• University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Southampton Solent University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"molecular" AND "oncology…×
0 miles

Masters Degrees (Molecular Oncology)

  • "molecular" AND "oncology" ×
  • clear all
Showing 1 to 15 of 48
Order by 
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
The MMedSci Oncology at Keele has been specifically designed to enable an introduction to a research programme whilst offering sustained clinical interaction throughout the course. Read more

Overview

The MMedSci Oncology at Keele has been specifically designed to enable an introduction to a research programme whilst offering sustained clinical interaction throughout the course. Keele University has a strong track record of clinically translational research, enabled by the close interaction of clinical interventionists with world leading academic researchers. This course benefits entirely from this bench-to-bedside ethos and will support like-minded students across this multidisciplinary environment. The course should serve as a platform to develop a medical research career.

As would be expected from such a clinically involved course, much of the teaching takes place at Keele University’s hospital campus located in the Royal Stoke University Hospital, University Hospital of North Midlands (UHNM) Trust. Keele University’s flagship research Institute for Science and Technology in Medicine (ISTM) is integrated with the hospital with the strategically aligned Guy Hilton Research Centre being located directly adjacent to the hospital. Being opened in 2006, this research centre offers patient treatment alongside state-of-the-art equipment and translational research. The centre has enabled research active clinical members to drive cutting-edge research and streamline the pipeline to patient benefit. The Oncology Department located in UHNM provides chemotherapy, radiotherapy, brachytherapy, clinical trials, and lymphoedema and haematology/oncology outpatients to a population of approximately 845,000. It is one of the top ten performing Trusts in the UK for delivering Intensity Modulated Radiotherapy (IMRT). This course offers the opportunity to interact closely with both clinical and research environments, with theoretical, practical and research-centric approaches underpinning the delivery of taught modules, clinical attachments and research projects.

Advances in the management of oncological patients are much needed in our rapidly aging community. New methods are continually being introduced allowing clinicians to better understand and react to patient care in an effort to maximise patient benefit and minimise in-patient time and treatment side effects. The MMedSci Oncology course offers the opportunity to harness the capabilities of cutting edge research to drive new concepts in a clinically transformative capacity.

The course has been awarded 50 CPD credits by the Royal College of Radiologists.

See the website https://www.keele.ac.uk/pgtcourses/medicalscienceoncology/

Course Aims

MMedSci Oncology draws together the fundamental principles of current oncological patient management, clinical practice, stem cell and pathology techniques for clinical assessment of tissue and biological samples, with a focus on research-driven work closely related to ‘real world’ clinical practice. Further, transferable skills are delivered through intensive Clinical Audit, Health Informatics, and Leadership & Management modules. The course is open to third year medical students and above, qualified doctors and qualified health professionals with an interest in Oncology.

Course Content

The course is structured to sit within the framework of Keele University’s MMedSci route, with module timescales allowing, if necessary, to be taken full-time within the one year of entry. The structure has been specifically designed to maximise both clinical engagement, support from taught components and research experience. The course is split between non-optional core modules that students must take to progress on the MMedSci Oncology route, with at least 4 of the elective modules as listed below.

Non Optional Core Modules (60 credits + 60 credit dissertation)

- Independent Practice-based Study (30 credits)
- Management of the Oncological Patient (15 credits)
- Experimental Research Methods (15 credits)
- Dissertation (60 credits)

Choice of Four Optional Modules (60 credits)
(subject to availability)

- Clinical Audit (15 credits)
- Health Informatics (15 credits)
- Contemporary Issues in Healthcare Ethics and Law (15 credits)
- Statistics and Epidemiology (15 credits)
- Introduction to Medical Imaging (15 credits)
- Cell and Tissue Engineering (15 credits)
- Stem Cells: Types, Characteristics and Applications (15 credits)
- Molecular Techniques: Applications in Tissue Engineering (15 credits)

Teaching & Assessment

All content is delivered from leaders in representative fields, either from academic staff in the University, or from active clinical staff in the National Health Service. Course content will develop students’ fundamental knowledge of the diagnosis and management of oncological patients. An appreciation regarding patient informed consent and establishment/ delivery of clinical trials is also covered alongside Research Methods, accumulating to a 6 month research project. Students will attend clinical seminars, multidisciplinary and mortality meetings within the UHNM Oncology Department to sustain engagement of the clinical delivery of topics taught throughout the course.

