• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Ulster University Featured Masters Courses
"molecular" AND "imaging"…×
0 miles

Masters Degrees (Molecular Imaging)

We have 95 Masters Degrees (Molecular Imaging)

  • "molecular" AND "imaging" ×
  • clear all
Showing 1 to 15 of 95
Order by 
Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management. Read more

Our MSc in Medical Imaging Science covers a multidisciplinary topic of central importance in diagnosis, treatment monitoring and patient management.

It is also a key tool in medical research and it is becoming increasingly possible to relate imaging studies to genetic traits in individuals and populations. Novel imaging biomarkers of disease can enable more rapid and precise diagnosis and inform decision making in drug discovery programmes.

As medical imaging involves knowledge of anatomy, physiology, pathology, physics, mathematics and computation, our course is suitable if you want to expand your disciplinary horizons and pursue a career in an image-related field in clinical medicine, medical research, or technological research or development.

You will cover the basic science and technology behind the principal imaging modalities currently used in medicine and medical research, as well as advanced imaging methods, clinical and research applications, imaging biomarkers and computational methods.

You will learn how advanced imaging techniques are applied in medical research and drug discovery with an emphasis on magnetic resonance (MR) and positron emission tomography (PET) imaging. You will also receive training in computational and quantitative methods of image analysis or in the interpretation of clinical images from different imaging modalities.

This course comprises both a taught component and a research project, giving you the skills and knowledge required for a career in an image-related field in clinical practice, clinical or scientific research, or technical development.

Aims

We aim to provide you with:

  • with a systematic understanding of the scientific basis of the major medical imaging modalities;
  • a broad understanding of the principal clinical applications of medical imaging and its role in diagnosis, monitoring and therapy;
  • an understanding of the capabilities and limitations of medical imaging for deriving quantitative anatomical and physiological data;
  • knowledge of how advanced imaging techniques are applied in medical research and drug discovery;
  • the experience to plan, implement and complete a research project;
  • generic transferrable skills required in a multidisciplinary scientific or clinical research environment;
  • the knowledge and skills required for a career in an image-related field in clinical practice, clinical research, scientific research or technical development.

Special features

Excellent facilities

Benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Learn from experts

Manchester has an imaging and image computing research group with a strong international reputation. Our research groups and facilities are staffed by scientists conducting research in novel imaging and image analysis methods, and clinicians who apply these methods in clinical practice.

Flexible learning

Learn when it suits you thanks to options for either full-time or part-time study.

Multidisciplinary learning

Study alongside physicists, engineers, mathematicians, computer scientists, chemists, biologists and clinicians working in hospitals and research-dedicated imaging facilities.

Teaching and learning

As this course aims to produce graduates equipped to pursue either clinically or technically-focused careers in imaging, it is important to provide an adequate knowledge base. For this reason, much of the teaching takes the form of lectures.

However, in most course units, this is supplemented by group discussions and practical exercises. Other than the introductory units, most course units provide you with an understanding of research methods by requiring submission of a critical review of appropriate research literature or clinical material, either as a report or presentation.

Where appropriate, practical imaging exercises are provided, requiring you to cooperate in acquiring images and analysing results.

All units require a considerable component of independent research and study.

Coursework and assessment

Assessment will occur in a variety of forms.

Summative assessment takes the form of written assignments, examinations, oral presentations and online quizzes. Written assignments and presentations, as well as contributing to summative assessment, have a formative role in providing feedback, particularly in the early stages of course units.

Online quizzes provide a useful method of regular testing, ensuring that you engage actively with the taught material. As accumulation of a knowledge base is a key aim of the course, examinations (both open-book and closed-book) form an important element of summative assessment.

In addition, formal assessment of your research and written communication skills is achieved via the dissertation. This is a 10,000 to 15,000-word report, written and organised to appropriate scientific standards, describing the design, execution and results of the research project.

Course unit details

The MSc requires students to pass 180 credits composed of eight course units of 15 credits each and a 60-credit research project.

We provide course units in Human Biology and Introductory Mathematics and Physics to bring students up to the required level in these topics.

Semester 1: Compulsory units

  • Scientific Skills
  • Mathematical Foundations of Imaging
  • Radioisotope Imaging (PET/SPET)
  • Non-radioisotope Imaging (MRI, CT, US)

Semester 2: Compulsory units

  • Advanced MR Imaging
  • Advanced PET Imaging
  • Quantitative Imaging into Practice (Imaging Biomarkers for Healthcare and Research)

Semester 2: Elective units (select one)

  • Imaging in Clinical Diagnosis
  • Medical Image Analysis and Mathematical Computing

Semester 3:

  • Research project

Facilities

You will benefit from research-dedicated imaging facilities at several hospital sites and a dedicated molecular imaging centre co-located with the Christie Hospital.

