broadband or mobile broadband
-Screen resolution: at least 1024 x 768 px

Read less
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease. Read more
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease.

We will provide you with theoretical and practical knowledge of modern molecular technologies as applied to human disease, with an emphasis on cancer, and train you in the application and interpretation of advanced molecular technologies.

Compulsory Modules

• Basic Pathology
• Cancer Biology
• Cancer Prevention & Screening
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Molecular Pathology of Solid Tumours
• Research Lab Skills
• Research Methods

Elective Modules

• Introduction to Bioinformatics
• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancers

Core Modules for MSc

• Lab project



Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
The Molecular Pathology (MSc by Research) is a new high quality masters course designed to meet NHS and industry needs for molecular pathologists in the genomic medicine era. Read more

The Molecular Pathology (MSc by Research) is a new high quality masters course designed to meet NHS and industry needs for molecular pathologists in the genomic medicine era.

Key facts

1. For both medically qualified graduates and non-medical science graduates

2. A high-quality flexible programme including distance-learning for the taught component

3. Research project in world-leading laboratories

4. Potential research placements in industry

5. The course aligns with prestigious UK initiatives

6. Holistic approach compared to similar UK courses

7. Fee support for Home/EU students

Visit our prospectus for further details.

*Please note that the 60 credits of taught modules are also available as a stand-alone PGCert for those who wish to undertake the taught component only.



Read less
The aim of this course, run jointly with Dublin Institute of Technology, Kevin Street, is to provide postgraduate education in medical laboratory science for those wishing to pursue a career in this field. Read more
The aim of this course, run jointly with Dublin Institute of Technology, Kevin Street, is to provide postgraduate education in medical laboratory science for those wishing to pursue a career in this field. It provides an advanced programme in the molecular basis of disease including the etiology, pathogenesis and investigation of the disease process. I.T. and management as applied to Medical Laboratories are also covered. Students are also offered a range of specialist subject modules including: Cellular Pathology, Clinical Chemistry, Haematology, Immunology, Microbiology and Transfusion Science. Students develop research skills by partaking in an advanced practical project in their chosen area of specialisation.

Students are required to register with both DIT and TCD, and are full students of both institutions and enjoy the benefits of full post-graduate membership of both institutions.

The course is available on a part-time block-release basis and may be offered in future academic years on a full-time basis.The duration of the course is two academic years. Students attend college for ten weeks of formal learning with student directed learning, course work, assignments, tutor interaction and project work taking place during the remaining time.

Read less
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. Read more
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. The course will take the mechanistic understanding of cancer biology and apply it to the analysis of risk, prevention, diagnosis, prognosis and therapy. Building on a foundation of the understanding of basic cancer cell biology, translational coverage will consider design of treatment modalities, mechanisms of action of anti-cancer drugs, therapy resistance and biomarker discovery. The course will allow the students to gain expertise and knowledge in therapy, cancer chemoprevention, anti-cancer target discovery, clinical trials, imaging, cancer risk and epidemiology and biostatistics. A key component of the course is a five/six-month research project, which will give students an opportunity to study one of these areas in depth.

Read less
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine. Read more

Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine.

Pathology Informatics and Business Application (PgCert) is an exciting, innovative distance learning programme aimed to enhance the participant’s theoretical knowledge and practical skills in MP and to empower them to pursue a career in academia, healthcare or industry. The course has a strong focus on innovation and entrepreneurship; emphasising MP’s central role in molecular diagnostics, clinical trials and biotech/biopharma.

Course Structure

Candidates will complete three modules which will be available ‘online’ as distance learning modules.

(1) Digital Molecular Pathology (20 CATs)

(2) Biostatistics and Bioinformatics (20 CATs)

(3) Academia/Industry Interface (20 CATs)

Career Prospects

This programme will produce high calibre candidates who can thrive in the academic, health care delivery or bio-industry sectors.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.



Read less
​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science. Read more

Course Overview

​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science.

Your personal and professional understanding of Biomedical Science will be enhanced through an academically coherent programme of directed and self-directed learning. This will empower you to engage in and critically evaluate relevant contemporary issues through the application and theoretical analysis of practical laboratory based activities and research at Postgraduate level.

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/Biomedical-Science---MSc.aspx

​Course Content​​

The programme will emphasise the development of analytical and critical skills and on problem identification and analysis within a Biomedical Sciences context. You will be taught by a team of experienced academics, researchers and professionally qualified staff. A number of the teaching team are also HCPC registered Biomedical Scientists.

