• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University College London Featured Masters Courses
Liverpool John Moores University Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Sheffield Featured Masters Courses
"molecular" AND "medicine…×
0 miles

Masters Degrees (Molecular Medicine)

We have 396 Masters Degrees (Molecular Medicine)

  • "molecular" AND "medicine" ×
  • clear all
Showing 1 to 15 of 396
Order by 
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 75 credits
  • Research Methods 15 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine. Read more
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine.

This course aims to give participants an indepth understanding of the emerging field of molecular medicine which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that of molecular interactions.

The course aims to provide students with an understanding of the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course will ensure that students from all disciplines have the skills necessary to conduct research and critically evaluate the scientific and medical literature.

The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Modules on molecular signalling and therapeutics, bioinformatics and ethical-legal aspects of the discipline are included, as well as literature reviews, laboratory practicals and a laboratory project.

The course is available in a one-year, full-time and a two-year, part-time format. It consists of lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and more specifically to disease processes such as cancer, immune dysfunction, and diseases with an inherited component. The course content includes molecular signalling and therapeutics, molecular and population genetics, nanoscience, and high content cell analysis. There is a core, 'Research Skills' module which encompasses bioinformatics and ethical-legal aspects of the emerging discipline, literature reviews, and laboratory practicals in basic molecular and cellular techniques. Candidates will complete a laboratory project of three months (full-time) or six months (part-time) duration. Candidates must also complete the taught module, Molecular Mechanisms of Human Disease I. This course provides the applicant with state-of-the-art information and critical analysis of: The human genome at a molecular level, the integration of molecular and cellular biology in relation to human diseases; the molecular basis of human genetic disease; the molecular interactions between microbiological pathogens and the human host; the technology currently employed in researching molecular medicine; the molecular basis of common human inflammatory diseases and malignancies; the utilisation of knowledge on the molecular basis of human disease in planning and design of novel therapies, using pharmacological agents or gene therapy; the ethical and legal aspects of molecular medicine as it impinges on clinical practice. You will also gain a working appreciation of molecular and cellular biology at the practical level and development of the ability to perform independent research with the ability to apply bioinformatic and computational techniques in medical and biological research, and information retrieval. The student is examined on the basis of a submitted critical literature review essay, a written examination, assessment of laboratory practicals and the writing of a dissertation based on a research project. Candidates from health science (medical, dental, veterinary), biological science and other science disciplines (e.g. chemical or pharmacy), are invited to apply.

Read less
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. Read more
This programme aims to provide participants with an in-depth understanding of the emerging field of molecular medicine, which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that is, at the level of molecular interactions. The Diploma in Molecular Medicine is designed to make available a high quality course to those individuals who cannot avail of a full-time programme, due to the high demands it makes on a candidate's time. The diploma may therefore be an attractive option for, among others, people working in business, clinical industry, or other disciplines, who wish to gain a comprehensive knowledge in this area with a view to progressing professionally, or going on to do a higher degree.

This programme offers a comprehensive and thoroughly up-to-date overview of the area, which provides participants with the skills necessary to critically evaluate the literature and understand the central concepts of molecular medicine, such as the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Advanced modules cover topics such as molecular oncology, signalling, development and therapeutics, immunology and infectious agents among others. A selection of modules on issues such as bioinformatics, research methodology, statistics and ethicallegal aspects of the discipline may be undertaken on an optional basis.

Students choose a minimum of 10 units totalling a minimum of one hundred contact hours teaching. Students are also required to complete a written review of a relevant part of the literature. Students are examined on the basis of the submitted critical literature review essay, and written examinations of the modules taken. Examinations are undertaken at the end of each term.

Candidates should normally have a minimum of a 2.1 honors degree or equivalent in a biological science; a clinical science such as medicine, dentistry or veterinary; a pharmaceutical science such as pharmacy, or related area. However individuals with other appropriate or industrial experience (for example those working in the life sciences sector) will also be considered. The candidate may be interviewed to establish his/her suitability for the course.

Read less
Molecular Medicine is a broad discipline that relates to the study of the molecular mechanisms of disease and their application in developing therapies for the clinic. Read more
Molecular Medicine is a broad discipline that relates to the study of the molecular mechanisms of disease and their application in developing therapies for the clinic. It is an exciting time to be a biomedical scientist, with the forefront of healthcare research currently focused on personalised medicine, stem cells and the prospect of gene editing. This taught Masters aims to provide students with an in-depth grounding in contemporary molecular medicine. The Department of Biology has considerable research expertise spanning several areas relevant to molecular medicine, including cancer, immunology, microbiology, neuroscience and parasitology.

