• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
King’s College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Cranfield University Featured Masters Courses
Cass Business School Featured Masters Courses
Aberdeen University Featured Masters Courses
"molecular" AND "cancer"×
0 miles

Masters Degrees (Molecular Cancer)

We have 197 Masters Degrees (Molecular Cancer)

  • "molecular" AND "cancer" ×
  • clear all
Showing 1 to 15 of 197
Order by 
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Read more
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Our programme takes a “bench to bedside” approach, enabling graduates to work within a multidisciplinary environment of world-leading scientists and cancer-specialists to address the latest challenges in cancer research.

Why this programme

-University of Glasgow is rated in the UK top five and best in Scotland for Cancer Studies. You will be taught by a multidisciplinary team of world leading cancer scientists and clinicians within the Cancer Research UK Glasgow Centre.
-This MSc in Cancer Science programme is unique in the UK as it delivers integrated teaching in molecular biology, pathology and clinical service.
-The Cancer Research UK Glasgow Centre brings together scientists and clinicians from research centres, universities and hospitals around Glasgow to deliver the very best in cancer research, drug discovery and patient care. The Centre’s world leading teams have made major advances in the understanding and treatment of many cancers. For more information, please visit: http://www.wecancentre.org/
-In the first semester, each week is focused around one of the new Hallmarks of Cancer, with the focus on the molecular/cellular biology of this hallmark. A tutorial session will enable you to discuss and integrate your learning from the week. This will enable you to understand how research into the fundamental principles of cancer cell biology can translate to advances in cancer treatment.
-The aim of this MSc in Cancer Science is to train cancer researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside. By understanding the science, methodology and terminology used by scientists and clinicians from different disciplines, you will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to cancer research.

Programme structure

Semester 1: Hallmarks of Cancer

This 13 week core course aims to:
 provide you with a critical understanding of the molecular and cellular events that drive cancer development and progression
 demonstrate how an understanding of these events underpins current and future approaches to cancer diagnosis and treatment
 integrate the teaching of molecular biology, cell biology, diagnosis and treatment of cancer
 describe how all these disciplines communicate and work together in the fight against cancer
 provide you with theoretical training in fundamental molecular and cell biology techniques used in cancer research
One week of practical training is provided at the start of the course. This course is assessed through a lab notebook, group assessment, critical essay and an exam that focuses on data analysis and interpretation.

Semester 2

In the second semester, you can choose from a range of 3 week optional courses, before taking the core course “Designing a Research Project”.
• Drug Discovery
• Drug Development and Clinical trials
• Viruses and Cancer
• Diagnostic technologies and devices
• Technology transfer and commercialisation of bioscience research
• Current trends and challenges in biomedical research and health
or
• Frontiers in Cancer Sciences – 5 week optional course
• Omic technologies for the biomedical sciences: from genomics to metabolomics - – 5 week optional course
or
• Designing a research project: biomedical research methodology - 6 week optional course

Semester 3

Bioscience Research Project

In this 14 week core course you will:
 have an opportunity to perform a piece of original research to investigate a hypothesis or research questions within the area of cancer research. The project may be “wet” or “dry”, depending what projects are available
 develop practical and/or technical skills, analyse data critically and draw conclusions, and suggest avenues for future research to expand your research findings
Note: students must have a minimum of grade C in semesters 1 and 2 in order to proceed to the research project.

[[Career prospects ]]
The knowledge and transferable skills developed in this programme will be suitable for those contemplating a PhD or further medical studies; those wishing to work in the health services sector; and those interested in working in the life sciences, biotechnology or pharmaceutical industries, including contract research organisations (CROs). This programme is designed for students with undergraduate degrees in the life sciences, scientists working in the pharmaceutical and biotechnology industries, and clinicians and other healthcare professionals.