Core modules are as follows:
- Molecular Biology
- Immunology
- ​Analytical and Diagnostic Techniques
- Research Methods in Biomedical Sciences

Option modules include:
- Medical Biochemistry and Advanced Topics in Medical Biochemistry
- Immunohaematology and Advanced Topics in Immunhaematology
- Medical Microbiology and Advanced Topics in Medical Microbiology and Infection
- Cellular and Molecular Pathology and Advanced Topics in Cellular and Molecular Pathology

Please note there is no guarantee that all modules will be offered every year. Provision is subject to student numbers and viability. An additional three modules are required for the research dissertation.

If you are admitted to the Master's scheme but subsequently are unable or not permitted to progress, you may, depending upon the number of credits attained at the time of exit, qualify for one of the following awards:
- Postgraduate Certificate (PgC): No fewer than 60 credits
- Postgraduate Diploma (PgD): No fewer than 120 credits
- Master of Science (MSc): No fewer than 180 credits

Candidature for the MSc is five years for part-time students i.e. the course must be completed and dissertation submitted within five years of registering.

Learning & Teaching​

​A variety of teaching strategies are employed to reflect the following:
- the requirements of the particular topic
- the existence of background experience within the group
- the level and type of study required at level 7

Lectures are the most prevalent teaching method for the introduction to module material, where the major function is to provide a basic framework, to generate interest in the subject concerned and to explain complex points. Lectures are complemented by tutorial sessions designed to encourage a more detailed examination of issues. Students are issued, in their module handbook, with a programme schedule of topics to be covered in lectures and supporting tutorials for all subjects, along with lists of references to guide their supplementary reading. The VLE will also host supporting materials.

Tutorials and related small group work is an important part of teaching and learning. It encourages the depth of discussion and application appropriate to higher degree work. The major aim is to develop skills related to thinking, discussion and presentation of information. It helps to develop analytical and critical appraisal skills.

Practical Work/Demonstration sessions in certain modules, such as Analytical and Diagnostic Techniques, Molecular Biology and the Dissertation, complement and extend the theoretical aspects of study and help to develop the students' skills of investigation, analysis, critical evaluation and reflection.

Case Studies are used throughout the programme as a means of encouraging students to apply their theoretical knowledge of biomedical science to real patients and thus take a holistic view of diagnostic medicine. Real cases are used and students are encouraged to integrate knowledge from a number of modules and to reflect on the possible outcomes
In addition to the contact hours per modules (approx. 40 hours per 20 credit module) the student will be expected to undertake a certain number of student led hours (approx. 160 per 20 credit module) to achieve an overall 200 hours of student effort per 20 credit module.

- Academic Support
Students are supported at each stage of learning and assessment. The Programme Director is responsible for overall academic management of the programme and support for the student. Module Leaders are responsible for academic guidance and support for each module offered and for academic feedback on student progress. The Project Manager is responsible for all the process regarding the project work and the dissertation. Personal tutorials will be arranged with your Personal tutor throughout the programme, and if you are experiencing any difficulties with your study for example problems with coursework or preparation for examinations, then there will always be a member of staff - the Programme Director, Module Leader or personal tutor available to assist you.

Assessment

It is recognised that assessment is a necessary part of an evaluation of a student's suitability for an award and involves testing and developing the higher-level cognitive skills of analysis, synthesis and evaluation. For this reason, assessment is designed to measure the extent to which the student is able to satisfy the intended learning outcome of each module. The learning outcomes are assessed within the modules through a variety of methods including:
- unseen examinations
- essays
- practical based laboratory exercises
- laboratory reports
- case studies
- poster presentation
- case study presentation
- abstract writing and journal article reviews

Time limited examinations are seen as an end of module check on student academic attainment in certain modules where a detailed understanding of contemporary scientific thinking, often research lead, is deemed to be an essential currency.

In addition, assignments are used either in addition to or as an alternative to written examinations in certain modules where they best reflect breadth of understanding.

The assessment schedule for the taught modules will be supplied by the programme director at the beginning of the programme. The module leader will supply the assessment titles and guidelines/criteria to undertake the assignments and provide feedback to the students.

Employability & Careers​

The course will prepare you for the next stage of your career, whether pursuing further research, or professional study, or entering employment in the field of Biomedical Science. The course will also enhance the career prospects of those aspiring to middle and senior management positions within the NHS Pathology Service and the commercial sector.

Find information on Scholarships here https://www.cardiffmet.ac.uk/scholarships

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. Read more
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. These findings will shed light on the underlying molecular pathology of many diseases that are poorly understood at present, eventually paving the way for novel treatment and prevention strategies. The speed at which these discoveries are being made is accelerating, and it is likely that molecular genetics will soon underpin much of modern medicine.

