• Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
King’s College London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"molecular" AND "bio"×
0 miles

Masters Degrees (Molecular Bio)

We have 83 Masters Degrees (Molecular Bio)

  • "molecular" AND "bio" ×
  • clear all
Showing 1 to 15 of 83
Order by 
Chemistry. Molecular Chemistry. Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.

- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.

- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area

In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.

- Organic chemistry: e.g. Organic Chemistry (Bruice)

- Biochemistry: e.g. Biochemistry (Lehninger)

- Physical chemistry: e.g. Physical chemistry (Atkins)

- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English

In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:

- A TOEFL score of >575 (paper based) or >90 (internet based)

- An IELTS score of ≥6.5

- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:

- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Radboud University Master's Open Day 10 March 2018



Read less
The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular… Read more

The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular and biomedical imaging, from molecules and cells to entire animals and humans. It is part of the “Health Engineering” program, which combines three academic tracks (Biomedical Imaging, Cellular Bio-Imaging and Bio-Material & Medical Devices).

Built on the research expertise of the researchers at the University of Bordeaux, this Master program provides excellent training opportunities in advanced bio-imaging methods and concepts to understand (patho)-physiological processes through the vertical integration of molecular, cellular and systems approaches and analyses.

Students receive intense and coordinated training in bio-imaging, combining a mix of theoretical and practical aspects. They acquire scientific and technological knowledge and experience in the main imaging techniques used in biomedical research and practice.

Program structure

Semesters 1 and 2 focus on the acquisition of general knowledge in the field (courses and laboratory training). Semester 3 consists of track specialization in cellular bio-imaging, biomedical imaging and bio-materials & medical devices. Semester 4 proposes an internship within an academic laboratory or with an industrial partner.

Semester 1:

  • Tutored project (6 ECTS)
  • Introduction to bio-imaging (6 ECTS)
  • Mathematical and physical basis of imaging (6 ECTS)
  • General physiology (6 ECTS)
  • Mathematical methods for scientists and engineers (6 ECTS)

Semester 2:

  • TOEIC training and business knowledge (9 ECTS)
  • Introduction to research and development (12 ECTS)

Cellular Bio-Imaging track

  • Fluorescence spectroscopy and microscopy (9 ECTS)

Biomedical Imaging track

  • Advanced bio-medical imaging (9 ECTS)

Semester 3:

  • Design of a scientific project (9 ECTS)
  • Introduction to image analysis and programming (3 ECTS)

Cellular Bio-Imaging track

  • Super-resolution microscopy (6 ECTS)
  • Electron microscopy (6 ECTS)
  • Advanced topics in cellular bio-imaging (6 ECTS)

Biomedical Imaging track

  • Magnetic resonance imaging (6 ECTS)
  • Ultrasound imaging (3 ECTS)
  • In vivo optical imaging (3 ECTS)
  • Ionizing radiation imaging (3 ECTS)
  • Multimodal imaging (3 ECTS)

Semester 4: 

  • Master 2 Thesis: internship in an academic or industry laboratory (30 ECTS)

Strengths of this Master program

  • Teaching courses from academic and professional experts (industry).
  • Access to leading research labs and advanced core facilities.
  • Practice of a wide range of applications, from molecular andcell biology and neuroscience to biomedical instrumentation, maintenance and service.
  • Supported by the Laboratories of Excellence (LabEx) BRAIN(Bordeaux Cellular Neuroscience) and TRAIL (Translational Research and Biomedical Imaging).
  • English language instruction.
  • Possibility of international secondment.

After this Master program?

Graduates will be qualified in the following domains of expertise:

  • Mastering theoretical concepts and practical knowhow of main bio-imaging techniques.
  • Knowing the application and limits of different bioimaging methods.
  • Identifying and manipulating biological targets with bio-imaging tools.
  • Ability to conceive, design and conduct independent research project in bio-imaging.

Potential career opportunities include: researcher, service engineer, application scientist, bio-medical engineer, sales engineer, healthcare executive.



Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less
LEARNING FROM NATURE. WHERE SCIENCE MEETS SUSTAINABILITY. Bio inspired design and science are used for innovations that support a transition to a sustainable, circular economy. The Master’s programme. Read more

LEARNING FROM NATURE: WHERE SCIENCE MEETS SUSTAINABILITY

Bio inspired design and science are used for innovations that support a transition to a sustainable, circular economy. The Master’s programme Bio Inspired Innovation (BII) offers a unique blend of knowledge and skill training that will support the search for and development of circular business-models and bio inspired research & innovations.

SCIENTIST AT THE DESIGN TABLE 

Nature evolves solutions for the societal challenges we face today. Many birds and butterfly species for example, like peacocks, use light-interacting structures to produce colours and patterns. With the discovery of this biotechnology, scientists and engineers have been able to produce colour through structure. BII is aimed at students with a Bachelor’s degree in Science who want to innovate services, products and production systems, and are interested in using bio inspired design and science. You can become the biologist at the design table and facilitate innovations that take their lessons from nature. You will become a professional that contributes to the transition to a circular economy with Bio Inspired Innovations.

INNOVATION, RESEARCH AND DESIGN

This Master’s programme builds on the excellent research at the Faculty of Science and links research findings to solve societal and business challenges.

First year

The first year is research based, while the second year focuses on the use of research knowledge in innovation. In the first year you will be part of an advanced research environment linking to your area of expertise (major research project). You learn to set up and execute research and discuss and report its outcomes. Moreover you will start to explore and learn about multi-disciplinary innovation, collaborative business modelling and design. You will attend seminars and workshops, some of which you will organise yourself, that allow you to prepare yourself for the second year.

Second year

In the second year you will get in depth knowledge of Biomimicry and other design and innovation methods through courses and an internship.




Read less
Do you have a Bachelor’s degree in biology, biotechnology, chemistry, biochemistry, bioengineering or biomedical science, and are you still fascinated by… Read more

Do you have a Bachelor’s degree in biology, biotechnology, chemistry, biochemistry, bioengineering or biomedical science, and are you still fascinated by the biochemical unity that underlies the world’s biological diversity? Then the Master in Molecular Biology is the programme you’re looking for! This high-level scientific programme with strong multidisciplinary courses combines a theoretical formation with research-oriented skills. The Master is an interuniversity programme, jointly organised by the Vrije Universiteit Brussel, KULeuven and the University of Antwerp, all located in Belgium. Students can choose between the Profile Biotechnology for Global Health and the Profile Agro- and Plant Biotechnology.

 

Applying Molecular Biology to improve Life

Molecular Biology is a rapidly developing discipline. It stands at the crossroads of chemical, biological, physical and computational sciences and focuses on the understanding of cellular processes, biological molecules and their interactions. Molecular Biology is a multidisciplinary area of study that deals with the structure and function of molecules as well as their interplay in creating the phenomenon of life.

 

After graduation, you will be able to contribute to the improvement of human health or plant production through a molecular biological approach. You will know how to appraise the scientific and social aspects of applied molecular biology.

We train our students so they can cope with a wide range of scientific problems as well as the development of preventive strategies, diagnostic techniques and therapies while being aware of the ethical issues related to this field.

A critical mind will allow you to consider and reflect on existing and new theories within the study field and will help you to solve global problems or issues that both developing and developed countries are facing.

 

Students as scientists

The programme content has been developed by several outstanding and multidisciplinary scientific teams. The advanced courses and electives are taught by leading researchers with a proven scientific track record, thus contributing to the research-oriented nature of the programme.

The two-year Interuniversity Master in Molecular Biology requires full-time attendance and active participation in lectures and discovery-based laboratory work to develop the mentality that drives the progress of science.

During practical training, problem-solving formats are used in which students work together to make observations and to analyze experimental results. Students who learn via problem-solving formats demonstrate better problem-solving ability, conceptual understanding and success in subsequent courses than those who learn in traditional, passive ways.

Career opportunities

Masters of Molecular Biology find employment in universities, hospitals, private and governmental research laboratories, patenting bureaus, as lecturers, consultants, advisors to policy-makers, etc. Many graduates proceed to PhD-programmes in Belgium or abroad.



Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences.

You will have the opportunity to study molecular problems from epigenetics through to food crops. Themes include mechanisms of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-molecular-plant-sciences/

Why study Biology & Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. Read more

This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. The wide knowledge of the techniques is based on a solid practical activity in laboratories during the internship.