Each student will have an identified personal tutor who can provide advice and assistance throughout the course. During the research project, you will be in regular contact with your research supervisor.You will also be able to access a range of other library and e-learning facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Graduates will be in an excellent position to pursue careers in image-related fields in healthcare and research. This MSc will also form a sound basis for students who wish to proceed to PhD research in any aspect of medical imaging.

Intercalating medical students may use this qualification as a platform to pursue a clinical career in radiology.

Physical science/engineering graduates may see this as a route to imaging research or development in an academic or commercial environment.



Read less
The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular… Read more

The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular and biomedical imaging, from molecules and cells to entire animals and humans. It is part of the “Health Engineering” program, which combines three academic tracks (Biomedical Imaging, Cellular Bio-Imaging and Bio-Material & Medical Devices).

Built on the research expertise of the researchers at the University of Bordeaux, this Master program provides excellent training opportunities in advanced bio-imaging methods and concepts to understand (patho)-physiological processes through the vertical integration of molecular, cellular and systems approaches and analyses.

Students receive intense and coordinated training in bio-imaging, combining a mix of theoretical and practical aspects. They acquire scientific and technological knowledge and experience in the main imaging techniques used in biomedical research and practice.

Program structure

Semesters 1 and 2 focus on the acquisition of general knowledge in the field (courses and laboratory training). Semester 3 consists of track specialization in cellular bio-imaging, biomedical imaging and bio-materials & medical devices. Semester 4 proposes an internship within an academic laboratory or with an industrial partner.

Semester 1:

  • Tutored project (6 ECTS)
  • Introduction to bio-imaging (6 ECTS)
  • Mathematical and physical basis of imaging (6 ECTS)
  • General physiology (6 ECTS)
  • Mathematical methods for scientists and engineers (6 ECTS)

Semester 2:

  • TOEIC training and business knowledge (9 ECTS)
  • Introduction to research and development (12 ECTS)

Cellular Bio-Imaging track

  • Fluorescence spectroscopy and microscopy (9 ECTS)

Biomedical Imaging track

  • Advanced bio-medical imaging (9 ECTS)

Semester 3:

  • Design of a scientific project (9 ECTS)
  • Introduction to image analysis and programming (3 ECTS)

Cellular Bio-Imaging track

  • Super-resolution microscopy (6 ECTS)
  • Electron microscopy (6 ECTS)
  • Advanced topics in cellular bio-imaging (6 ECTS)

Biomedical Imaging track

  • Magnetic resonance imaging (6 ECTS)
  • Ultrasound imaging (3 ECTS)
  • In vivo optical imaging (3 ECTS)
  • Ionizing radiation imaging (3 ECTS)
  • Multimodal imaging (3 ECTS)

Semester 4: 

  • Master 2 Thesis: internship in an academic or industry laboratory (30 ECTS)

Strengths of this Master program

  • Teaching courses from academic and professional experts (industry).
  • Access to leading research labs and advanced core facilities.
  • Practice of a wide range of applications, from molecular andcell biology and neuroscience to biomedical instrumentation, maintenance and service.
  • Supported by the Laboratories of Excellence (LabEx) BRAIN(Bordeaux Cellular Neuroscience) and TRAIL (Translational Research and Biomedical Imaging).
  • English language instruction.
  • Possibility of international secondment.

After this Master program?

Graduates will be qualified in the following domains of expertise:

  • Mastering theoretical concepts and practical knowhow of main bio-imaging techniques.
  • Knowing the application and limits of different bioimaging methods.
  • Identifying and manipulating biological targets with bio-imaging tools.
  • Ability to conceive, design and conduct independent research project in bio-imaging.

Potential career opportunities include: researcher, service engineer, application scientist, bio-medical engineer, sales engineer, healthcare executive.



Read less
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more

Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

About this degree

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits).

Core modules

  • Advanced Biomedical Imaging Techniques I & II
  • Practical Preclinical Research (including Home Office Personal Licence)
  • Translational Biomedical Imaging of Disease and Therapy I & II
  • Science Communication for Biomedicine
  • Statistical Methods in Research
  • Ethics and Regulation of Research

Optional modules

There are no optional modules for this programme.