Students will be immersed in the clinical environment focussed on oncological management, with an emphasis on research procedures and translation of cutting-edge research into the clinic.

Assessment will be carried out by attending clinics, lectures and meetings, presentation of a patient case report, and a written assignment linked to the research project.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Cancer is a subject which embraces an ever-widening range of disciplines. Read more

Overview

Cancer is a subject which embraces an ever-widening range of disciplines. The degree of Master of Science in Oncology is suitable both for scientists and other graduates who wish to learn more about the science as well as the practice of oncology, and for clinicians together with other health care professionals who require further training in the molecular aspects of oncology.

Course aims

The course aims to:

- provide formal training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer
- through the project and dissertation, familiarise you with the research environment, and enable you to develop the skills necessary to undertake independent research

The MSc Oncology draws on a unique blend of clinical and scientific expertise and experience, and benefits from strong ties that exist between the clinic and laboratory within the Division of Oncology.

Two thirds of the course are taught with the remaining third being a research component. Laboratory research is compulsory for full time students.

Key facts

- The course has been running since 1997, and continues to provide up-to-date knowledge and training to its students.
- The course partly fulfils the syllabus requirements for clinicians studying to sit Part 1 FRCR exams. The syllabus also meets the curriculum requirements for Higher Specialist Training in Medical Oncology set out by the Joint Committee on Higher Medical Training. CME Credits are also available.
- The latest Research Assessment Exercise (RAE) confirmed The University of Nottingham's position as a world class research-led institution. Over 60 per cent of the University's RAE scores identified research as being of a level of international excellence
- This achievement has helped put Nottingham in the world’s top 75 universities according to The Newsweek World University Rankings
- The research carried out within Oncology is recognised at an international level

Student Opinions

"Overall very interesting and provides a solid background into the development, causes and treatment of cancer. A good stepping stone into further research and provides a good knowledge of cancer and general biology. I personally feel far more confident going into a PhD having done the course."

"Very worthwhile to have more lecture material on cancer and lab/research experience before starting a PhD. I probably wouldn't have got the PhD of my dreams if it wasn't for this course."

"Overall, the MSc in Oncology has been extremely interesting, incorporating many aspects within the field, all of which were relevant to the course from a scientific and clinical point of view."

"Individual lecturers/modules have been fantastic. The staff are enthusiastic, approachable and encourage asking questions. The research project has been very useful in terms of learning techniques and getting the chance to manage your own piece of mini research. The personal tutor system is good for career advice and general support through the course."

"The course is well organised, teaching materials are well provided and useful. Students are taken care of and the hospital visits are excellent."

Read less
In the first year, a student should take a minimum of 12 credits of courses. These courses will include the core courses (Oncology 502, 510) and electives. Read more
In the first year, a student should take a minimum of 12 credits of courses. These courses will include the core courses (Oncology 502, 510) and electives. Please note that credit for Oncology 510 will only be given at the end of the student's program of study so cannot be counted as part of the minimum 12 credits required in the first year. The elective courses are decided by the supervisor and the student, based on the student's needs and thesis topic. The elective courses must be approved by the student's Supervisory Committee. Typically, all electives should be courses at the 500 level or above; however, having up to 6 credits of electives at the 300 or 400 level is permissible. As specified in the Faculty of Graduate Studies calendar entry, the minimum requirements are 30 credits of courses numbered 300 or above, including at least 24 credits of courses numbered 500 to 699. These 24 credits include 12 credits of course work, plus a 12 credit thesis (Oncology 549). It is the responsibility of the supervisor and the Supervisory Committee to ensure that the student takes the required number of credits in appropriate courses. The supervisor and committee should also be prepared to assist the student in gaining admission to elective courses that may be blocked to students outside of specific departments.

