• University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Birmingham Featured Masters Courses
"molecular" AND "life" AN…×
0 miles

Masters Degrees (Molecular Life Science)

  • "molecular" AND "life" AND "science" ×
  • clear all
Showing 1 to 15 of 296
Order by 
In recent decades, life science research has enabled enormous breakthroughs in our understanding of fundamental molecular and cellular processes and mechanisms of life. Read more
In recent decades, life science research has enabled enormous breakthroughs in our understanding of fundamental molecular and cellular processes and mechanisms of life. The MSc programmes in Life Science & Technology in Leiden and Delft are complementary.

Visit the website: http://en.mastersinleiden.nl/programmes/life-science-technology/en/introduction

Course detail

Life Science & Technology researches the processes in the living cell. The cell is the building block of life, the smallest unit with the characteristics of living systems. Increased knowledge of the mechanisms of the cell can lead to a cleaner industry, better medicines, new methods for combating diseases and isolating enzymes for the development of improved foodstuffs.

Specialisations

- Life Science and Education
- Life Science and Science Communication and Society
- Life Science Research and Development
- Life Science-Based Business Development

Format

The programme consists of three parts:

1) Research internship
2) Compulsory programme
3) Electives

Knowledge about genomic organisation, studies of protein-protein interactions and the characterisation of molecular structures have become central in modern life science research and technology. This knowledge forms the basis of the molecular understanding of health and disease. It finds important applications in innovative health care, in the pharmaceutical industry and in so-called ‘red’ biotechnology, and is the focus of the Leiden programme.

Reasons to Choose Life Science & Technology in Leiden

1) Life Science & Technology educates MSc students in fundamental academic and applied technology elements within Life Sciences.

2) This master’s programme is based on the collaboration between the two internationally well-known Leiden Institute of Chemistry and the Biotechnology Institute, Delft University of Technology.

3) Students will become full members of the various multidisciplinary internationally reputed research groups.

4) This master’s programme offers opportunities for carrying out research projects in excellent research groups worldwide and in industrial situations.

5) The high standard of education and research facilities ensure excellent job prospects in industry, government and academia.

Careers

Life science research and business is one of the fastest growing economic activities worldwide. The aim of each programme is to train students as independent scientists, and to develop the necessary skills and proficiency to advance their career.

After completing our MSc programme, students have a broad array of career prospects. The master’s degree is a stepping-stone for those graduates with the aspiration to pursue a PhD degree. Students with a desire to apply their knowledge of the life sciences outside the university have good job possibilities in R&D departments in industry, business, public utility companies, teaching, consultancy and government bodies. Many students eventually attain higher management positions. The Leiden Institute of Chemistry houses the Leiden Cell Observatory, a core facility in life science education. The institute is located in the largest Bioscience Park within the Netherlands, where there are ample job opportunities.

How to apply: http://en.mastersinleiden.nl/arrange/admission

Funding

For information regarding funding, please visit the website: http://prospectivestudents.leiden.edu/scholarships

Read less
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). Read more
Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE). As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics.

As a graduate of the LSI programme you will:
-Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors.
-Competence to work as a member of a group of experts.
-Have understanding of the regulatory and ethical aspects of scientific research.
-Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting.
-Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme.
-Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information.
-Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge.
-Have the ability to report results in a clear and understandable manner for different target groups.
-Have good opportunities to continue your studies for a doctoral degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic Bioinformatics
Goes with the Genome-scale algorithmics, Combinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied Bioinformatics
Jointly with The Institute of Biotechnology and genetics. Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics
With the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group.

Biostatistics and Bioinformatics
Offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational Genetics, Computational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.

Eco-evolutionary Informatics
With ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems Biology and Medicine
With the Genome-scale Biology Research Program in Biomedicum. The focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.

Selection of the Major

During the first Autumn semester, each specialisation area gives you an introductory course. At the beginning of the Spring semester you are assumed to have decided your study direction.

Programme Structure

Studies amount to 120 credits (ECTS), which can be completed in two years according to a personal study plan.
-60 credits of advanced studies from the specialisation area, including a Master’s thesis, 30 credits.
-60 credits of other studies chosen from the programme or from other programmes (e.g. computer science, mathematics and statistics, genetics, ecology and evolutionary biology).

Internationalization

The Life Science Informatics MSc is an international programme, with international students and an international research environment. The researchers and professors in the programme are internationally recognized for their research. A significant fraction of the teaching and research staff is international.