Subject to the educational aims of Class LM-9, the acquired knowledge allows specialized graduates to assist physicians in the diagnostic and therapeutic tasks involving the manipulation of cells, genes, and other biosystems requiring applicants to learn special skills in experimental biotechnology (e.g. Diagnosis and gene therapy; therapy through the use of genetically engineered cells; rational design and development of new medicines based on models of molecular targets known or derived from pharmacogenomic knowledge; preparation of nano-biotechnological tools for advanced diagnostics imaging and drug delivery; modulation of the immune response; diagnostics based on innovative processes of science and medical laboratory techniques; immunotherapy to targeted cells); organize and coordinate laboratory activities for advanced research or for diagnostic examinations requiring the use of biotechnological methods and the manipulation of cells or biotechnological materials; organize and coordinate the experimental protocols of clinical research involving the use of materials or biotechnology techniques; design and perform with autonomy research in biotechnology applied to medicine; lead and coordinate, also in governance, development programs and surveillance of biotechnology applied to human beings, taking into account the ethical, technical, environmental and economic implications.

Course structure

First year: Advanced Biomedical Technologies Or Laboratory Activities 1: Cellular And Molecular Therapies Or Laboratory Activities 2: Molecular And Systems Biology, Laboratory Medicine Technologies And Molecular Diagnostics, Pharmaceutical Biotechnology: Design And Analysis Of Biopharmaceuticals, Seminar

Molecular Medicine Curriculum: 6 Months At Ulm University: Glp/Gsp Bioethics, Molecular Oncology, Trauma Research And Regenerative Medicine

Traditional Curriculum: Proteomics And Bioinformatics, Cell And Organ Physiology And Medical Pathophysiology, Genetics, Immunology And General Pathology, Nanobiotechnology

Second year: Experimental Models In Vivo And Vitro, Pharmacology And Molecular Therapies, Stem Cell Biology And Molecular Biology Of Development, Thesis Work

Molecular Medicine Curriculum + Proteomics And Bioinformatics

Career opportunities

Biotechnology physicians will be able to head research laboratories in a predominantly technological and pharmacological environment and coordinate, as well as in terms of management and administration, program development and the monitoring of biotechnology applied on human beings with emphasis on the development of pharmaceutical products and vaccines, taking into account the ethical, technical, and legal implications and environmental protection.

  • To work in industry (pharma, biotech companies) for new diagnostics, molecular therapeutics, regenerative medicine and vaccines
  • To work in academia as a researcher in one of the many fields of Molecular Medicine
  • To be an entrepreneur in Biotech start up companies as a result of scientific discoveries

Graduates will be able to assist doctors in the diagnostic and in the therapeutic phases when those imply the manipulation of cells, genes and other bio systems and when specific biotechnological experimental competences are required.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. You will gain a broad understanding of molecular plant sciences before specialising in a specific area. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

You will gain a broad understanding of molecular plant sciences before specialising in a specific area. You’ll study the biology of plants at the molecular level.

You will focus on topics including mechanisms of microbial pathogenicity, cell and molecular biology of pollen-stigma recognition, signalling in flowering plants and genomics and gene networks. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including BBSRC, Oxford University and Morvus-Technology Limited.

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-molecular-plant-sciences/

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity. Read more

Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity.

You’ll study the molecular and cellular biology of microorganisms such as bacteria, viruses, fungi and yeasts. These include gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication pathogenicity and virulence factors. You’ll have the opportunity to study flexibly, tailoring your course according to your needs.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-microbiology/    

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare. Read more
This exciting interdisciplinary MSc programme focuses on providing advanced academic training in the cellular and molecular processes that relate to the production of biomedicines for use in healthcare.

This is coupled with rigorous practical training in the design, production and characterisation of biomolecules using state-of-theart biotechnological and bioengineering analytical and molecular technologies.

You acquire practical, academic and applied skills in data analysis, systems and modelling approaches, and bioinformatics, together with transferable skills in scientific writing, presentation and public affairs. On successful completion of the programme, you will be able to integrate these skills to develop novel solutions to modern biotechnological issues from both academic and industrial perspectives.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/213/biotechnology-and-bioengineering

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

The MSc in Biotechnology and Bioengineering involves studying for 120 credits of taught modules, as indicated below. The taught component takes place during the autumn and spring terms, while a 60-credit research project take place over the summer months.