The Supervisory Committee needs to be formed and the first meeting held within 3 months of starting the program. The names of the Committee and the date of the first meeting along with the Progress Report needs to be sent to the Director and Administrator of the program. The Committee consists of the student's research supervisor plus two other faculty members with appropriate expertise. The composition of the Supervisory Committee must be approved by the Program Director. Please fill out this form and send to Rebecca within three months of starting your program.

Program Overview

The Interdisciplinary Oncology Program offers advanced study and research in a variety of fields relating to oncology. The focus on interdisciplinarity is accomplished through a breadth of coverage in the following disciplines: molecular and cellular biology, genetics, biophysics, bioinformatics, pharmaceutical sciences, radiological sciences, immunology, socio-behavioural studies, and epidemiology. The goal of the Program is to provide graduate students from diverse backgrounds with an education in a number of disciplines relating to oncology, and to provide opportunities for intensive training in specialized aspects of oncology through thesis/dissertation research.

Quick Facts

- Degree: Master of Science
- Specialization: Interdisciplinary Oncology
- Subject: Health and Medicine
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
Lead academic 2016. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more

About the course

Lead academic 2016: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most. We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

From Genome to Gene Function; Human Gene Bioinformatics; Research Literature Review; Human Disease Genetics; Modulating Immunity; Laboratory Practice and Statistics.
You choose: six optional pathways

1. Genetic Mechanisms pathway:


Modelling Protein Interactions; Gene Networks: Models and Functions.

2. Microbes and Infection pathway:


Virulence Mechanisms of Viruses, Fungi and Protozoa; Mechanisms of Bacterial Pathogenicity; Characterisation of Bacterial Virulence Determinants.

3. Experimental Medicine pathway:


Molecular and Cellular Basis of Disease; Model Systems in Research; Novel Therapies.

4. Cancer pathway:

Molecular Basis of Tumourigenesis and Metastasis; Molecular Techniques in Cancer Research; Molecular Approaches to Cancer Diagnosis and Treatment.

5. Cardiovascular pathway:

Vascular Cell Biology; Experimental Models of Vascular Disease; Vascular Disease Therapy and Clinical Practice.

6. Clinical Applications pathway:

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations. Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams. Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.

Read less
Lead academic 2016. Dr Carolyn Staton. Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. Read more

About the course

Lead academic 2016: Dr Carolyn Staton

Translational oncology is the process by which laboratory research informs the development of new treatments for cancer. It’s a rapidly advancing field with massive therapeutic and commercial potential.

Our MSc(Res) is taught by leading research scientists and clinicians. The course offers training in the theory and practice of translational oncology and provides you with transferable skills for your future career. It includes a six-month research project for which you’ll work as part of a team within the oncology research community at Sheffield.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

Cellular and Molecular Basis of Cancer; Cancer Epidemiology; Cancer Diagnosis and Treatment; Tumour Microenvironment; Cancer Technologies and Clinical Research; Literature Review; Research Project.

Teaching and assessment

Teaching is by lectures, seminars, class discussions/workshops, interactive tutorials, practical demonstrations, student-led group work and patient encounters.

Alongside the taught modules students attend the Sheffield Cancer Research seminars which include question and answer sessions with the experts, and a series of professional skills development tutorials.

Assessment is by a combination of written seen exams, oral and poster presentations, case studies and written assignments. The research project is assessed by an oral presentation and a written dissertation.

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments.

This will be underpinned by a thorough knowledge of cancer biology and pathology, drug development and research methodologies.

This knowledge will provide you with a good grounding in oncology within a clinical setting which will enhance prospects for those wanting to pursue a clinical academic career.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Genomic Approaches to Human Diseases
• Imaging
• Paediatric & Adolescent Oncology
• Pathology of Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer

Core Module for MSc

• Dissertation

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, all our programmes are taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, including. Read more
For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, including:

medical and clinical oncology SpRs
nurses
pharmacists
radiographers
vets
clinical trial co-ordinators
dieticians

A full-time programme is also available.