As a student you can participate in an international student exchange programme, which offers the possibility to include international experience as part of your degree. Life Science Informatics itself is an international field and graduates can find employment in any country.

In the programme, all courses are given in English. Although the Helsinki region is very international and English is widely spoken, you can also take courses to learn Finnish via the University of Helsinki’s Language Centre’s Finnish courses. The Language Centre also offers an extensive programme of foreign language courses for those interested in learning new languages.

Read less
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. Read more
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. With a vision of creating the next generation of leaders in Molecular Pathology, this programme will provide the state of the art training programme for Molecular Pathology, in order to facilitate the pathologists, clinical scientists, trainees, and to those in the related health professions, to acquire essential knowledge, skills and attributes in the current and future diagnosis that incorporates molecular knowledge.

Why this programme

● In August 2014, MRC published a review of the UK Molecular Pathology Landscape, in which the critical needs and challenges are pin downed in the delivery of improved diagnostics incorporating the molecular approaches.

● With a vision of creating the next generation of leaders, this programme provides state of the art training for Molecular Pathology

● We are one of the few centres where molecular pathology and diagnostic histopathology are amalgamated on one site, permitting the delivery of a clinically relevant molecular pathology course.

● The areas of main focus include diagnostic molecular pathology, clinical trials and translational research in molecular pathology, pathology bioinformatics and digital pathology. The core courses (PgCert) are designed to cover the intended learning outcomes within Royal College of Pathologists curriculum for Specialty Training in Histopathology 2015.

● The programme is led by the national leaders directly engaged in the various molecular pathology initiatives. Students are kept up-to-date with information and the current needs identified by the professional societies, research councils and charity organizations.

● You will be trained at the purpose-built Laboratory Medicine Building at the Queen Elizabeth University Hospital, which provides services to 52% of the Scottish population. This is one of the largest NHS department of pathology in Europe, accommodating about 50 consultant pathologists.

● The courses will be delivered by a range of professionals with expertise from geneticists, pathologists, clinical, lab scientists and academics, informaticians and clinicians provided across hospital practice and primary care. They are experts based in QEUH and those nationally and internationally recognized experts of molecular pathology.

Programme structure

The main aims of the MSc Molecular Pathology programme are to enable students:

• to fully provide a high quality service in molecular pathology diagnosis
• to participate in research in the area of molecular pathology
• to participate in the training of future generations of molecular pathologists

The "Blended Learning" programme offers the maximum flexibility for students who wish to study Molecular Pathology while on clinical duties and pathology training. "Moodle-Based Learning" sessions offer an advantage allowing clinicians to study within their own schedule. "In person review" sessions will enable active interactions with the course contributors and other students. Case-based and "hands-on" sessions facilitate the knowledge and skills acquired in clinical diagnosis as the programme proceeds, so it is easy to keep motivated throughout the course.

Core Courses

– 3 x compulsory, 20-credit courses; 1 per semester

• Fundamentals of Molecular Biology and Genetics for Histopathology (20 credits)
• Molecular Tests and Techniques for Histopathology (20 credits)
• Multidisciplinary Approaches to Molecular Pathology (20 credits)

The first three core components will provide the minimum requirement for students to apply molecular knowledge and skill in pathology diagnosis currently on-going and in the immediate future.

These courses will form the PgCert.

Advanced Courses

- Courses must be selected from the following options to obtain a total of 60 credits.

• Translational Medical Research Approaches (10 credits)
• Medical and Research Ethics (10 credits)
• Molecular Pathology (20 credits)
• Omics technologies for biomedical sciences: from genomics and metabolomics (20 credits)
• Frontiers in Cancer Science (20 credits)
• Disease Screening in Populations (10 credits)
• Governance and ethics in education research (10 credits)

In the advanced component, students will further their training of Molecular Pathology to acquire the knowledge needed to get involved in research, or development and improvement of diagnostics. There are options for learning of advanced technologies, wider disease areas, research methods, in-depth bioinformatics, and health professional education.

Successful completion of core and advanced courses will be awarded with the PgDip.‌

Dissertation

- 1 x 60-credit project-based course assessed by a dissertation of approximately 8,000 words followed by an oral presentation.

The Masters dissertation project gives students the opportunity to conduct research in an area of Molecular Pathology with supervisor(s) assigned to each project. For example, the opportunity to conduct an independent research project, audit or critical review of the literature in selected topics in the area of Molecular Pathology, current and future diagnosis, clinical and scientific research.