Key features

-Learn how basic biomedical research is conducted and translated by scientists in one of the UK’s top-ranked biological sciences departments
-Develop the skills to pursue a PhD in biomedical research or other specialist career path within the healthcare/pharmaceutical sector.

Taught modules

-Molecular Basis of Disease
-Data Analysis and Programming in the Biosciences
-Research, Professional and Team Skills
-Optional modules in topics including cancer, neuroscience, cell and tissue engineering, and microbiology.

Research projects

After receiving training in core laboratory techniques and experimental design, students will undertake an Independent Study Module under the supervision of a biomedical researcher in the Department of Biology or as an external placement. Recent external placement destinations include MicroLab Devices, Leeds; Cancer Research UK, London; Computomics GmbH & Co, Tübingen; Forsite Diagnostics Ltd, York; MRC Harwell, Oxford; Smith & Nephew, York; GSK, London; Francis Crick Institute, London; and AstraZeneca, Cambridge.

Research and transferable skills

We will equip students with the key skills of the modern researcher, including critical thinking, data interpretation, statistics, programming, and the written, oral and graphical presentation of scientific data and ideas.

Read less
The Cyprus School of Molecular Medicine offers 4 MSc Programs. MSc in Medical Genetics. MSc in Molecular Medicine. MSc Neuroscience. Read more
The Cyprus School of Molecular Medicine offers 4 MSc Programs:
MSc in Medical Genetics
MSc in Molecular Medicine
MSc Neuroscience
MSc Biomedical Research

The MSc postgraduate programs are organised around taught courses and a research or a library project. Successful students will have to pass all course examinations and the MSc Thesis Examination or the library project report.
The MSc postgraduate programs can be either full-time (one year) or part-time (two years). Each postgraduate program consists of five taught courses; four courses are core courses and one is elective. The postgraduate programs also include a research or a library project.

Tuition fees
The tuition fees for the MSc programs are €8.000.

Preparatory Course: Introduction to Molecular Biomedical Sciences (if needed)

Scholarships:
A number of full scholarships based on academic criteria are awarded to students of the CSMM. The exact amount and number of scholarships offered is always subject to availability.
All accepted PhD students of the CSMM are entitled to Tuition Fee Scholarships which waive the PhD tuition fees for the 2nd, 3rd and 4th year of studies.
Full PhD Scholarships are given to the best students for PhD studies over the period of three years (2nd, 3rd and 4th year of studies). The Full Scholarship includes an allowance for the student, funds for travelling to a conference and an amount for consumables for the student’s research project. Full scholarships will be awarded upon availability of funds.

Information:
http://www.cing.ac.cy/csmm/

Read less
Your programme of study. Are you interested in the ever more revolutionary innovations in health and disease treatments, the potential to innovate, research new ways to treat diseases, set up a spin out company as a result of what you find, or work for top names in the industry?. Read more

Your programme of study

Are you interested in the ever more revolutionary innovations in health and disease treatments, the potential to innovate, research new ways to treat diseases, set up a spin out company as a result of what you find, or work for top names in the industry?

If you want to study course modules within a variety of biotechnology, genetics, immunology, pharmacology, and microbiology areas but you want to choose the modules based on your aspirations this programme will not only give you choice of course modules but also great potential in many high growth and new generation revolutionary areas related to health and medical sciences and applications at the end of the programme.

We are living in an age of technological advances which are catapulting many fields including the health sciences into new ways to research and treat disease and new ways to produce and manufacture drugs and treatments. Biotechnology and pharmacy are enjoying a revolution in which customised health options, diagnosis, smart technologies, rapid prototyping and delivery, genomic sequencing, and molecular medicine are now possible and delivering new benefits to patients and economies. You study the essential areas of molecular medicine but you can choose from wide ranging courses such as Molecular Pharmacology, Drug Metabolism and Toxicology, Biologic Drug Discovery to Host-Pathogen Interactions and much more.

At the end of the programme you can choose your direction which can be anything from research science in private industry, institutes and centres, universities working towards PhD to finding a new method of treatment, rapid upscaling and spin out company possibilities. You may like to view the Scottish Innovation Centres within the health sciences to fully appreciate just how far you can take your expertise after graduation in Scotland and find out about innovation centres in England, Wales, Ireland or internationally.