Dissertation/report

All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning

The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Further information on modules and degree structure is available on the department website: Advanced Biomedical Imaging MSc

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability

This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects. This laboratory experience makes them attractive applicants for PhD studentships or research assistant positions. Around 75% of our graduates have found research positions; either PhD studentships (50%) or research assistant positions (25%) in leading laboratories. Other graduates have taken up positions in industry or continued with specialist clinical training.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
STUDY MOLECULES TO SOLVE BIG ISSUES. Read more

STUDY MOLECULES TO SOLVE BIG ISSUES

The Master in Molecular and Cellular Life Sciences (MCLS) is research oriented and takes a multidisciplinary approach to study related to health and disease in cells and organisms. By the end of the programme you will gain sufficient fundamental knowledge to start working on applications in the field of medical and biotechnological issues. These applications may include the development of new medicines and vaccines, new strategies for crop improvement, or the development of enzymes to be used in industry. 

THE RIGHT CHOICE FOR YOU?

MCLS is the ideal Master’s programme if you are interested in molecules as the basis of life and disease and if you want to know how chemistry, biology, biomedical sciences, and physics contribute to our understanding of how these molecules work. The interplay of molecules in cells and organisms is the central focus of the programme. 

The Dutch Master's Selection Guide (Keuzegids Masters 2017) ranked this programme as the best in the field of Chemistry in the Netherlands.

PROGRAMME OBJECTIVE 

You will develop extensive knowledge about cellular processes such as cellular signaling, membrane biogenesis and intracellular transport. You will also learn skills and methods to study the molecules involved in these processes by using biochemistry, structural biology, cell biology, biophysics, computational biology, proteomics and genomics. The programme offers you the flexibility to choose any specialisation within the field of molecular and cellular life sciences.

Tracks

Within this Master’s programme you can choose one of four tracks:



Read less
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. Read more
Medical Life Sciences is an English-taught two-year Master’s programme in molecular disease research and bridges the gap between the sciences and medical studies. You will get to know clinical research from scratch; you will learn how to investigate diseases/disease mechanisms both in ancient and contemporary populations, how to translate research results into prevention, diagnosis and therapies of diseases.
From the basics of medical science to lab experiments for the Master’s thesis, individual scientific training takes first priority. Experimental work in state-of-the-art research labs is essential in Medical Life Sciences; clinical internships, data analysis, lectures, seminars and electives complement the Medical Life Sciences curriculum.
Evolutionary biology will train you in thinking from cause to consequence. Molecular paleopathology and ancient DNA research tell you a lot about disease through human history. These insights help to fight disease today, which is why evolutionary medicine is becoming a cutting-edge research field. Whether you want to focus on ancient populations and paleopathology or on specific disease indications nowadays, here you get the tools and skills to do both.
To lay the foundation for working in medical research, Medical Life Sciences includes courses on clinical manifestations of diseases, molecular pathology and immunology. Hands-on courses in molecular biology, bioinformatics, clinical cell biology, medical statistics, and human genetics broaden your knowledge and make the interfaces between medicine and the sciences visible. You will learn how to acquire knowledge, verify and use it.. That biomedicine has many facets to discover is the great thing that keeps students fascinated and well-equipped for finding a job in academia or the industry.

Focus Areas

From the second semester, you additionally specialise in one of the following focus areas:

INFLAMMATION takes you deep into the molecular mechanisms of chronic inflammatory diseases, the causal network between inflammatory processes and disease, genetics and environment. New research results for prevention, diagnosis and therapy will be presented and discussed. An internship in specialised clinics helps to see how “bed to bench side”, i.e. translational medicine, works.

EVOLUTIONARY MEDICINE looks at how interrelations between humans and their environment have led to current disease susceptibility. Why do we suffer from chronic diseases such as diabetes, heart disease and obesity? Is our lifestyle making us sick? Why are certain genetic variants maintained in populations despite their disease risk? Evolutionary medicine focuses on bridging the gap between evolutionary biology and medicine by considering the evolutionary origins of common diseases to help find new biomedical approaches for preventing and treating them.

ONCOLOGY delves deep into molecular research on malignant diseases, the interplay of genetics and environment, cell biology of tumours, and many other aspects. You will achieve a better understanding of unresolved problems and opportunities of current research approaches.

LONGEVITY focuses on molecular mechanisms that seem to counteract the detrimental effect of ageing. The disease resilience and metabolic stability of extraordinarily fit people well over 90 years of age are of special interest. This research is complemented by experiments on model organisms. You will also look at the molecular pathways of ageing, and which role genes and the environment play. How the intricate web of counteracting effects triggering ageing and/or longevity works stands as the central focus of this area.