Read less
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. Read more
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. With a vision of creating the next generation of leaders in Molecular Pathology, this programme will provide the state of the art training programme for Molecular Pathology, in order to facilitate the pathologists, clinical scientists, trainees, and to those in the related health professions, to acquire essential knowledge, skills and attributes in the current and future diagnosis that incorporates molecular knowledge.

Why this programme

● In August 2014, MRC published a review of the UK Molecular Pathology Landscape, in which the critical needs and challenges are pin downed in the delivery of improved diagnostics incorporating the molecular approaches.

● With a vision of creating the next generation of leaders, this programme provides state of the art training for Molecular Pathology

● We are one of the few centres where molecular pathology and diagnostic histopathology are amalgamated on one site, permitting the delivery of a clinically relevant molecular pathology course.

● The areas of main focus include diagnostic molecular pathology, clinical trials and translational research in molecular pathology, pathology bioinformatics and digital pathology. The core courses (PgCert) are designed to cover the intended learning outcomes within Royal College of Pathologists curriculum for Specialty Training in Histopathology 2015.

● The programme is led by the national leaders directly engaged in the various molecular pathology initiatives. Students are kept up-to-date with information and the current needs identified by the professional societies, research councils and charity organizations.

● You will be trained at the purpose-built Laboratory Medicine Building at the Queen Elizabeth University Hospital, which provides services to 52% of the Scottish population. This is one of the largest NHS department of pathology in Europe, accommodating about 50 consultant pathologists.

● The courses will be delivered by a range of professionals with expertise from geneticists, pathologists, clinical, lab scientists and academics, informaticians and clinicians provided across hospital practice and primary care. They are experts based in QEUH and those nationally and internationally recognized experts of molecular pathology.

Programme structure

The main aims of the MSc Molecular Pathology programme are to enable students:

• to fully provide a high quality service in molecular pathology diagnosis
• to participate in research in the area of molecular pathology
• to participate in the training of future generations of molecular pathologists

The "Blended Learning" programme offers the maximum flexibility for students who wish to study Molecular Pathology while on clinical duties and pathology training. "Moodle-Based Learning" sessions offer an advantage allowing clinicians to study within their own schedule. "In person review" sessions will enable active interactions with the course contributors and other students. Case-based and "hands-on" sessions facilitate the knowledge and skills acquired in clinical diagnosis as the programme proceeds, so it is easy to keep motivated throughout the course.

Core Courses

– 3 x compulsory, 20-credit courses; 1 per semester

• Fundamentals of Molecular Biology and Genetics for Histopathology (20 credits)
• Molecular Tests and Techniques for Histopathology (20 credits)
• Multidisciplinary Approaches to Molecular Pathology (20 credits)

The first three core components will provide the minimum requirement for students to apply molecular knowledge and skill in pathology diagnosis currently on-going and in the immediate future.

These courses will form the PgCert.

Advanced Courses

- Courses must be selected from the following options to obtain a total of 60 credits.

• Translational Medical Research Approaches (10 credits)
• Medical and Research Ethics (10 credits)
• Molecular Pathology (20 credits)
• Omics technologies for biomedical sciences: from genomics and metabolomics (20 credits)
• Frontiers in Cancer Science (20 credits)
• Disease Screening in Populations (10 credits)
• Governance and ethics in education research (10 credits)

In the advanced component, students will further their training of Molecular Pathology to acquire the knowledge needed to get involved in research, or development and improvement of diagnostics. There are options for learning of advanced technologies, wider disease areas, research methods, in-depth bioinformatics, and health professional education.

Successful completion of core and advanced courses will be awarded with the PgDip.‌

Dissertation

- 1 x 60-credit project-based course assessed by a dissertation of approximately 8,000 words followed by an oral presentation.

The Masters dissertation project gives students the opportunity to conduct research in an area of Molecular Pathology with supervisor(s) assigned to each project. For example, the opportunity to conduct an independent research project, audit or critical review of the literature in selected topics in the area of Molecular Pathology, current and future diagnosis, clinical and scientific research.

