• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cardiff University Featured Masters Courses
Cardiff University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Coventry University Featured Masters Courses
"molecular" AND "immunolo…×
0 miles

Masters Degrees (Molecular Immunology)

  • "molecular" AND "immunology" ×
  • clear all
Showing 1 to 15 of 133
Order by 
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Read more
This course combines theoretical knowledge and practical training in the immunology of infectious diseases through comprehensive teaching and research methods. Students will gain specialised skills in applying scientific concepts, evaluating scientific data and carrying out modern immunological techniques. Students will benefit from the unique mix of immunology, vaccinology, molecular biology, virology, bacteriology, parasitology, mycology and clinical medicine at the School.

Infectious diseases represent an increasingly important cause of human morbidity and mortality throughout the world. Vaccine development is thus of great importance in terms of global health. In parallel with this growth, there has been a dramatic increase in studies to identify the innate, humoral or cellular immunological mechanisms which confer immunity to pathogenic viruses, bacteria, fungi and parasites. As a result, increasing numbers of scientists, clinicians and veterinarians wish to develop their knowledge and skills in these areas.

The flexible nature of the course allows students to focus on attaining a broader understanding of infectious disease through attending taught units. Students can also undertake an extended research project within groups led by experienced team leaders. Such projects can involve basic investigations of immune mechanisms or applied field based studies.

Graduates from this course go into research positions in academia and industry, and further training such as PhD study.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/iid_progspec.pdf)
- Intercalating this course (http://www.lshtm.ac.uk/study/intercalate)

Visit the website http://www.lshtm.ac.uk/study/masters/msiid.html

Objectives

By the end of this course students should be able to:

- demonstrate specialist knowledge and understanding of the basic principles of host immunity to infection against the diverse range of pathogens which confront human populations

- apply this specialist knowledge to a range of practical skills and techniques, in particular modern molecular and cellular techniques for assessing immune responses to pathogens

- critically assess, select and apply appropriate research methods to investigate basic immunological mechanisms and applied issues in the immunology of infection

- critically evaluate primary scientific data and the published scientific literature

- integrate and present key immunological concepts at an advanced level, both verbally and in written form

Structure

Term 1:
There is a one-week orientation period that includes an introduction to studying at the School, sessions on key computing and study skills and an introduction to major groups of pathogens, followed by two compulsory modules:

- Immunology of Infectious Diseases
- Analysis & Design of Research Studies

Sessions on basic computing, molecular biology and statistics are run throughout the term for all students.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). The list below shows recommended modules. There are other modules which may be taken only after consultation with the Course Directors.

*Recommended modules

- Slot 1:
Advanced Immunology 1 (compulsory)

- Slot 2:
Advanced Immunology 2 (compulsory)

- Slot 3:
Advanced Training in Molecular Biology*
Clinical Immunology*
Extended Project*
Basic Parasitology
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries

- Slot 4:
Extended Project*
Immunology of Parasitic Infection: Principles*
Molecular Biology Research Progress & Applications*
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine
Epidemiology & Control of Communicable Diseases
Ethics, Public Health & Human Rights
Genetic Epidemiology

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Extended Project*
Molecular Cell Biology & Infection*
Mycology*

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/tiid.html

Residential Field Trip

Towards the end of Term 1, students get the opportunity to hear about the latest, most exciting aspects of immunological research at the British Society of Immunology Congress. The cost is included in the £500 field trip fee.

Project Report

During the summer months (July - August), students complete a research project on an immunological subject, for submission by early September. Some of these projects may take place with collaborating scientists overseas or in other colleges or institutes in the UK. Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved.

The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/msiid.html#sixth

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
MSc Medical Immunology providing advanced training in basic and clinical immunology, including diagnostic technologies, laboratory management and research methodologies. Read more
MSc Medical Immunology providing advanced training in basic and clinical immunology, including diagnostic technologies, laboratory management and research methodologies. Designed for laboratory-based career paths such as translational research; biomedical scientists, clinical practice as a clinical scientist, academia as a senior lecturer or professor, or as an NHS consultant.