Successful completion of all core and advanced courses and the dissertation will lead to the award of the MSc.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. Read more
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. The structure and function of nucleic acids, genes, proteins and cell-signalling molecules are also analysed by molecular biology. Molecular biology techniques can be used to investigate errors in cellular systems that are fundamental to an advanced understanding of disease aetiology. In addition, innovations in molecular biology permit sophisticated modification of organisms, and manipulation of their functions, to permit the production of novel products and the development of novel therapeutic technologies. The burgeoning global bioscience sector creates a continuing demand for the education of scientists at postgraduate level skilled in molecular biology.

The MSc Molecular Biology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

This course is intended for life science graduates from both home and overseas courses who wish to develop their knowledge and skills in biosciences with an emphasis on molecular biology. The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of molecular biology. This course is also an excellent foundation for those wishing to pursue research in molecular biology at PhD level.

You will have the opportunity to study a broad range of Molecular Biology at a theoretical and a practical level. You will have the opportunity to gain hands-on experience of molecular biology techniques. You will have the opportunity to develop a range of transferrable and research skills that will develop your knowledge and enhance your employment potential.

WHAT WILL I LEARN?

The course is focused on the key elements of molecular biology and comprises modules on the following topics:
-Genomes and DNA Technology
-Cell Culture and Antibody Technology
-Mammalian Cell and Molecular Biology
-Molecular Microbiology
-Molecular Biology of Disease

The course will also comprise a Research Skills module. In addition, a Research Project forms part of the MSc course.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST104), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Molecular biology is one of the most buoyant sectors of the biosciences jobs market. Indeed, molecular biology is a key area underpinning modern biology in the post-genomic era. Consequently, many different branches of biology in both the academic and industrial sectors make use of molecular biology skills and rely on analyses at the molecular level to drive developments. It is predicted that growth in the Molecular Biology employment market will be above average over the period 2010–20.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
The Division of Life Science offers rigorous postgraduate programs and research opportunities in a range of cutting-edge areas in the field, particularly in neuroscience, structural biology, cell and developmental biology, marine and environmental biology and biotechnology. Read more
The Division of Life Science offers rigorous postgraduate programs and research opportunities in a range of cutting-edge areas in the field, particularly in neuroscience, structural biology, cell and developmental biology, marine and environmental biology and biotechnology.

We strive to provide an inspirational environment for student learning and for tackling the challenges of modern life science.

Our mission is to sustain and promulgate a reputable academic program in life science by achieving excellence in research and education, and by making significant contributions to biotechnological innovations in regional and international arenas. Currently, the Division has a total of 180 postgraduate students, 120 of whom are PhD students.

The Division is home to the State Key Laboratory of Molecular Neuroscience; a recognition of the standard of work being carried out and of its important contribution to Mainland China’s development. In addition, the Division has a large collection of state-of-the-art equipment and is a major stakeholder in HKUST’s Biosciences Central Research Facility.

The MPhil program provides research training in major areas of life science. It enables students to acquire the knowledge, skills, and experience required for research. Submission and successful defense of a thesis based on original research are required.

Research Focus

Research and development within the Division of Life Science emphasizes the following areas:
-Cellular Regulation and Signaling
-Cancer Biology
-Developmental Biology
-Molecular and Cellular Neuroscience
-Macromolecular Structure and Function
-Marine and Environmental Science
-Biotechnology and Medicinal Biochemistry

Faculty members working in these areas form a coordinated research team. Such coordination takes full advantage of the faculty’s expertise in generating innovative development and productive research. At the same time, it creates a stimulating atmosphere in which students experience the challenge of modern research through direct participation.

Facilities

The Division is excellently equipped for research in a broad range of areas. The Animal Care and Plant Care Facility provides a centralized and modern facility for animals and plants. Centralized state-of-the-art facilities for biochemical and cellular studies are provided by the Biosciences Central Research Facility. The Division also has the following facilities:

Cell Culture
Facilities for the cultivation, maintenance, characterization and cold storage of animal and plant cells.

Molecular and Cellular Biology
Major equipment includes fluorescence-activated cell sorters, automatic DNA sequencers, real-time PCR machines, ultracentrifuges, spectrophotometers and spectrofluorimeters, MALDI-TOF / TOF and LC-MS mass spectrometers, HPLC and FPLC, gamma and liquid scintillation counters.

Modern Microscopy
The Division has an array of state-of-the-art imaging facilities including several fluorescence microscopes, confocal laser scanning microscopes, atomic force microscope, total internal reflection fluorescence microscope, STED and STORM superresolution microscopes.