Successful completion of all core and advanced courses and the dissertation will lead to the award of the MSc.

Read less
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research. Read more
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research.

You will learn how research in this area has advanced the treatment and diagnoses of cancer, and gain knowledge of how new therapies are developed, evaluated and implemented.

You will gain a thorough knowledge of research methodologies and laboratory techniques, which you will fully utilise in the laboratory research project stage. The valuable research experience you will gain from working with leading cancer experts, will give you a solid foundation upon which a future career in scientific research can be built.

Compulsory Modules

• Biological Therapies
• Cancer Biology
• Cancer Pharmacology
• Drug Development
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Pathology of Cancer
• Research Lab Skills
• Research Methods

Elective Modules

• Cancer Prevention & Screening
• Paediatric & Adolescent Oncology

Core Module for MSc

• Lab project


Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease. Read more
This programme aims to respond to a national and international need for clinicians, scientists and allied health professions who can apply a molecular approach to the investigation, diagnosis and management of clinical disease.

We will provide you with theoretical and practical knowledge of modern molecular technologies as applied to human disease, with an emphasis on cancer, and train you in the application and interpretation of advanced molecular technologies.

Compulsory Modules

• Basic Pathology
• Cancer Biology
• Cancer Prevention & Screening
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Molecular Pathology of Solid Tumours
• Research Lab Skills
• Research Methods

Elective Modules

• Introduction to Bioinformatics
• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancers

Core Modules for MSc

• Lab project



Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
The MSc course in Molecular Medicine and Cancer Research aims to provide specialist theoretical and practical knowledge in molecular and cellular genetics relevant for human diseases in the context of the scientific and clinical problem of human cancer. Read more

About the course

The MSc course in Molecular Medicine and Cancer Research aims to provide specialist theoretical and practical knowledge in molecular and cellular genetics relevant for human diseases in the context of the scientific and clinical problem of human cancer.

It focuses on the development of research skills in medical genetics and human diseases, and is designed to enable you to develop the ability to become an independent and creative scientist, able to form useful working hypotheses and to analyse data appropriately.

Taught modules will focus on how a greater understanding of these processes has created new avenues and targets for the therapeutic intervention in various forms of cancer.

Aims

Cancer is a complex and multi-factorial disease. For the development of any novel and specific therapeutic strategy, it is important to understand the complexity of pathogenesis and genetics that can lead to cancer. This course addresses various molecular and cellular aspects relevant for cancer research.

Course Content

The course is offered on a one-year full-time basis, taught over three terms, or on a two-year part-time basis, taught over six terms.

You will complete six modules in total. Four modules will each be taught over a two-week period in a ‘block’ mode. These taught modules will not run concurrently allowing you to focus on one module at a time and will help promote better time management skills. All lecture material will be available via Vista and will be accessible from your home computer.

You will take a Research Planning module to develop skills required for your dissertation. You will then study a unique Research
Dissertation module over a 9 month (full-time) or 18 month (part-time) period, to allow you to conduct a detailed investigation into a research question of your choice.

If in full-time employment, and attending the course on part-time mode, it may be possible to conduct the research dissertation at the workplace.

Typical Modules (all compulsory)

Research Planning
Cytogenetics and Cancer
Genomic Technologies and Cancer Research
The Biology, Genetics and Treatment of Human Cancer
Intracellular Signalling and Cancer
Research Dissertation

For more information regarding the course content and structure please vist the website

http://www.brunel.ac.uk/study/postgraduate/Molecular-Medicine-and-Cancer-Research-MSc

Assessment

The course is structured around a programme of lectures, seminars, practical classes, directed reading and coursework. You will be assessed by written examination and coursework, laboratory reports, oral and poster presentation and dissertation thesis writing.

A master’s degree is awarded if you reach the necessary standard on the taught part of the course and submit a dissertation of the required standard. The pass grade for all modules and the dissertation is 50%.