Scientists and clinicians will make you familiar with these topics in lectures and seminars. You will discuss different research approaches, perspectives and the latest developments in medical research. Lab practicals in state-of-the-art research labs, a lab project, and the experimental Master's thesis will provide ample opportunity to be involved in real-time research projects.

Electives

To widen your perspective, you choose one of three electives designed to complement the focus areas. The schedules are designed so that you can take part in more than one elective if places are available. Tracing Disease through Time looks at disease etiology by analysing biomolecules, diets and pathogens in archaeological specimens. You may opt for Epidemiology to immerse yourself in epidemiological approaches with special emphasis on cardiovascular diseases, one of the greatest health threats in modern societies. Another option is Molecular Imaging, which gives you insight into the world of high-tech imaging in medical research.

Additional electives such as Neurology, Tissue Engineering or Epithelial Barrier Functions and Soft Skills courses such as Project Management, Career Orientation and English Scientific Writing are integrated into the curriculum.

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. . Read more

Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. 

Key benefits

  • Possibility to carry out research projects in biophysics in Singapore
  • 95% of students have gone on to study for PhD at top tier Universities and Institutions over the past 8 years
  •   Students often obtain a publication in a top quality journal (high Impact Facto) from their project research
  • Broad range of research topics to choose from.
  • Up-to-date biophysics expertise is increasingly valued by pharmaceutical and biotechnology laboratories.
  • Located in the heart of London.

Description

This Molecular Biophysics for Medical Sciences MRes programme will give you a thorough exposure to practical biophysics research in a world-leading centre that has been at the forefront of biophysics research since it opened 60 years ago. Our early successes include the elucidation of the structure of DNA and the development of the sliding filament model of muscle. More recently we have pioneered breakthroughs in the areas of muscle and immunoglobulin function, molecular-tweezers development, cell motility, DNA recognition, and the development of new techniques in cellular microscopy.

The research component of your MRes will be complemented by a series of in-depth modules in molecular biophysics and molecular biology.

You will also have the exciting option of carrying out your research project in Singapore to produce outstanding science.

Quantitative skills in biology will be incredibly important for the next generation of professional scientists working in industry and academia. We recognise this, and our MRes offers you an integrated training programme ideally suited to instruct you in the biophysical techniques to meet this challenge.

Our MRes will give you an excellent foundation for a career in academic research, but it also provides a robust foundation for entering industry at a high level, where biophysics has applications ranging from drug formulation and delivery to structure-based drug discovery and the development of medical and scientific imaging techniques.

Course purpose

Acquiring quantitative skills in biology is of paramount importance for the next generation of professional scientists working in industry and academia. The MRes (Master of Research) in Molecular Biophysics at King's College London offers an integrated training programme ideally suited to learn biophysical techniques crucially important to meet this challenge.

We deliver an excellent foundation for students wishing to pursue careers in academic research. Equally, our MRes provides a robust foundation for high level entry into industry where biophysics has applications ranging from drug formulation and delivery, structure-based drug discovery, and the development of medical and scientific imaging techniques.

Our Master is designed for outstanding graduates in the Life and Physical sciences (Biology, Biochemistry, Chemistry, Physics) who want to apply their knowledge to biological problems at the research level. Taught modules cover biophysics and molecular biology techniques with elements of bioinformatics.

Course format and assessment

Teaching

We will provide you with seven hours of lectures and seminars each week. In your first semester you’ll also have 10 to 12 hours of lab work and 35 hours in your second semester. We will expect you to undertake 15 to 20 hours of self-study.

Typically, one credit equates to ten hours of work.

Assessment

We will assess you through a combination of exams, coursework and practical assessment for your first two modules. For the Molecular Biophysics Research Project, we will assess you through a thesis, a viva and a presentation.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However they are subject to change. 

Career prospects

Many of our graduates continue to study PhDs. Others transfer their skills and knowledge to careers in the pharmaceutical and biotechnology industry, cancer research, medicine, scientific administration within research councils and scientific publishing.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
What is the Master of Chemistry all about?. The overall aim of the Master of Chemistry programme is to train students to . Read more

What is the Master of Chemistry all about?

The overall aim of the Master of Chemistry programme is to train students to conduct research in an academic or industrial setting.