This programme aims to give you a scientific understanding of the cellular and molecular biology of cancer, its epidemiology and pathology, and to place this in a clinical context. You will then address how this knowledge effects therapeutic approaches and disease management.

It aims to allow you to understand the research process by drawing on examples within the department and its associated clinical trials unit. A key part of this Masters programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation.

At all levels we aim to encourage interactive rather than didactic learning and lecturing. Therefore, in addition to assembling and learning facts you will also to consider some of the philosophical challenges which underlie the treatment of cancer.

The programme is studied part time over 2 years and includes a taught element plus a work place based dissertation. This is made up of 4 residential taught modules per year (8 in total). Taught modules consist of one or two 5 day blocks Monday to Friday approximately 9am - 5.30pm. The total taught element consists of 45-55 days of attendance over the whole programme depending on your choice of optional modules.

You can opt for a Postgraduate Diploma on completion of the core modules and 40 credits of optional modules, or an MSc on successful completion of the taught programme and an independently researched dissertation.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course will provide an in-depth understanding of the disease processes involved in malignancy and the opportunity to explore the scientific rationale for various therapeutic options. Read more
This course will provide an in-depth understanding of the disease processes involved in malignancy and the opportunity to explore the scientific rationale for various therapeutic options. It will allow you to link academic knowledge with the practical applications of cancer biology, with a focus on the latest advances in this field. This course is, therefore, excellent preparation for a wide variety of careers in hospital laboratories, commercial laboratories, cancer research, pharmaceutical companies and academic institutions.

-You will be taught by active researchers and expert practitioners, and have the opportunity to work in industry with companies like GlaxoSmithKline, or at a research institute, such as the Institute of Cancer Research.
-Your research project can be carried out with one of our research groups or as part of an industrial placement (if you are a part-time student) at your place of work.
-Flexible study options (such as single modules) can be taken as part of a continuing professional development (CPD) programme.

What will you study?

You will be trained in science research methods and learn about the techniques used in molecular biology. You will study the biology of disease, tumour biology, immunology, molecular oncology, haematological malignancy, plus diagnostic and therapeutic techniques for cancer.

In addition to developing a comprehensive understanding of the principles and practice of core topics in current areas of medical science, you will gain an in-depth knowledge of oncology topics – and their relationship to other medical disciplines. You will also learn how to plan, carry out and report on a piece of independent scientific research.

Assessment

Coursework, written exam, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Modules
-Cellular and Molecular Biology of Cancer
-Immunology and the Biology of Disease
-Cancer Diagnosis and Therapy
-Research Techniques and Scientific Communication
-Research Project

Read less
For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, this full-time programme is particularly suitable for medical professionals with an interest in clinical, medical, surgical and translational oncology. Read more
For health care professionals from diverse backgrounds who wish to expand their knowledge of theoretical and practical aspects of oncology, this full-time programme is particularly suitable for medical professionals with an interest in clinical, medical, surgical and translational oncology. Unique to this programme is the exciting opportunity to gain clinical observership status and log your hours observing in a UK based hospital.

The aim of this programme is to give you a scientific understanding of the cellular and molecular biology of cancer, its epidemiology and pathology, and to place this in a clinical context. We will then address how this knowledge effects therapeutic approaches, and disease management.

Aiming to allow you to understand the research process, this programme draws on examples within the department and its associated clinical trials unit. A key part of the Masters programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation.

At all levels we aim to encourage interactive rather than didactic learning and lecturing. Therefore, as well as assembling and learning facts you will also consider some of the philosophical challenges which underlie the treatment of cancer.

You can opt for a Postgraduate Diploma on completion of the core modules and 40 credits of optional modules, or a Masters on successful completion of the taught programme and an independently researched dissertation.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes. Read more
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes.

These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice.