A master’s degree requires 180 credits, of which 75 are accounted for by the dissertation. A Graduate or Postgraduate Certificate can be awarded if between 60 and 105 credits are gained in the taught part of the course. The name of the certificate will be determined by the actual grades achieved.

Special Features

Through an enthusiastic, innovative and research-driven approach, our teaching will reflect the fast changing nature of the biomedical research (with specific emphasis to human genome, molecular medicine and cancer research).

Brunel University London is research led and students attending either course will have the opportunity to conduct a 9-month research dissertation as a part of the MSc course.

Students will be given a choice of research topics and will be normally associated with one of the research centres within Biosciences.

Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

Degree information

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules
-Basic Biology and Cancer Genetics
-Cancer Therapeutics

Specialist modules
-Behavioural Science and Cancer
-Biomarkers in Cancer
-Cancer Clinical Trials
-Haematological Malignancies and Gene Therapy

Dissertation/report
All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning
Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Top career destinations for this degree:
-Research Technician, NHS Imperial College Healthcare NHS Trust
-Cancer and Genetics, ETH Zurich
-PhD Cancer Research, University of New South Wales (UNSW)
-Clincial Trial Project Manager, Beijing Lawke Health Laboratory Inc.
-Research Scientist, SporeGen

Employability
Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Read less
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine. Read more
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine.

This course aims to give participants an indepth understanding of the emerging field of molecular medicine which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that of molecular interactions.

The course aims to provide students with an understanding of the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course will ensure that students from all disciplines have the skills necessary to conduct research and critically evaluate the scientific and medical literature.

The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Modules on molecular signalling and therapeutics, bioinformatics and ethical-legal aspects of the discipline are included, as well as literature reviews, laboratory practicals and a laboratory project.

The course is available in a one-year, full-time and a two-year, part-time format. It consists of lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and more specifically to disease processes such as cancer, immune dysfunction, and diseases with an inherited component. The course content includes molecular signalling and therapeutics, molecular and population genetics, nanoscience, and high content cell analysis. There is a core, 'Research Skills' module which encompasses bioinformatics and ethical-legal aspects of the emerging discipline, literature reviews, and laboratory practicals in basic molecular and cellular techniques. Candidates will complete a laboratory project of three months (full-time) or six months (part-time) duration. Candidates must also complete the taught module, Molecular Mechanisms of Human Disease I. This course provides the applicant with state-of-the-art information and critical analysis of: The human genome at a molecular level, the integration of molecular and cellular biology in relation to human diseases; the molecular basis of human genetic disease; the molecular interactions between microbiological pathogens and the human host; the technology currently employed in researching molecular medicine; the molecular basis of common human inflammatory diseases and malignancies; the utilisation of knowledge on the molecular basis of human disease in planning and design of novel therapies, using pharmacological agents or gene therapy; the ethical and legal aspects of molecular medicine as it impinges on clinical practice. You will also gain a working appreciation of molecular and cellular biology at the practical level and development of the ability to perform independent research with the ability to apply bioinformatic and computational techniques in medical and biological research, and information retrieval. The student is examined on the basis of a submitted critical literature review essay, a written examination, assessment of laboratory practicals and the writing of a dissertation based on a research project. Candidates from health science (medical, dental, veterinary), biological science and other science disciplines (e.g. chemical or pharmacy), are invited to apply.

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Access advanced technology and approaches being used in cancer biology

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will perform novel laboratory-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings.

The course comprises both theoretical and practical elements, embracing cutting-edge developments in the field. You will experience some of the most technologically advanced approaches currently being applied to the broad field of cancer research.

As the taught component of the MRes is short, you will be expected to have sufficient lab experience in order to be able you to hit the ground running when you enter the lab.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work then we would welcome an application from you!

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing.