Marine / Environmental Biology
The University is bordered by an extensive shoreline of various habitats and has a 19-foot outboard-motor boat for near-shore operations and a wet laboratory of circulating sea water. A high-quality marine laboratory has been built on the campus waterfront.

Biomolecular Nuclear Magnetic Resonance Spectrometers
Our state-of-the-art NMR facility consists of 500, 750 and 800 MHz NMR spectrometers equipped with cryoprobes for structure-function studies. NMR is used to study structure, dynamics and function of proteins, nucleic acids and other bio-molecules in solution. In addition, NMR can also facilitate drug screening and design.

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
Molecular and Cellular Life Sciences focuses on understanding molecular-level cellular function and rests at the crossroads of chemical, biological, physical and computational science. Read more

Molecular and Cellular Life Sciences

Molecular and Cellular Life Sciences focuses on understanding molecular-level cellular function and rests at the crossroads of chemical, biological, physical and computational science.

Designed to communicate this unique field of research to a new generation of students, this MSc programme is research-oriented and takes a multidisciplinary approach. You will learn a wide range of state-of-the-art techniques, including advanced methodologies in genetics, cell biology and structural biology. You will acquire extensive knowledge of molecular recognition and regulation, cell signalling, membrane biogenesis and sorting, chemical approaches to biology and genomics/proteomics.

The programme offers you considerable freedom to choose a specific field within the biomolecular sciences. A tailor-made programme can be developed to suit your personal interests.

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. Read more

Overview

The Pre-Masters in Biomedical Science (Graduate Diploma in Biomedical Science) provides a discipline-specific pathway (a pre-masters year) into the taught Biomedical Blood Science masters level programme. It is a one-year full-time programme designed for both home and international students, with a background in life sciences, who wish to study at postgraduate level for the MSc in Biomedical Blood Science. The programme is open to science graduates who do not meet the academic criteria for a direct entry into the MSc. The MSc in Biomedical Blood Science is accredited by the Institute of Biomedical Science (IBMS). The IBMS is the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver the best possible service for patient care and safety.

See the website https://www.keele.ac.uk/pgtcourses/biomedicalsciencegraduatediploma/

Course Aims

The overall aim is to provide the students with the academic background necessary for the masters programme and to enable them to develop and practise the subject specific academic skills required for the intensive pace of study at masters level. The course also aims to allow international students to benefit from English language support that will help them to develop their academic English language skills.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request; but, to summarise, the overarching course aims are as follows:

- To provide students with core knowledge, understanding and skills relevant to Biomedical Science

- To produce skilled and motivated graduates who are suitably prepared for the MSc in Biomedical Science and for further study.

- To cultivate interest in the biosciences, particularly at the cellular and molecular level, within a caring and intellectually stimulating environment.

- To get an accurate insight into the role of Biomedical Scientists in the diagnosis, treatment and monitoring of disease.

- To develop an understanding of the analytical, clinical and diagnostic aspects of Cellular Pathology, Clinical Biochemistry, Medical Microbiology, Blood Transfusion, Clinical Immunology and Haematology pathology laboratories.

- To promote the development of a range of key skills, for use in all areas where numeracy and an objective, scientific approach to problem-solving are valued.

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment.

- To promote the development of critical thinking, autonomous learning, independent research and communication skills to help prepare the students for the MSc in Biomedical Blood Science and for a lifetime of continued professional development.

Course Content

All the modules in this one year programme are compulsory. The programme consists of a total of 90 credits made up of one 30 credit module and four 15 credit modules. An additional English module (English for Academic Purposes) will be offered for non-native English speakers if required. This module will not form part of the overall award, but successful completion is required for progression to the Masters programme.

Modules:
- Biomedical Science and Pathology (30 credits):
The module provides the student with the knowledge and understanding of the pathobiology of human disease associated with Cellular Pathology, Clinical Immunology, Haematology, Clinical Biochemistry, Medical Microbiology and Clinical Virology. It also examines the analytical and clinical functions of three more of the major departments of a modern hospital pathology laboratory, including Haematology, Clinical Pathology, Clinical Immunology, Blood Transfusion, Clinical Biochemistry and Medical Microbiology. In addition, the module will give an accurate insight into the role of Biomedical Scientists and how they assist clinicians in the diagnosis, treatment and monitoring of disease.

- Biochemistry Research Project (non-experimental) (15 credits):
This module aims to introduce students to some of the key non-experimental research skills that are routinely used by biochemists and biomedical scientists, such as in depth literature searching, analysis of experimental data and the use of a computer as tool for both research (bioinformatics) and dissemination of information (web page construction). The student will research the literature on a specific topic, using library and web based resources and will produce a written review. In addition, the student will either process and interpret some raw experimental data provided to them.