Career Pathways:
The MSc in Human Molecular Genetics programme is designed to prepare you for a genetics research career, either in human gene function and genetic disease, or molecular approaches to diagnosis and health care biotechnology. It provides a broad grounding in Human Genetics, with emphasis on molecular aspects, to give a solid basis for subsequent academic or industrial research, or for entry to NHS Genetics training. Approximately 40% of our students go on to do a PhD, 40% become research assistants/associates, while others go on to jobs in industry or further studies (bioinformatics/computing medicine). One or two students every year enter the NHS in clinical genetics training posts.

Programme Structure:
You will study the fundamentals of human and molecular genetics, models of inheritance for rare and common/ complex polygenic diseases, cytogenetics, analytical methods in human genetics and genomics, animal models and transgenesis, gene therapy, epigenetics, cancer genetics and an introduction to clinical genetics and genetic counselling services.

There are four weeks of intensive laboratory practical sessions, as well as computer science practicals applied to problems in genetics, genomics and bioinformatics, regular research seminars on site, student seminar and journal presentations, study group activities and a six-month full-time research project in the summer.

The programme is based on an average 20 hours contact time per week. This will vary between 15 hours in most weeks and approximately 40 hours during intensive practicals and projects. Private study time is included within the schedule: you are expected to contribute an additional 10-15 hours private study per week to the course. We do not recommend you try to support yourself by taking a part-time employment whilst studying as your work may suffer.

Assessment:
There are 3 x 3-hour written papers in late February, coursework assessments (poster presentation, analytical methods in genetics, oral presentation), a project report and a viva examination in September.

Programme Location:
The programme is primarily based at Hammersmith Campus in West London although some teaching modules are held at St Mary's Campus and the Northwick Park Campus.

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms both in ancient and contemporary populations, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and electives complement the Medical Life Sciences curriculum.
Evolutionary biology will train you in thinking from cause to consequence. Molecular paleopathology and ancient DNA research tell you a lot about disease through human history. These insights help to fight disease today, which is why evolutionary medicine is becoming a cutting-edge research field. Whether you want to focus on ancient populations and paleopathology or on specific disease indications nowadays, here you get the tools and skills to do both.
To lay the foundation for working in medical research, Medical Life Sciences includes courses on clinical manifestations of diseases, molecular pathology and immunology. Hands-on courses in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it.. That biomedicine has many facets to discover is the great thing that keeps students fascinated and well-equipped for finding a job in academia or the industry.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum.

Read less
The course. Harper Adams is the UK’s only provider of a postgraduate course in plant pathology. There is currently a shortage of expertise in this important topic, which is a key element in the effort to ensure global food security and mitigating the effects of climate change. Read more

The course

Harper Adams is the UK’s only provider of a postgraduate course in plant pathology. There is currently a shortage of expertise in this important topic, which is a key element in the effort to ensure global food security and mitigating the effects of climate change. By successfully completing this course you will develop a range of abilities that will prepare for an interesting and fulfilling career in an area with considerable opportunities.

Although food production has tripled in the last 40 years, approximately 1 billion people still go hungry, with an average of 30 per cent of all available food being wasted during production, processing and distribution. Crop losses through plant disease either pre- or post-harvest are an important component of these losses.

The aim of the course is to provide students with specialized training in plant pathology.

The course will:

  • prepare students for a career in plant pathology
  • offer vocational training in the area of applied plant pathology
  • prepare students for PhD studies 

The course is intended to provide a detailed understanding of basic and applied plant pathology and the issues associated with current production systems and control strategies. The course is underpinned by an extensive programme of agri-environment research at Harper Adams and longstanding collaborations with research institutes and other organisations in the UK and overseas.

How will it benefit me?

Having completed the taught part of MSc you will be able to identify pathogens using both traditional methods and molecular techniques. The course will focus on producing integrated management solutions that meet the requirements of sustainable crop production. Students also learn how to disseminate issues and ideas relating to plant disease control to a range of audiences using various methods of communication.

The research project for the MSc will allow you to test hypotheses relevant to pure and applied plant pathology research by designing, carrying out, analysing and interpreting experiments. You will also learn to evaluate and interpret data and draw relevant conclusions from existing plant pathology studies.

The MSc covers a broad range of topics in plant pathology and all students receive training in fundamental skills which will enable them to enter a plant pathology work environment within either a commercial company, research institute or academia.

Funding

The full-time and two year part-time courses are eligible for a postgraduate loan.

Industry, policy makers and scientists all recognise that plant pathology is essential in addressing the issue of food security and in mitigating the effects of climate change.

British Society of Plant Pathology



Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 80 credits
  • Research Methods in Clinical Sciences 10 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less

Show 10 15 30 per page



Cookie Policy    X