Students apply the knowledge and skills they have acquired by identifying a research question, situating it in its proper chemical and social context and designing a study that addresses this research question.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The full programme comprises 120 ECTS (European Credit Transfer System), including 18 ECTS for compulsory courses and 54 ECTS for electives. In addition, students develop advanced practical skills in an internship at KU Leuven to the value of 18 ECTS, while the remaining 30 ECTS are allocated to the Master’s thesis.

There are five majors to choose from:

  • Quantum Chemistry and Physical Chemistry.
  • Molecular Design and Synthesis.
  • Molecular Imaging and Photonics.
  • Polymer Chemistry and Materials.
  • Biochemistry, Molecular and Structural Biology

Department

The Department of Chemistry consists of five divisions, all of which conduct high quality research embedded in well-established collaborations with other universities, research institutes and companies around the world. Its academic staff is committed to excellence in teaching and research. Although the department's primary goal is to obtain insight into the composition, structure and properties of chemical compounds and the design, synthesis and development of new (bio)molecular materials, this knowledge often leads to applications with important economic or societal benefits.

The department aims to develop and maintain leading, internationally renowned research programmes dedicated to solving fundamental and applied problems in the fields of:

  • the design, synthesis and characterisation of new compounds (organic-inorganic, polymers).
  • the simulation of the properties and reactivity of (bio)molecules, polymers and clusters by quantum chemical and molecular modelling methods.
  • the determination of the chemical and physical properties of (bio)molecules, and polymers on the molecular as well as on the material level by spectroscopy, microscopy and other characterisation tools as related to their structure.

Objectives

Knowledge and understanding

  • has extensive knowledge and understanding of a number of chemical fields of expertise and at least one advanced or specialized chemical topic;
  • can acquire autonomously chemical insights and methods;
  • has advanced theoretical and practical knowledge of methods of specialised chemical synthesis and characterisation.

Research

  • knows to organize and carry out original chemical research;
  • can delineate a research topic, postulate a research question and revise this question in the course of the research;
  • can select and apply autonomously proper experimental and theoretical methods;
  • can find, use and interpret with intent specialized literature.

Acquire, use and form an opinion about information

  • has insight in the strategies of acquiring and using knowledge that are central to the domain of the exact sciences;
  • can acquire, adapt, interpret and evaluate quantitatively information and data;
  • can adapt and interpret research results in a multidisciplinary context, position it in the international context and report about this;
  • can apply his knowledge, understanding and problem solving capacities in a broader context;
  • can critically evaluate complex problems in the field of chemistry and formulate scientifically sound solutions.

Communication and social skills

  • can express verbally and in written form the results of research for a group of people of experts and laymen;
  • can take a scientific viewpoint and defend it for a public of fellow students, lecturers and specialist;
  • can function in a heterogeneous environments and teams;
  • has English communication skills;
  • can be in the lead and run a team;
  • can work autonomously.

Motivation and attitudes

  • is open to complementary input from other disciplines;
  • can take responsibility for and give direction to his personal professional development;
  • has professional behavior;
  • can autonomously function and contribute to research.

Employment

  • has competency that gives access to the PhD study and to employment in chemical and various other fields.

Career perspectives

The Master of Science in Chemistry offers a wide range of specialisations and, as such, many career options are available to our graduates. More than half of our alumni work in industry, while others work in academia or other research institutes.

Within industry, graduates can opt for a technical, a commercial, or research-oriented career. Since the chemical industry is also a major industrial sector throughout Europe and the rest of the world, employment opportunities are enhanced by obtaining a PhD. A few examples of professional domains where chemists are needed include industry (chemistry, petrochemistry, medical sector, pharmaceutical industry, agrochemistry, food industry etc.), government or public administration, and research institutes.



Read less
This multidisciplinary course covers the fundamentals of modern imaging methodologies, including their techniques and application, along with the chemistry behind imaging agents and biomarkers. Read more

This multidisciplinary course covers the fundamentals of modern imaging methodologies, including their techniques and application, along with the chemistry behind imaging agents and biomarkers.

Bioimaging sciences have played a vital role in improving human life. A wide range of imaging techniques, such as magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound and optical imaging, are now important tools for the early detection of disease, understanding basic molecular aspects of living organisms and the evaluation of medical treatment.

This one-year MRes course covers the fundamentals of modern imaging methodologies, including their techniques and application within medicine and the pharmaceutical industry, along with the chemistry behind imaging agents and biomarkers.

Imperial's research strength in imaging sciences is recognised both nationally and internationally, as exemplified by the creation of the Imaging Sciences Centre (ISC).