- Advances in Medicine (15 credits):
This module will describe and promote the understanding of advances in medicine that have impacted on diagnosis, treatment, prevention of a range of diseases. It will highlight fast emerging areas of research which are striving to improve diagnosis including nanotechnology and new biochemical tests in the fields of heart disease, cancer and fertility investigations which will potentially improve patient care.

- Clinical Pathology (15 credits):
The majority of staff that contribute to the module are employees of the University Hospital of North Staffordshire (UHNS). Students will benefit from lectures and expertise in Clinical Diagnostic Pathology, Pharmacology, Biochemistry, Genetics and Inflammatory Diseases. Students will gain an insight into how patients are managed, from their very first presentation at the UHNS, from the perspective of diagnosis and treatment. The course will cover both standardised testing options and the development of new diagnostic procedures with a particular emphasis on genetic and epigenetic aspects of disease. Students will also gain an appreciation of the cost benefit of particular routes for diagnosis and treatment and the importance of identifying false positive and false negative results. Finally, the students will have the opportunity to perform their own extensive literature review of a disease-related topic that is not covered by the lectures on the course.

- Case Studies in Biomedical Science (15 credits):
This module aims to give you an understanding of the UK health trends and the factors that affect these trends. Through clinical case studies and small group tutorials, you will explore why the UK has some of the highest incidences of certain diseases and conditions in Europe and consider what factors contribute to making them some of the most common and/or rising health problems faced by this country. This will include understanding the relevant socioeconomic factors as well as understanding the bioscience of the disease process and its diagnosis and management. You will also focus on what is being done by Government and the NHS to tackle these major health problems.

- English for Academic Purposes (EAP ):
For non-native English speakers if required

Teaching & Assessment

In addition to the lecture courses and tutorials, problem based learning (PBL) using clinical scenarios is used for at least one module. Students will also be given the opportunity to undertake an independent non-experimental research project, supervised and supported by a member of staff. Web-based learning using the University’s virtual learning environment (KLE) is also used to give students easy access to a wide range of resources and research tools, and as a platform for online discussions and quizzes. Students will be given many opportunities to become familiar with word processing, spreadsheets and graphics software as well as computer-based routes to access scientific literature.

All modules are assessed within the semester in which they are taught. Most contain elements of both ‘in-course’ assessment (in the form of laboratory reports, essays, posters) and formal examination, although some are examined by ‘in-course’ assessment alone.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. Read more
This masters programme is designed to prepare you for a career in research in molecular and cellular biology and its applications.

It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

This programme is designed to prepare you for a career in research in molecular and cellular biology and its applications. It comprises a year of intensive training and research experience leading to the award of an MRes degree which will give you a ‘flying start’ to a subsequent PhD programme, if this is your chosen career path.

The programme aims to provide training in the practical aspects that underlie research science in this field. To achieve this aim the course contains a very high level of hands-on research, as it is our view there is no better training than lab experience.

Programme content

Two-thirds of the programme is taken up by two approximately 18-week research projects, which are undertaken in different laboratories and with different supervisors. A very wide range of research topics falling within the scope of molecular and cellular biology is available within the School; this range extends from structural biology at one extreme to multicellular systems at the other.

In addition to this direct research experience, there are two compulsory taught modules which provide training in:

- Science Funding and Enterprise Skills in Biosciences
- Techniques in Molecular and Cellular Biology
These modules cover the basic principles underlying scientific research methods and the design of biological/biochemical experiments, and discussion of modern techniques in molecular and cellular biology. In addition, the science funding and enterprise module provides the skills required to obtain funding for sciences. This includes grant and business case writing and scientific presentation skills. You can also take courses to develop general research skills arranged through the Biosciences Graduate Research School.

The taught modules consist of a combination of seminars and lectures. The lab work that is carried out during the course is student-led. You will be able to choose areas of molecular and cellular biology that fit with your career aspirations.

Assessment

The two taught modules are assessed via examination, essays and oral presentations. The two research projects are assessed via written thesis and an oral examination.

Skills gained

This programme offers the following advantages:

Broad training in the skills and techniques of contemporary research in molecular and cellular biology
The opportunity to experience research in at least two different areas
Increased breadth and experience, which will enhance subsequent employability
The course will also enable you to:

Conduct and fund independent research
Present research results in an appropriate manner both written and orally
Have an appreciation and knowledge of the use of modern techniques in molecular and cellular biology
Build and develop scientific research projects in the public and private sector
Careers

Those who perform effectively in the MRes often continue at Birmingham to a PhD; however, the MRes also provides a very good qualification to move into research and a wide range of professions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and elective modules complement the Medical Life Sciences curriculum.