Example Pathways

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Structural Biology)

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. An important component of the programme will be the opportunity for non-native English speakers to take a specially designed module in communication skills. This module is taught by members of our English Language Unit and will be designed to improve your English in a scientific context. Please see http://www.liv.ac.uk/elu for details.

Read less
Translating fundamental biomedical discoveries into applied clinical practice and public health issues. Clinical Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. Read more
Translating fundamental biomedical discoveries into applied clinical practice and public health issues

Clinical Biology is the only specialisation in the Netherlands that combines fundamental human biology with clinical studies. It provides you with an extensive biological knowledge, and experience in working with animal and patient samples. In this way you’ll be trained to bridge the gap between early biomedical research results and clinical practice.

This wouldn’t be possible within the walls of the Faculty of Science. That’s why there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center in the field of Clinical Biology. You’ll get the best of both worlds: a thorough background in for example molecular oncology, human genetics, physiology and metabolism as well as a clinical view on diseases. This is an excellent background for a medical researcher or a job at the interface of science and society, such as a consultant, policy officer or communications advisor in the area of food or health.

See the website http://www.ru.nl/masters/clinicalbiology

Why study Clinical Biology at Radboud University?

- It is the only programme in the Netherlands that bridges the gap between fundamental biomedical research and clinical treatments.
- You’ll get the opportunity to work together with researchers from the Radboud university medical center.
- Radboud biologists and clinicians stand out in the fields of animal and human physiology, human genetics and disease, and molecular and cellular clinical studies.
- Clinical Biology offers internships at multiple related research institutes, such as the Radboud Institute for Molecular Life Sciences (RIMLS), the Radboud Institute for Health Sciences (RIHS) and the Donders Institute for Brain, Cognition and Behaviour (DI).
- There are various opportunities to do an internship abroad thanks to our wide network of cooperating research groups.

Career prospects

After graduation, our students quickly take up positions as researchers in government departments, research organisations and medical or pharmaceutical companies. However, many of our graduates also apply their academic background to societal issues, for example as a communications or policy officer. In general, clinical biologists end up as a:
- Researcher in a hospital or a university
- Researcher in a company, either a large or a start-up company
- Supervisor of clinical trials
- Consultant in the area of health or food
- Policy officer in the area of health or food
- Communications officer at a hospital or a governmental organisation, like RIVM
- Teacher in biology or medical biology

PhD positions at Radboud University
Each year, Radboudumc offers PhD positions in this field of research. Of course, many graduates also apply for a PhD position at related departments in the Netherlands, or abroad.

Our approach to this field

- From human biology to clinical treatment
Clinical Biology at Radboud University connects fundamental biological research to clinical treatments. The courses will provide you with a solid background in human physiology and molecular biology, which you’ll apply in developing clinically-oriented research questions. As there’s an extensive collaboration between the Faculty of Science and the Radboud university medical center, you’ll become familiar with both perspectives.

- Biomaterials
In your internships you’ll work with biomaterials, such as patient and animal samples. This means you’ll apply your biological knowledge to real-life situations. Clinical biologists do not work with patients or clinical treatments directly.

- Three focus areas
This Master’s specialisation focuses on three main topics:

- Molecular Mechanisms of Novel Therapeutics
Which molecular mechanisms lead to cancer? And how can these be translated into clinical practice? These are key questions in the specialisation in Clinical Biology. For example, we’ll dive into the functioning of epigenetics (heritable modifications of chromosomes without altering the nucleotide sequence), transcription factors, tumour suppressors and immunotherapy.

- Human Genetics and Physiology
This part is about how new developments and discoveries in genetic and molecular fields can help individual patients to improve functionality, independence and quality of life. You’ll study genetic pathways and the functionality of individual organs, organ systems, regulatory mechanisms, and individuals as a whole, in an integrative way.

- Metabolism, Transport and Mobility
The energy balance in our body is one of the most important factors in health and disease. We’ll teach you how energy and metabolites are integrated into the larger cellular networks for metabolism, transport and motility.

See the website http://www.ru.nl/masters/clinicalbiology

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X