Courses Listed for the Programme

Semester 1

  • Bioinformatics
  • Generic Skills
  • Basic Skills
  • Biotechnology
  • Molecular Biotechnology

Optional

  • Drug Metabolism and Toxicology
  • Molecular Pharmacology
  • Introduction to Microbiology
  • Introduction to Immunology
  • Applied Statistics

Semester 2

  • Advanced Bioinformatics and Genomic Sequencing
  • Research Tutorials

Optional

  • Human Genetics
  • Genome Enabled Medicine
  • Biologic Drug Discovery
  • Drug Development to Evidence Based Medicine
  • Host- Pathogen Interactions
  • Immunogenetics

Semester 3

  • Masters Research Project

Why Study at Aberdeen?

  • Study at a top 10 ranked UK medical school, teaching and researching since the Middle Ages with major innovations such as Insulin, MRI scanning and more
  • Enjoy an immersive study and research experience at one of the largest medical campuses in Europe with institutes, centres and internationally recognised research staff and students working across medical sciences, pharmacology, nutrition, award winning public health and economics, and more
  • Join one of the top 10 universities for spin out company formation in the UK, many of which are from the medical sciences
  • Learn from leading research, technological advances and innovation and apply your knowledge to wide ranging career options from private industries, public sectors to patents and spin out company formation.

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs





Read less
This intense course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more
This intense course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies.

After you've completed the non-clinical elements of the MSc in Molecular Medicine, you’ll spend 20 weeks with a clinical team, working on a particular health or disease area.

You could work primarily with either a clinical research team or a clinical practice team – depending on your preferred choice and the availability of attachments.

The course will give you a critical understanding of how molecular medicine is being applied to real problems in a particular clinical area. It is assessed mainly through written coursework and dissertations.

Core modules

From Genome to Gene Function
Human Gene Bioinformatics
Human Disease Genetics
Modulating Immunity
Literature Review
Laboratory Techniques
Clinical Attachment Presentation Module

Examples of optional modules

A wide choice of pathways (related to the field of your clinical attachment) which includes:

Virulence Mechanisms of Viruses and Fungi (Microbes and Infection)
Molecular and Cellular Basis of Diseases (Experimental Medicine)
Vascular Cell Biology (Cardiovasular)
The Molecular Basis of Tumorigenesis and Metastasis (Cancer)
Modelling Protein Interactions (Genetic Mechanisms)

Special options for the clinical attachment are:

Clinical Attachment
Clinical Research Project

Teaching

Lectures
Tutorials
Seminars
Clinical Attachment

Assessment

Essays
Portfolio work
One Statistic Exam
Dissertation

Read less
Study Genetics, Biotechnology and Molecular Medicine in this fascinating MSc that’s perfect for graduates interested in pursuing work in medical research, the pharmaceutical industry and the health services. Read more
Study Genetics, Biotechnology and Molecular Medicine in this fascinating MSc that’s perfect for graduates interested in pursuing work in medical research, the pharmaceutical industry and the health services.

Molecular Medicine takes advantage of major 21st century advances in genomics to help us understand the workings of disease at the cellular level, opening up new ways to treat and cure major illnesses.

This rapidly growing discipline is of increasing importance to the future of medical research and this degree gives you the chance to become an expert in the cutting-edge field. We have enormous expertise in biomedical research, with a global reputation for academic excellence and strong links with the major institutes based on Norwich Research Park. Our School of Biological Sciences was also highly rated in the most recent Research Excellence Framework, with 100% of our papers deemed ‘internationally recognised’.

Read less
Provides you with a broad overview of the molecular and cellular causes and treatments of human diseases. Develop a practical and theoretical understanding of the most important topics in molecular medicine. Read more
  • Provides you with a broad overview of the molecular and cellular causes and treatments of human diseases
  • Develop a practical and theoretical understanding of the most important topics in molecular medicine
  • Gain hands-on training in research techniques such as confocal microscopy, flow cytometry, cloning, in situ hybridisation and bioinformatics
  • Learn to apply your skills to industry-relevant challenges

What will you study?

Sample modules:

  • Research techniques and experimental design
  • Advanced topics in biomedicine
  • Biology of cancer
  • Synthetic biology
  • Regenerative medicine

Please note that all modules are subject to change. Please see our modules disclaimer for more information.