To lay the foundation for working in medical research, Medical Life Sciences (MedLife) provides basic knowledge in courses on clinical manifestations of diseases, human biology, molecular pathology and immunology. Lectures, seminars and tutorials in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it, all of which are important skills in research.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum during the entire duration of your studies.

Read less
The MRes in Biomedical Research. Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. Read more
The MRes in Biomedical Research: Bacterial Pathogenesis and Infection is a 12 month postgraduate course providing exemplary academic and research training. The Bacterial Pathogenesis and Infection stream is a specialised stream on a larger course (the MRes in Biomedical Research). This programme will provide research training in fundamental aspects of bacterial pathogenesis, host immunity and antibiotic resistance, with particular attention to the scientific, technical and professional acumen required to establish research independence. The emphasis will be on molecular approaches to understanding bacterial infection biology, as a function of bacterial pathogenic strategy and physiology, as well as resistance to host defences and antibiotic therapy, and is comprised of two 20-week research projects embedded within research-intensive groups and a series of lectures, seminars, tutorials and technical workshops.

Based in the MRC Centre for Molecular Bacteriology and Infection, the course provides an opportunity to learn directly from internationally-respected scientists through sustained interaction for the duration of the course. This programme will deliver training in: Molecular microbiology, including integration of molecular and cellular information to understand the genetic basis of virulence; modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity; functionality and physiological relevance of microbial virulence factors; mechanisms of antibiotic resistance and persistence; derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Course Objectives
The emphasis is on molecular approaches to understanding infection as a function of bacterial pathogenic strategy and physiology. This research-oriented approach to training in biomedical science will comprise both theoretical and practical elements. The course will expose students to the latest developments in the field through two mini-research projects and a series of technical workshops. Students will gain experience in applying technologically advanced approaches to biomedical research questions.

Specifically the course will deliver research training in:

• Molecular bacteriology, integrating molecular and cellular information to understand the genetic basis of microbial virulence.
• Modelling host and microbial aspects of infection to help characterise the host-pathogen interaction and immunity.
• By experimentation, understanding the biochemical functions and physiological relevance of microbial virulence factors and antibiotic resistance.
• Derivation of mechanistic approaches to problem-solving in molecular and cellular biomedical science.

Individuals who successfully complete the course will have developed the ability to:

• Demonstrate practical dexterity in the commonly employed and more advanced practical techniques of molecular and cellular microbiology
• Exercise theoretical and practical knowledge and competence required for employment in a variety of biomedical environments
• Identify appropriate methodology during experimental planning
• Interpret and present scientific data
• Interrogate relevant scientific literature and develop research plans
• Recognise the importance of justifying expenditure (cost and time) during experimental planning
• Recognise potential methodological failings and strategise accordingly
• Perform novel laboratory-based research, and exercise critical scientific thought in the interpretation of findings
• Write and defend research reports, which appraise the results of laboratory based scientific study
• Communicate effectively through writing, oral presentations and IT to facilitate further study or employment in molecular, cellular and physiological science
• Exercise a range of transferable skills

This will be achieved by providing:

• A course of lectures, seminars, tutorials and technical workshops. The programme is underpinned by the breadth and depth of scientific expertise in the participating department.
• Hands-on experience of a wide repertoire of scientific methods
• Two research projects
• Training in core transferable skills

The MRC Centre for Molecular Bacteriology and Infection (Departments of Medicine and Life Science) is located at the South Kensington Campus of Imperial College London. http://www.imperial.ac.uk/mrc-centre-for-molecular-bacteriology-and-infection

Candidates are expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK.

Please visit the course website for more information about how to apply, and for more information about the various streams of specialism which run within the course.

Early application is strongly advised. Please note that while applications can be considered after receipt of one recent reference, two will be required as standard for confirmation of acceptance by College.

If you have any questions, please contact:

Kylie Glasgow
Manager, Centre for Molecular Bacteriology and Infection
Imperial College London
London, SW7 2AZ
E-mail

-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2017 will be eligible to apply for the Faculty of Medicine Dean's Master’s Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit http://www.imperial.ac.uk/medicine/study/postgraduate/deans-masters-scholarships/. Applications for 2017 are not yet open (do check the website again early in the new year).

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X