This is followed by two separate research placements of roughly 20 weeks each within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Research training at the computational/clinical translational science interface

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will engage with both theoretical and practical elements. The theoretical elements will include why particular methods are used, assumptions they are based on and understanding the technical limitations and quality control of different data types. The practical elements will include data handling and the computational method employed for each data type.

When you enter your projects, you will perform novel bioinformatics-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings. The research projects may also include a smaller component of wet-lab experiments to provide some validation of the findings from the bioinformatics research.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work, then we would welcome an application from you.

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing. This is shared with the Cancer Biology stream.

While the Cancer Biology stream move into their first project, you will receive three weeks of specialist training in informatics which is comprised of lectures and workshops. You will then complete an initial assignment before beginning your first research placement of roughly 16 weeks, and then a second project of roughly 20 weeks. These will be within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI837 - The Molecular and Cellular Basis of Cancer (15 credits)
BI838 - Genomic Stability and Cancer (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI857 - Cancer Research in Focus (15 credits)
BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/226

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer.

This will be underpinned by a thorough knowledge of cancer biology and pathology and research methodologies.

This knowledge will provide an excellent grounding in the development, use and evaluation of cancer therapies, which will enhance career prospects in many areas of early phase clinical trials and clinical drug development in the cancer setting.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Molecular Diagnostic & Therapeutics
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Genomic Approaches to Human Diseases
• Paediatric & Adolescent Oncology
• Pathology of Cancer

Core Module for MSc

• Dissertation.

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine. Read more
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine.

This MSc is an exciting, innovative blended learning programme aimed to enhance the participant’s theoretical knowledge and practical skills in MP and to empower them to pursue a career in academia, healthcare or industry. The course has a strong focus on innovation and entrepreneurship; emphasising MP’s central role in molecular diagnostics, clinical trials and biotech/biopharma.

This Masters programme has been developed with a number of options in order to provide maximum flexibility of training. Candidates can take the Certificate/Diploma/MSc in Molecular Pathology of Cancer which will provide a solid foundation for those wishing to study MP at PhD level. The full-time MSc is also available as an intercalated degree for Medical and Dental students. Additionally, the three modules which are offered by Distance Learning are available as a ‘stand-alone’ Certificate in Pathology Informatics and Business Application.



Semester 1

All candidates will undertake traditional ‘face to face’ teaching for the three modules in Semester 1. This will be timetabled teaching. Some of the teaching sessions within the modules also form aspects of formal teaching for other PG programmes, providing the students with the opportunity to interact with other Masters students from different disciplines, which we feel enhances the student experience. Collectively, the modules would be sufficient for a Certificate in Molecular Pathology

(1) Cancer Biology, Immunology and Genomics (15 CATs)

(2) Molecular Pathology – Diagnostics and Technologies (25 CATs)

(3) Translational Research (20 CATs)



Semester 2

Candidates will complete three modules which will be available ‘online’ as distance learning modules. Successful completion of Semester 1 modules plus Semester 2 modules without the research dissertation would be sufficient for a Diploma in Molecular Pathology. Collectively, the modules in Semester 2 without the Semester 1 modules would be sufficient for a Certificate in Pathology Informatics and Business Application.

(1) Digital Molecular Pathology (20 CATs)

(2) Biostatistics and Bioinformatics (20 CATs)

(3) Academia/Industry Interface (20 CATs)



Research component

Students will be able to plan their research project and work on their literature review during semester 1; beginning the practical work for their research project in Semester 2. Research projects will be available across a variety of subjects. Potential project areas for the MSc will include – Molecular Neuropathology; Cancer Immunology; Liquid Biopsies; Digital Pathology; Biobanking; Molecular Diagnostics; Bioinformatics. A number of projects will be put forward from the network of CRUK Accelerator Partners for those students with CRUK Accelerator bursaries who may wish to undertake their research as a placement at one of the partner sites.

Read less

Show 10 15 30 per page



Cookie Policy    X