What career can you have?

All our master’s programmes emphasise the practical skills that employers need, whether that is the ability to identify plants, carry out environmental assessments or use the latest cutting-edge molecular techniques. As a University of Reading MSc graduate, you will be well equipped to work in the field or the lab, and in the private or public sector. Many of our graduates go on to study for a PhD and pursue a career in research either in industry or in universities.

Typical roles of graduates from our ecology and wildlife-based MSc programmes include conservation officers, project managers, field ecologists and environmental consultants. Graduates from our biomedical MSc programme typically go on to pursue PhD studies or work in the pharmaceutical industry.



Read less
Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more

Our Master of Research (MRes) in Translational Medicine will give you the research skills you need to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit. The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

With advances in technology, graduates are faced with heightened expectations to conduct effective bioscience research. Employers demand skillsets with biological, medical, physical and computational characteristics, and our course is designed to provide this breadth of training.

You will learn omics skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics. Our training in metabolomic techniques is novel for a UK course, while our teaching on the integration of different omic platforms and data in a systems medicine strategy is also unique.

The MRes course consists of four taught units - which together make up the PGCert - plus an extended 35-week project that can be undertaken at the University, the Manchester Cancer Research Centre or a teaching hospital in Greater Manchester.

You can choose from a range of projects covering areas such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

Completing our course will open up a route into PhD research. You may also pursue a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

Special features

Extensive research experience

The 35-week research project for the MRes award offers the chance to conduct ambitious projects in areas such as cancer, cardiovascular disease, inflammation, mental health, infectious diseases, stroke or diabetes, using methods such as stem cell research, proteomics, metabolomics, tissue culture or pharmacogenetics.

Integrated focus on key topics

Our course has a strong and integrated focus on genetics, genomics, proteomics and metabolomics biotechnology and data interpretation, which are strengths within Manchester and are identified as core areas of bioscience growth.

Teaching and learning

Teaching comprises four taught units delivered using a variety of face-to-face, workshop and e-learning approaches and an extended 35-week research project for the MRes award.

Examples of research projects include the following.

  • Statins in translational cerebral ischemia: systematic review and meta-analysis of pre-clinical studies.
  • Parallel gene expression profiling and histological analysis of tumour tissue microarrays.
  • Development of a New Drug For Alzheimer's Disease by Drug Repositioning.
  • Identification of genetic variants predisposing to autoimmune idiopathic inflammatory myopathies.
  • Effects of differentiating agents on breast cancer stem cells and their sensitivity to DNA-damaging therapies.
  • Molecular characterisation of prostate cancer.
  • Inhibitors of IAPP Aggregation and Toxicity. 
  • New Therapies for Type II Diabetes.
  • Identifying novel monotherapy and combination therapies for the treatment of Glioma.
  • Translation of in vitro to in vivo: investigating the utility of in vitro drug transporter assays to predict inductive effects in the clinic.
  • In vivo mechanistic analysis of cancer drug combination therapies.
  • Using silk as a biomaterial for nerve regeneration.
  • The role of the local tissue environment in immune activation following myocardial damage.
  • Identifying genes that drive Breast Cancer to Bone Metastasis
  • High throughput genetic testing in rare disease: applications of personalised medicine.
  • Drug resistance and heterogeneity in CML following treatment with imatinib and following perturbation caused by nanoparticle delivery of miRNAs.
  • Investigation of a panel of drugs to inhibit the pro-tumourgenic actions of macrophages in breast cancer.
  • 3D anatomical reconstruction and molecular mapping of the atrioventricular ring tissues in human embryonic heart and adult rat heart.
  • Identification of the genetic basis of disorders associated with the presence of intracranial calcification.
  • Species variability in metabolism as a translational factor influencing susceptibility to adverse drug reactions in man.

Find out more by visiting the postgraduate teaching and learning page.

Career opportunities

More than 50% of our graduates progress into PhD research at Manchester or other universities such as Cambridge, Imperial College London, Newcastle, Glasgow, Liverpool and Bristol.

Around 15% pursue a career in the pharmaceutical or biotechnology industry in the UK or abroad.

Approximately 25% are intercalating medics who complete their medical education. An estimated 10% pursue an undergraduate medical degree.



Read less
Our PGCert in Translational Medicine provides high-quality training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more
Our PGCert in Translational Medicine provides high-quality training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

With advances in technology, graduates are now faced with heightened expectations to conduct effective bioscience research.
Employers demand skillsets comprising biological, medical, physical and computational characteristics and this PGCert is designed to provide this breadth of training.