Key benefits

- An unrivalled medical immunology training course located with good UK access and designed for clinical Specialty trainees, Grade A/B clinical scientist trainees in immunology, histocompatibility and immunogenetics, biomedical scientists, industrial partners and (overseas) research fellows.

- Teaching is research-led and delivered by academics and clinicians who are leaders in their respective fields.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/medical-immunology-msc-pg-dip-pg-cert.aspx

Course detail

- Description -

The programme covers basic molecular and cellular immunology; the role of immunological mechanisms in autoimmune, systemic inflammatory, hypersensitivity, infective, immunodeficiency and neoplastic disorders in which the immune system is involved, as well as clinical transplantation and clinical immunology laboratory management; and major laboratory techniques of diagnostic medical immunology.

- Course purpose -

To provide an integral part of scientific and medical training in immunology for clinical Specialty trainees, Grade A/B clinical scientist trainees in immunology, histocompatibility and immunogenetics, biomedical scientists, industrial partners and (overseas) research fellows; and greater awareness and knowledge of recent advances in the physiology of the immune system.

- Course format and assessment -

Lectures one day per week; 10 taught modules (15 credits each) examined by written essays, written practical/data interpretation and learning logs. The 11th module (Research Project) has a value of 45 credits and is examined by a written project and oral component.

Career prospects

For career development in clinical, laboratory and academic immunology, for example towards running a diagnostic service, research group or clinical practice as a Clinical Scientist, Senior Lecturers/Professors and NHS consultants.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine. Read more
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine.

This MSc is an exciting, innovative blended learning programme aimed to enhance the participant’s theoretical knowledge and practical skills in MP and to empower them to pursue a career in academia, healthcare or industry. The course has a strong focus on innovation and entrepreneurship; emphasising MP’s central role in molecular diagnostics, clinical trials and biotech/biopharma.

This Masters programme has been developed with a number of options in order to provide maximum flexibility of training. Candidates can take the Certificate/Diploma/MSc in Molecular Pathology of Cancer which will provide a solid foundation for those wishing to study MP at PhD level. The full-time MSc is also available as an intercalated degree for Medical and Dental students. Additionally, the three modules which are offered by Distance Learning are available as a ‘stand-alone’ Certificate in Pathology Informatics and Business Application.



Semester 1

All candidates will undertake traditional ‘face to face’ teaching for the three modules in Semester 1. This will be timetabled teaching. Some of the teaching sessions within the modules also form aspects of formal teaching for other PG programmes, providing the students with the opportunity to interact with other Masters students from different disciplines, which we feel enhances the student experience. Collectively, the modules would be sufficient for a Certificate in Molecular Pathology

(1) Cancer Biology, Immunology and Genomics (15 CATs)

(2) Molecular Pathology – Diagnostics and Technologies (25 CATs)

(3) Translational Research (20 CATs)



Semester 2

Candidates will complete three modules which will be available ‘online’ as distance learning modules. Successful completion of Semester 1 modules plus Semester 2 modules without the research dissertation would be sufficient for a Diploma in Molecular Pathology. Collectively, the modules in Semester 2 without the Semester 1 modules would be sufficient for a Certificate in Pathology Informatics and Business Application.

(1) Digital Molecular Pathology (20 CATs)

(2) Biostatistics and Bioinformatics (20 CATs)

(3) Academia/Industry Interface (20 CATs)



Research component

Students will be able to plan their research project and work on their literature review during semester 1; beginning the practical work for their research project in Semester 2. Research projects will be available across a variety of subjects. Potential project areas for the MSc will include – Molecular Neuropathology; Cancer Immunology; Liquid Biopsies; Digital Pathology; Biobanking; Molecular Diagnostics; Bioinformatics. A number of projects will be put forward from the network of CRUK Accelerator Partners for those students with CRUK Accelerator bursaries who may wish to undertake their research as a placement at one of the partner sites.

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

Throughout the programme you will:

- gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
- learn techniques in the field of molecular biology, immunology, cell biology and chemistry
- develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
- be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
- learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities

Programme structure

Starting in September, the MSc in Molecular Medicine is a full time, twelve months programme which combines a seven month research project with some taught modules.