The programme is taught by staff from the Industrial Biotechnology Centre, an interdisciplinary research centre whose aim is to solve complex biological problems using an integrated approach to biotechnology and bioengineering. It is administered by the School of Biosciences who also contribute to the programme.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI852 - Advanced Analytical and Emerging Technologies for Biotechnology and Bio (30 credits)
BI857 - Cancer Research in Focus (15 credits)
CB612 - New Enterprise Startup (15 credits)
CB613 - Enterprise (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI845 - Research project (60 credits)

Assessment

Assessment is by coursework and the research project.

Programme aims

You will gain the following transferable skills:

- the ability to plan and manage workloads

- self-discipline and initiative

- the development of reflective learning practices to make constructive use of your own assessment of performance and use that of colleagues, staff and others to enhance performance and progress

- communication: the ability to organise information clearly, create and respond to textual and visual sources (eg images, graphs, tables), present information orally, adapt your style for different audiences.

- enhanced understanding of group work dynamics and how to work as part of a group or independently.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/213

Read less
Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity. Read more

Discover the molecular principles underlying the biology of microorganisms. You’ll develop expert knowledge of infection and immunity.

You’ll study the molecular and cellular biology of microorganisms such as bacteria, viruses, fungi and yeasts. These include gene expression and regulation, gene transfer, genome structure, epidemiology, cell communication pathogenicity and virulence factors.

You’ll have the opportunity to study flexibly, choosing options that suit your future ambitions. There is a varied range of interdisciplinary units available to allow you to tailor your studies.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including Biocapita in Beijing, University of Florence in Italy and BBSRC in the UK. Many students have moved into further study and research.

Visit the website: http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-molecular-microbiology/   

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
What is the Erasmus Mundus Master of Science in Theoretical Chemistry and Computational Modelling all about?. Get in at the bleeding edge of contemporary chemistry. Read more

What is the Erasmus Mundus Master of Science in Theoretical Chemistry and Computational Modelling all about?

Get in at the bleeding edge of contemporary chemistry: theoretical and computational chemistry are marking the new era that lies ahead in the molecular sciences. The aim of the programme is to train scientists that are able to address a wide range of problems inmodern chemical, physical and biological sciences through the combination of theoretical and computational tools.

This programme is organised by:

  • Universidad Autónoma de Madrid (coordinating institution), Spain
  • Universiteit Groningen, the Netherlands
  • KU Leuven, Belgium
  • Università degli Studi di Perugia, Italy
  • Universidade do Porto, Portugal
  • Université Paul Sabatier - Toulouse III, France
  • Universitat de Valencia, Spain

The Erasmus Mundus Master of Theoretical Chemistry and Computational Modelling is a joint initiative of these European Universities, including KU Leuven and co-ordinated by the Universidad Autónoma de Madrid. 

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The programme is organised according to a two-year structure.

  • The first year of the programme introduces you to concepts and methods. The core of the programme is an intensive international course intended to bring all participants to a common level of excellence. It takes place in the summer between year 1 and year 2 and runs for four weeks. Coursework is taught by a select group of invited international experts.
  • The second year of the programme is devoted to tutorials covering the material dealt with in the intensive course and to a thesis project carried out in part at another university within the consortium. The intensive course is organised at the partner institutions on a rotating basis.

Department

The Department of Chemistry consists of four divisions, all of which conduct highquality research embedded in well-established collaborations with other universities, research institutes and companies around the world. Its academic staff is committed to excellence in teaching and research. Although the department's primary goal is to obtain insight into the composition, structure and properties of chemical compounds and the design, synthesis and development of new (bio)molecular materials, this knowledge often leads to applications with important economic or societal benefits.

The department aims to develop and maintain leading, internationally renowned research programmes dedicated to solving fundamental and applied problems in the fields of:

  • the design, synthesis and characterisation of new compounds (organic-inorganic, polymers).
  • the simulation of the properties and reactivity of (bio)molecules, polymers and clusters by quantum chemical and molecular modelling methods.
  • the determination of the chemical and physical properties of (bio)molecules, and polymers on the molecular as well as on the material level by spectroscopy, microscopy and other characterisation tools as related to their structure.