The course will progress interdisciplinary development in imaging sciences and create a multidisciplinary team involving chemists, immunologists, radiologists, image scientists, physicists, biomedical scientists and computer scientists.

Careers

Our MRes in Bioimaging Sciences places graduates in an excellent position to begin a PhD or pursue an industrial career in imaging science.

You will have developed the ability to carry out research within multidisciplinary teams, and possess knowledge of basic and advanced concepts in bioimaging sciences.

The course aims to produce highly trained and motivated scientists who will be ideal candidates for research (industrial and academic) positions within imaging science.

With the current world-wide lack of well-trained imaging scientists we are confident that MRes in Bioimaging Sciences graduates will have exceptional career prospects.

Further information

For full information on this course, including how to apply, see: http://www.imperial.ac.uk/study/pg/chemistry/bioimaging-sciences/

If you have any enquiries you can contact our team at:



Read less
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. Read more
This flexible and student-centred choice of routes was re-validated and accredited in 2013 by the Society and College of Radiographers. It gives healthcare professionals currently involved in Nuclear Medicine practice the opportunity to develop and enhance their skills and understanding of this rapidly evolving subject and its application.

Key benefits

This course is accredited by the Society and College of Radiographers (SCoR).

Course detail

The MSc Nuclear Medicine course provides the educational and research foundations required to evaluate current working practice and understand the opportunities currently available in nuclear medicine and molecular imaging environments. As a result, peer learning is a big part of this course's value to individuals and employers. In addition to developing skills directly linked to clinical practice, you will also have the opportunity to contribute to the nuclear medicine knowledge base through research and publication.

This course is designed in conjunction with a number of clinical experts, and our partnership with clinical software provider Hermes Medical Solutions. This means it produces competent and professional practitioners with the skills needed to optimise and promote this imaging modality in current models of patient care.

Year 1 Postgraduate Certificate

• Fundamental Clinical Skills in Nuclear Medicine
• Science and Instrumentation in Current Nuclear Medicine Practice
• Cross-sectional Anatomy for the Nuclear Medicine Practitioner

Year 2 Postgraduate Diploma

• Enhancing Nuclear Medicine Practice
• Current Applications of Hybrid Imaging Practice
• Evidencing Work Based Learning

Year 3 MSc

• Health and Social Care Research: Methods and Methodology
• Research Dissertation

Format

The course is mostly distance-based, with only three contact days per year. This approach is highly popular for employers and employees in nuclear medicine, and is supported by a range of clinical experts alongside the UWE academic team. It's designed to give you the knowledge and skills needed to practice in a safe and competent manner, and a comprehensive education and research base to evaluate and inform current and future practice. There are many opportunities for inter-professional collaboration and shared learning, and you'll learn in practical settings how nuclear medicine contributes to patient management.

Assessment

Assessment methods include written assignments, case studies, online interactions and clinical portfolios.

Careers / Further study

You must be currently practicing nuclear medicine the routes available on this course are designed to help you complement existing skills and knowledge with a view to career progression.

Our links with software providers, and nuclear medicine practitioners and employers, are excellent, and this course is designed to benefit you and your employer by enhancing your ability to contribute to current thinking and practice.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
In a fast-moving society, the professional image-maker has a powerful role in the way science is communicated to the world. The professional imager is vital to modern research, science communication, commerce and industry. Read more
In a fast-moving society, the professional image-maker has a powerful role in the way science is communicated to the world. The professional imager is vital to modern research, science communication, commerce and industry. The MSc Biological Photography and Imaging is ideal for students wishing to pursue a career in professional imaging. The study programme incorporates the areas of biological research, imaging (both industrial and media production) and communication. Developing your imaging skills during the course will allow you to integrate scientific and technical aspects with commercial applications. Graduates of our course have gone on to further study in molecular biology and biophysics, or pursued various careers such as medical imaging or wildlife filmmaking.

You are expected to have a high quality undergraduate degree in the biological or related sciences. Applicants with degrees in other disciplines may be accepted at the discretion of the Course Director. Applicants with professional experience at a level equivalent to that of a first degree will also be considered.

Applicants to this programme are expected to have their own digital SLR camera. Systems normally used on this course are Nikon or Canon; if you wish to operate a different system, you need to discuss this with the Course Director.