The MSc programme comprises of a 180 credits, consisting of:

A research project: 75 credits
Scientific core skills: 45 credits including Bioinformatics and Research Methods

A choice of student-selected modules: 60 credits

• Human Molecular Genetics
• Immunity and Disease
• Animal Models of Disease
• Stem Cell Biology
• Cancer Biology
• Genetic Epidemiology

Career Prospects

This exciting programme provides excellent training for:

- science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service or a related discipline;
- clinicians interested in an clinical academic career.

Many of our past students are now doing PhDs across the UK or internationally. Some are working in NGOs or in the industry. Talented graduates from the MSc will be strongly supported to join PhD programmes in the institutes here at the University.

We anticipate that an MSc Molecular Medicine will be ideal preparation for those intending to secure clinical fellowships.

Why study at the University of Leeds?

The University of Leeds has been named University of the Year 2017 by The Times and The Sunday Times’ Good University Guide.

Teaching is stimulating and delivered by active scientists and clinicians, many of whom are world-leading in their research fields. You will benefit from small group teaching including lectures, workshops, laboratory practicals, seminars and tutorials.

Your research will be based in one of the internationally-renowned Institutes of the School of Medicine. You will be able to choose from a wide range of research opportunities in Biomedical and Clinical Sciences, Cancer and Pathology or Rheumatology.

Read less
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry. Read more
The programme aims to provide students with training and learning opportunities in the skills and specialised knowledge needed to equip them for a career in biotechnology, molecular biotechnology or molecular biology, in particular in industry.

Practical skills will include sessions on fermentation, molecular biology, immunology, cell biology and protein chemistry, and you will go on to complete a major, supervised laboratory or computer-based research project.

Transferable skills gained via this programme will include written and oral presentation skills, statistics, and the ability to plan and write a grant application or a business plan. Subject-specific skills will include key techniques used in molecular biotechnology, specialist knowledge in theoretical and practical aspects of the subject, including: process engineering, molecular biology, functional genomics, 'omics' technologies, protein expression systems and antibody engineering. Practical skills will include fermentation, molecular biology, immunology, cell biology and protein chemistry.

Careers

While many graduates will go on to employment in biotechnology companies, you will also be employable in other life sciences industries or able to go on to further study and research.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Medical Molecular Biology is the application of modern molecular biology and genetics in medical research, medical sciences and the clinic has led to huge advances in the understanding, diagnosis and treatment of human disease. Read more
Medical Molecular Biology is the application of modern molecular biology and genetics in medical research, medical sciences and the clinic has led to huge advances in the understanding, diagnosis and treatment of human disease. Students choosing to study the Medical Molecular Biology with Genetics program will enjoy a modular, but highly integrated course that delivers the theoretical knowledge and extensive practical laboratory experience required for progress on to PhD studies in medical molecular research and/or employment in molecular diagnostics or medical sciences industries.

Successful graduates will also have attained transferable skills required to independently adapt and optimize scientific methodologies, critically interpret and evaluate self-generated and published scientific literature and data and undertake a predominantly self-reliant approach to laboratory based work, study and research.

Modules:

Research Skills
Medical Biotechnology
Human Molecular Genetics
Human Immunology & Disease
Laboratory Molecular Research
Stem Cells, Disease & Therapy
Applied Anatomy & Histopathology
Research projects are run in the Robert Edwards laboratory and the laboratories of the North West Cancer Research Institute.

Semester 3 consists of a 60-credit laboratory based research project and dissertation.

Read less
The contribution of Inflammation and Immune dysfunction to a wide range of diseases, from Arthritis to Cancer to Obesity is becoming increasingly clear. Read more
The contribution of Inflammation and Immune dysfunction to a wide range of diseases, from Arthritis to Cancer to Obesity is becoming increasingly clear. The MSc in Immunology and Inflammatory Disease integrates basic, translational and clinical immunology and inflammation biology with cutting edge molecular and cellular techniques to equip students with both a working knowledge of Inflammatory disease together with state of the art research approaches used to study the area.