The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit.

This course provides intense training in 'omics' skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics.

The training in metabolic techniques is novel for a UK course, and teaching on the integration of different omic platforms and data in a systems medicine strategy is unique.

Teaching and learning

The postgraduate certificate requires the completion of four taught units delivered using a variety of face-to-face, workshop and e-learning approaches. Each unit lasts the equivalent of two weeks and consists of a package of lectures, workshops and tutorials.

Career opportunities

The aim of the PGCert is to give you a thorough knowledge and understanding of the key technologies used in the field of translational medicine.

This will help you to obtain laboratory-based positions or progress your career if you are already employed within academia or the pharmaceutical industry.

Read less
Course description. Lead academic. Dr Martin Nicklin. This flexible course focuses on the molecular and genetic factors of human diseases. Read more

Course description

Lead academic: Dr Martin Nicklin

This flexible course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies.

Core modules cover the fundamentals. You choose specialist modules from the pathway that interests you most.

We also give you practical lab training to prepare you for your research project. The project is five months of invaluable laboratory experience: planning, carrying out, recording and reporting your own research.

Recent graduates work in academic research science, pharmaceuticals and the biotech industry.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

  • From Genome to Gene Function
  • Human Gene Bioinformatics
  • Research Literature Review
  • Human Disease Genetics
  • Modulating Immunity
  • Laboratory Practice and Statistics

Six optional pathways

Genetic Mechanisms pathway

  • Modelling Protein Interactions
  • Gene Networks: Models and Functions

Microbes and Infection pathway

  • Virulence Mechanisms of Viruses, Fungi and Protozoa
  • Mechanisms of Bacterial Pathogenicity
  • Characterisation of Bacterial Virulence Determinants

Experimental Medicine pathway

  • Molecular and Cellular Basis of Disease
  • Model Systems in Research
  • Novel Therapies

Cancer pathway

  • Molecular Basis of Tumourigenesis and Metastasis
  • Molecular Techniques in Cancer Research
  • Molecular Approaches to Cancer Diagnosis and Treatment

Cardiovascular pathway

  • Vascular Cell Biology
  • Vascular Disease: Models and Clinical Practice

Clinical Applications pathway

Apply directly to this pathway. Available only to medical graduates. Students are recruited to a specialist clinical team and pursue the taught programme (1-5) related to the attachment. They are then attached to a clinical team for 20 weeks, either for a clinical research project or for clinical observations. See website for more detail and current attachments.

Teaching and assessment

Lectures, seminars, tutorials, laboratory demonstrations, computer practicals and student presentations.

Assessment is continuous. Most modules are assessed by written assignments and coursework, although there are some written exams.

Two modules are assessed by verbal presentations.

Your research project is assessed by a thesis, possibly with a viva.



Read less
Designed to appeal to both clinical and basic scientists, the course provides a comprehensive, theoretical and practical training using state-of-the-art techniques in molecular and cellular biology as applied to medicine. Read more
Designed to appeal to both clinical and basic scientists, the course provides a comprehensive, theoretical and practical training using state-of-the-art techniques in molecular and cellular biology as applied to medicine.

The practice of clinical medicine is currently being revolutionised by rapid and extraordinary technological advances in molecular biology in areas such as gene discovery, cancer, inherited diseases and gene therapy.

Read less
Have you ever wondered where the word “gutfeeling” comes from, or understand why stress induces abdominal discomfort. If so, this Master programme may be of interest to you. Read more
Have you ever wondered where the word “gutfeeling” comes from, or understand why stress induces abdominal discomfort. If so, this Master programme may be of interest to you. The programme provides scientific knowledge and competences to understand the complex bidirectional signalling between the gut and the brain. It focuses on in-depth knowledge on how diet and nutrition, the intestinal microbes, the intestine and the brain interact. The program also provides transferable skills, including scientific methodology, experimental design, data management and analysis, as well as training in manuscript and research proposal writing. The programme is coordinated by and linked to the crossdisciplinary Nutrition Gut Brain Interactions Research Centre which provides access to internationally leading researchers and human in vivo and ex vivo research facilities, both at the University and at the University Hospital, and at the same time a strong link to selected industrial partners.

Read less

Show 10 15 30 per page



Cookie Policy    X