Key facts

Throughout the course you will have access to technical advice from a dedicated team of staff, high-spec computer equipment, photography studios and photographic stereo and compound microscopes. We also maintain a museum of biological specimens for you to use in assignments.
Teaching on our biology courses was rated as excellent (23/24) in the most recent Teaching Quality Assessment Exercise.
You will take part in a range of field trips in order to develop every aspect of your photography skills. Experts, such as professional wildlife photographers, are closely involved with these trips.
You will receive tuition in the leading industry-standard web design and animation software and will have the opportunity to set up an online portfolio of your work.
This course includes a business component, enabling you to present your skills to the competitive marketplace.

Read less
This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. Read more

This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. The wide knowledge of the techniques is based on a solid practical activity in laboratories during the internship.

Subject to the educational aims of Class LM-9, the acquired knowledge allows specialized graduates to assist physicians in the diagnostic and therapeutic tasks involving the manipulation of cells, genes, and other biosystems requiring applicants to learn special skills in experimental biotechnology (e.g. Diagnosis and gene therapy; therapy through the use of genetically engineered cells; rational design and development of new medicines based on models of molecular targets known or derived from pharmacogenomic knowledge; preparation of nano-biotechnological tools for advanced diagnostics imaging and drug delivery; modulation of the immune response; diagnostics based on innovative processes of science and medical laboratory techniques; immunotherapy to targeted cells); organize and coordinate laboratory activities for advanced research or for diagnostic examinations requiring the use of biotechnological methods and the manipulation of cells or biotechnological materials; organize and coordinate the experimental protocols of clinical research involving the use of materials or biotechnology techniques; design and perform with autonomy research in biotechnology applied to medicine; lead and coordinate, also in governance, development programs and surveillance of biotechnology applied to human beings, taking into account the ethical, technical, environmental and economic implications.

Course structure

First year: Advanced Biomedical Technologies Or Laboratory Activities 1: Cellular And Molecular Therapies Or Laboratory Activities 2: Molecular And Systems Biology, Laboratory Medicine Technologies And Molecular Diagnostics, Pharmaceutical Biotechnology: Design And Analysis Of Biopharmaceuticals, Seminar

Molecular Medicine Curriculum: 6 Months At Ulm University: Glp/Gsp Bioethics, Molecular Oncology, Trauma Research And Regenerative Medicine

Traditional Curriculum: Proteomics And Bioinformatics, Cell And Organ Physiology And Medical Pathophysiology, Genetics, Immunology And General Pathology, Nanobiotechnology

Second year: Experimental Models In Vivo And Vitro, Pharmacology And Molecular Therapies, Stem Cell Biology And Molecular Biology Of Development, Thesis Work

Molecular Medicine Curriculum + Proteomics And Bioinformatics

Career opportunities

Biotechnology physicians will be able to head research laboratories in a predominantly technological and pharmacological environment and coordinate, as well as in terms of management and administration, program development and the monitoring of biotechnology applied on human beings with emphasis on the development of pharmaceutical products and vaccines, taking into account the ethical, technical, and legal implications and environmental protection.

  • To work in industry (pharma, biotech companies) for new diagnostics, molecular therapeutics, regenerative medicine and vaccines
  • To work in academia as a researcher in one of the many fields of Molecular Medicine
  • To be an entrepreneur in Biotech start up companies as a result of scientific discoveries

Graduates will be able to assist doctors in the diagnostic and in the therapeutic phases when those imply the manipulation of cells, genes and other bio systems and when specific biotechnological experimental competences are required.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Research profile. The MRC Human Genetics Unit discovers how changes in our DNA impact our lives. We combine the latest computational and experimental technologies to investigate how our genomes work to control the function of molecules, cells and tissues in people and populations. Read more

Research profile

The MRC Human Genetics Unit discovers how changes in our DNA impact our lives.

We combine the latest computational and experimental technologies to investigate how our genomes work to control the function of molecules, cells and tissues in people and populations. For more than half a century our research has been dedicated to understanding human genetic disease.

Today we continue to apply our clinical and scientific expertise, harnessing the power of complex data, to improve health, and the lives of patients and their families. As well as delivering outstanding research, the institute creates a vibrant scientific community and a friendly research environment rich in both scientific and social opportunities.

Our PhD and MSc programmes harness strengths in different research disciplines (genetics, molecular biology, biochemistry and cell biology) tied to our scientific themes (disease mechanisms, biomedical genomics and genome regulation). Our programmes also provides a strong focus on computational biology, and state of the art imaging as part of the Edinburgh Super-Resolution Imaging Consortium. Over 30 principal investigators based in the MRC HGU contribute to these cross-disciplinary programmes spanning fundamental to clinical research.