Why this programme

-You will receive training in the disciplines of Immunology and Inflammation within an internationally recognized centre of excellence
New opportunities to work together with scientists, clinicians and pharmaceutical industry scientists to research, drug discovery to drive improvements in patient care in areas of critical international importance
-You will attend UK Congress of Immunology
-The University of Glasgow is home the ‘GLAZgo Discovery Unit’ a unique facility established between the Respiratory, Inflammation, Autoimmunity Medicines Unit at AstraZeneca and the Institute of Infection, Immunity and Inflammation to identify new pathways by which inflammation can promote diseases and ultimately create better medicines for patients, http://www.glazgodiscoverycentre.co.uk
-The University of Glasgow is home to an Arthritis Research UK (ARUK) Experimental Arthritis Treatment Centre to recruit local patients to test new and existing drugs and to find new approaches that can predict which treatment works best in Rheumatoid Arthritis
-The University of Glasgow is home to The Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (in collaboration with Birmingham and Newcastle Universities), which aims to find out more about the causes of rheumatoid arthritis, http://www.race-gbn.org/

Programme structure

The MSc programme will consist of five taught courses and a project or dissertation, spread over 11-12 months. Three courses are compulsory, and two are chosen from a series of options.

The PGDip programme will consist of five taught courses, spread over 7-8 months, with three compulsary courses and two chosen from a series of options.

The PgCert programme consists one core taught course over 3-4 months.

4 Core courses
-Immunology: Basic, Translational and Clinical
-Omic technologies for the biomedical sciences: from genomics to metabolomics
-Designing a research project: biomedical research methodology
-Research project or dissertation

5 Optional Courses (choose 2)
-Drug discovery
-Diagnostic technologies and devices
-Viruses and Cancer
-Current trends and challenges in biomedical research and health
-Technology transfer and commercialisation of bioscience research

The course will include registration and attendance at the British Society for Immunology Annual Congress. This will enable:
-Exposure to the best international immunological research.
-Networking with prospective employers in academia and the pharmaceutical industry.

Excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business.

Career prospects

The programme provides an ideal grounding for progression to further research studies in Immunology, Inflammation and Infectious diseases, or for a career in pharmaceutical/bioscience industries.
-PhD
-Pharmaceutical industry research and development
-Research technologist
-Graduate research assistant
-Healthcare Scientist
-Scientific publishing
-Scientific management

Read less
The MSc course in Microbiology and Immunology was set up to enhance the training of scientists studying the interactions between microbes and the immune system, and for those students wishing to enter a research career and gain high level skills in Microbiology and Immunology. Read more
The MSc course in Microbiology and Immunology was set up to enhance the training of scientists studying the interactions between microbes and the immune system, and for those students wishing to enter a research career and gain high level skills in Microbiology and Immunology.

The course aims to provide training in theoretical and practical aspects of microbiology and immunology, with particular emphasis on molecular biological techniques and the interactions at the interface between microbes and the immune system. Students will gain basic and advanced knowledge of important viral, bacterial and parasitic infections. Alongside this, students will acquire an understanding and knowledge of the immune system and how it detects and responds to pathogens.

Students who have completed the course will acquire relevant transferable skills such as data management, interpretation and presentation, time management and organisation, and effective verbal and written communication skills. In addition, the students' ability for analytical and creative thinking will also be improved whilst undertaking the course.

The MSc will consist of seven taught modules and a laboratory-based project. Successful completion of the course will necessitate accumulation of 180 credits, 120 of which will derive from the taught modules and 60 from the research project. All of the modules are compulsory. There is an additional non-credit bearing module to provide the students with factfinding networking opportunities with each other and the staff alongside navigation of teaching facilities.

Autumn Semester:

Microbiology and Immunology General Sessions
Introduction to Medical Microbiology
Research Methods in Immunology and Microbiology
Viral Pathogenesis and Infections

Spring Semester:

Bacterial Pathogenesis and Infection
Immunity and the Immune System
Therapeutic Immunology
Innate Immune Recognition
Research Project

Read less
This course has been running for over 25 years and is one of only three in the country. The two contributing universities of Keele and Salford have considerable complementary research experience in the biology of parasites and the insect vectors that transmit them. Read more

Overview

This course has been running for over 25 years and is one of only three in the country. The two contributing universities of Keele and Salford have considerable complementary research experience in the biology of parasites and the insect vectors that transmit them. This has led to the development of this unique, joint MSc degree between the two institutions, focusing on the ecology and molecular biology of parasitism, immunology of infection, treatment of infection, the ecology and molecular biology or insect vectors, and the control of their natural populations. The teaching is undertaken by staff from the two institutions and mostly based at Salford with specialized laboratory sessions at Keele. Students are able to carry out an extensive research project in the research laboratories of one of the two universities. The strong focus on the molecular aspects of parasitic infections, vector biology, and vector control, will appeal to recent graduates wishing to further their training before embarking upon a research career in Entomology, Parasitology, Molecular Biology or Immunology; to those considering a career in Biotechnology; and to overseas students seeking specialist training before entering a career in managing parasitological or vector-related research and control appropriate to their own country.

The vast majority of the teaching team on the course are internationally recognized experts in their field of research. As an example, most of the Keele teaching team belong to the Centre for Applied Entomology and Parasitology which is highly rated for its world-leading research and excellent research facilities. Therefore the course provides a unique opportunity to set a foot in the real world of research in Parasitology and Medical Entomology.

See the website https://www.keele.ac.uk/pgtcourses/molecularparasitologyandvectorbiology/

Course Aims

The aims of the course are to provide:
- A sound insight into the biology of parasitic diseases their transmission and control of the vectors

- Contemporary studies of current research on immunological and molecular aspects of selected parasites and vector/parasite relationships

- Training in research and modern techniques in the study of vectors and parasites

Teaching & Assessment

Assessment is through a variety of methods including exams, essays and practical work. MSc students will be required in addition to carry out a research project and write it up in a dissertation.

All Masters students must pass modules 1-5 at 50% to give them 180 credits. Students gaining 120 credits will be awarded a Postgraduate Diploma. Students gaining 60 credits will be awarded a Postgraduate Certificate.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Scholarships

There are substantial scholarships available, please see this link: http://www.keele.ac.uk/studentfunding/bursariesscholarships/internationalfunding/postgraduate/
or
http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. Read more
This is a full-time 1 year MSc programme suitable for biomedical or life scientists who wish to acquire an extensive knowledge and key skills relating to the fundamental molecular and cellular regulation of immunity and its application to the treatment of disease. The programme will be delivered by world leaders at the forefront of immunology and immunotherapy research, each with an internationally renowned research group.

Over the past few years significant advances have been made in our understanding of the molecular and cellular control of immune responses. These discoveries are now being translated into the design and testing of immunotherapeutic interventions for a range of diseases including cancer, autoimmunity and inflammatory disease. This programme is for biomedical or life scientists who wish to extend their knowledge and skills in both immunology and its translation to immunotherapy.

A series of interlinked taught modules cover molecular mechanisms in immune cell differentiation and function, autoimmunity, transplant and tumour immunology, and inflammation. This is complemented by comprehensive coverage of the latest developments in immunotherapy including the use of microbial products in immunomodulation and vaccination, small molecules and biologics, as well as cellular immunotherapy.

The programme aims to allow you to understand the research process, from the fundamental discoveries at the forefront of immunological research, to the application of novel interventional immune-based therapies.

A key part of the MSc programme is the planning, execution and reporting of a piece of independent study leading to submission of a dissertation. This study will be in the form of an extensive laboratory research project carried out in internationally renowned research groups. Each student will be a fully-integrated member of one of the large number of research teams in a wide variety of topics across both immunology and immunotherapy. We also plan to offer some projects within external biotechnology companies.