The MRC Human Genetics unit offers 3 and 4 year PhD projects, please visit our programme website for current opportunities, and further details.

Entry requirements are described below and different PhD projects have different funding restrictions. To apply for any of our PhD programmes please select one of the buttons and dates to the right (For 4 year programmes, please select “3-year”).



Read less
Course description. Our MRes Infection Biology programme will equip you with the knowledge and skills required to join the global fight against infectious diseases which threaten humanity. Read more

Course description

Our MRes Infection Biology programme will equip you with the knowledge and skills required to join the global fight against infectious diseases which threaten humanity.

Infectious disease remains a major cause of human death but the efficacy of antimicrobial interventions continues to decline. The discovery of novel preventative and therapeutic interventions now critically dependent upon a detailed mechanistic understanding of disease processes, their impact upon human pathobiology and the feasibility of therapeutically targeting such mechanisms.

With a view to training a generation of infection biologists equipped with the skills to tackle this global challenge, the MRes in Infection Biology provides outstanding academic and research training in the molecular and cellular basis of host-microbe interactions in health and disease.

You will learn directly from internationally recognised scientists through joint research, thereby securing a sustained interaction with expert mentors for the duration of the course.

The course provides research training in fundamental aspects of infectious diseases, microbial pathogenesis, host interactions, antimicrobial immunity, and antimicrobial therapy. For the talented student this course provides an excellent training prior to registration for a PhD.

This course will equip you with:

  • a detailed theoretical and practical understanding of molecular microbiology and antimicrobial immunology;
  • a thorough understanding of methods for analysing the biological functions and physiological relevance of microbial virulence factors and host responses to pathogenic challenge; 
  • a working knowledge of mechanistic approaches to problem-solving in molecular and cellular biomedical science;
  • an understanding of a wide repertoire of cutting edge scientific methods including flow cytometry, single cell technologies, imaging and proteomics;
  • transferable skills in critical reasoning and reflection, collaborative team working, scientific communication, use of IT/health informatics, innovation in the application of knowledge to practice and logical/systematic approaches to solving problems and making decisions.

Aims

This course aims to:

  • equip you with a detailed theoretical and practical understanding of molecular microbiology and immunology, delivered in-context during laboratory-based research and self-directed research of the literature;
  • enable you to integrate molecular and cellular information to understand the genetic basis of microbial virulence, host responses to pathogen challenge, and complexity of infectious disease, diagnostics, and antimicrobial therapies;
  • give you an understanding of the principles of modelling of host and microbial aspects of infection to help characterise the host-pathogen interaction;
  • equip you with an understanding of methods for analysing the biological functions and physiological relevance of microbial virulence factors and host responses to pathogenic challenge;
  • provide you with a working knowledge of mechanistic approaches to problem-solving in molecular and cellular biomedical science;
  • ensure you have a working understanding of the application of a wide repertoire of advanced scientific methods at the cutting edge of scientific research, including flow cytometry, single cell technologies, imaging and proteomics;
  • give you transferable skills in critical reasoning and reflection, collaborative team working, communication, use of IT/health informatics, innovation in the application of knowledge to practice and logical/systematic approaches to solving problems and making decisions.


Special features

  • In regular technology workshops you will learn, from the skilled experimental officers and technicians who support these key technologies, how to harness modern research technologies including single cell methodologies, live cell imaging, CRISPR, flow cytometry, proteomics, and next generation sequencing technologies to address cutting edge questions in infectious diseases research.
  • You will learn from clinician scientists and global leaders in infectious diseases research by attending our fortnightly seminars in infection.
  • In our grant writing exercise you will learn how to budget for, and become competitive in, securing funding for scientific research programmes.
  • You will benefit from studying amongst a small, talented and motivated peer group, selected at interview for their competitive potential.


Read less
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. Read more
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. The course will take the mechanistic understanding of cancer biology and apply it to the analysis of risk, prevention, diagnosis, prognosis and therapy. Building on a foundation of the understanding of basic cancer cell biology, translational coverage will consider design of treatment modalities, mechanisms of action of anti-cancer drugs, therapy resistance and biomarker discovery. The course will allow the students to gain expertise and knowledge in therapy, cancer chemoprevention, anti-cancer target discovery, clinical trials, imaging, cancer risk and epidemiology and biostatistics. A key component of the course is a five/six-month research project, which will give students an opportunity to study one of these areas in depth.

Read less

Show 10 15 30 per page



Cookie Policy    X