About the College of Medical and Dental Sciences

The College of Medical and Dental Sciences is a major international centre for research and education, make huge strides in finding solutions to major health problems including ageing, cancer, cardiovascular, dental, endocrine, inflammatory diseases, infection (including antibiotic resistance), rare diseases and trauma.
We tackle global healthcare problems through excellence in basic and clinical science, and improve human health by delivering tangible real-life benefits in the fight against acute and chronic disease.
Situated in the largest healthcare region in the country, with access to one of the largest and most diverse populations in Europe, we are positioned to address major global issues and diseases affecting today’s society through our eight specialist research institutes.
With over 1,000 academic staff and around £60 million of new research funding per year, the College of Medical and Dental Sciences is dedicated to performing world-leading research.
We care about our research and teaching and are committed to developing outstanding scientists and healthcare professionals of the future. We offer our postgraduate community a unique learning experience taught by academics who lead the way in research in their field.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Department of Immunology provides a common forum for investigators in many areas of the University of Toronto and an interdisciplinary research experience in immunology. Read more
The Department of Immunology provides a common forum for investigators in many areas of the University of Toronto and an interdisciplinary research experience in immunology. Members and students in the department are located at the Medical Sciences Building; the Ontario Cancer Institute; and the research institutes of Mount Sinai Hospital, Toronto General Hospital, Toronto Western Ho​spital, the Hospital for Sick Children, and Sunnybrook Hospital.

The Master of Science degree program is offered in two distinct fields of study: Applied Immunology and Fundamental Immunology. The Doctor of Philosophy degree program is offered in Fundamental Immunology.

These degrees cover a wide range of immunological sub-disciplines including molecular mechanisms of lymphocyte development and selection, T-cell and B-cell receptors, cell interactions, growth factor receptors, cytokine networks, antigen processing and presentation, signal transduction in lymphocytes, V(D)J recombination, anergy, apoptosis, transgenic and knock-out models, immuno-targeting and vaccine design, autoimmunity, AIDS, diabetes, and transplantation.

Read less
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them. Read more
The two contributing universities of Salford and Keele have considerable complementary research experience in the biology of parasites and the vectors which transmit them.

This has led to the development of this unique, pioneering joint Masters degree focusing on the molecular aspects of parasite infections and vector biology. It aims to give you a sound insight into the biology of parasites and their control. The course provides you with contemporary studies of research on immunological and molecular aspects of selected parasites and vector/parasite relationships. You will gain research experience in parasitology and/or entomology.

Key benefits:

• Innovative, collaborative course taught jointly by the University of Salford and Keele.
• Significant practical training in parasitology including intensive residential field trip to Malham Tarn.
• Excellent platform for a research career.

Suitable for

Graduates who wish to enter research, teaching, scientific laboratory management and careers in parasitology and vector biology including diagnostic centres and overseas fields centres.
Programme details

Course detail

Individual research projects can be based in any of the three institutions, choosing a topical aspect of parasitology, or vector biology.

This course has both full-time and part-time routes, comprising of three 14-week semesters or five 14-week semesters, which you can take within one or up to three years respectively.

Format

Teaching is delivered by research active staff from Salford and Keele Universities. Teaching sessions are primarily based at Salford, though the facilities at Keele are also utilised. Transport is provided for classes based at Keele.

Teaching sessions include lectures, laboratory practicals, field work, tutorials, guest lectures and guided reading.

The Dissertation can be based at Salford or Keele.

Part-time students study Fundamentals of Parasitology and Molecular Biology of Parasites in year 1, Vector Biology and Control, and Research Skills (Parasitology) in year 2. Students may wish to complete the Dissertation in year 2, or year 3 depending upon commitments.

Module titles

• Fundamentals of Parasitology
• Vector Biology and Control
• Molecular Biology of Parasites
• Research Skills (Parasitology)
• Dissertation

Assessment

The Research Skills (Parasitology) and Dissertation modules are assessed by coursework. The remaining modules are assessed by coursework and examination.

Career potential

Graduates from this course have entered employment as research assistants or research laboratory technicians in pharmaceuticals, drug design and pesticide research. Other careers have included pollution microbiologists with water authorities, and work in hospital laboratories investigating the haematology, molecular biology and immunology of infectious diseases.

The MSc equips students for PhD research and former students have gone onto PhD study at prestigious Universities, including Oxford, Glasgow, Liverpool and Manchester and Toledo (USA). The students at Toledo have now completed their PhD studies are have gained employment at US Ivy League Institutes (Harvard Medical School and Cornell). Other students have elected to work in hospital laboratories, or diversify their careers by taking medical sales or enter teacher training posts.

Former overseas students have returned to their home country to take academic, or government positions.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X