Objectives

Modern Chemistry is unthinkable without the achievements of Theoretical and Computational Chemistry. As a result these disciplines have become a mandatory tool for the molecular science towards the end of the 20th century, and they will undoubtedly mark the new era that lies ahead of us.

In this perspective the training and formation of the new generations of computational and theoretical chemists with a deep and broad knowledge is of paramount importance. Experts from seven European universities have decided to join forces in a European Master Course for Theoretical Chemistry and Computational Modelling (TCCM). This course is recognized as an Erasmus Mundus course by the European Union.

Graduates will have acquired the skills and competences for advanced research in chemical, physical and material sciences, will be qualified to collaborate in an international research team, and will be able to develop professional activities as experts in molecular design in pharmaceutical industry, petrochemical companies and new-materials industry.

Career perspectives

In addition to commanding sound theoretical knowledge in chemistry and computational modelling, you will be equipped to apply any of the scientific codes mastered in the programme in a work environment, or develop new codes to address new requirements associated with research or productive activities.

You will have attained the necessary skills to pursue a scientific career as a doctoral student in chemistry, physics or material science. You will also be qualified to work as an expert in molecular design in the pharmaceutical industry, at petrochemical companies and in the new-materials industry. You will also have a suitable profile to work as a computational expert.



Read less
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology. Read more
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology.

This MRes has been designed to enhance knowledge of recent advancements in cellular and molecular biology, as well as to develop subject-specific practical and analytical skills. In addition, you will gain experience of undertaking an extended period of research (6-7 months), which will aid your career progression as a molecular bio-scientist.

The programme will involve undertaking two core 20 credit taught modules, followed by an extended period of laboratory research, and submission of a Research report and review, 140 credits.

Why Study Cell and Molecular Biology Pathway with us?

Our lecturers range from enthusiastic early career academics through to internationally acknowledged senior researchers. We are actively involved in undertaking innovative research projects using ‘cutting-edge’ approaches, within the field of molecular and cellular life sciences.

Some of our current projects are listed below:
- Environmental toxicology
- Protection against the ageing
- Calcium signalling
- Biochemistry & pharmacology of intracellular Ca2+ transporters
- Stem cells
- Tissue regeneration
- Pathology of bone disease
- Progression of kidney and bladder cancers
- Novel drug delivery systems via nanoparticles and cell penetrating peptides
- Molecular basis of cancer development
- Novel approaches to cancer therapies
- Molecular immunology
- Development of analytical approaches to detect biomarkers of disease

What will I learn?

The MRes will involve undertaking two core 20 credit taught modules which consists of a mixture of lectures, workshops and practical classes in:
- Advances in Cell and Molecular Biology (BI7144)
- Skills for Molecular and Cellular Bioscientists (BI7145)

Followed by an extended period of laboratory research (140 credits) in an area that allies with the interests of our academic staff.

How will I be taught?

The two taught modules will each comprise of a series of lectures, small group discussion sessions, workshops and practical classes. Nominally each taught module has about 30-40 of contact hours associated with them. The rest of the time allocated for these modules will be for further reading, coursework preparation and revision.

The remainder of the programme will comprise of the 6 to 7 month research project which will involve regular meetings and guidance with your research supervisor. This is followed by the preparation of two reports.

How will I be assessed?

The research dissertation will be assessed by the production of a research report in the format of a scientific paper and a research review (80%).

The taught modules will be assessed by the production of practical and theoretical reports and class tests (20%).

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
Biotechnology is the exploitation of living systems or molecules from them for commercial gain. Although the word 'biotechnology' is only a few decades old, humankind has been using biotechnology for millennia, for example in baking, brewing and sewage treatment. Read more
Biotechnology is the exploitation of living systems or molecules from them for commercial gain. Although the word 'biotechnology' is only a few decades old, humankind has been using biotechnology for millennia, for example in baking, brewing and sewage treatment.

Modern biotechnologies rely on our increasing ability to manipulate organisms at the genetic level and include novel waste treatments and bioremediations, new pharmaceuticals, the exploitation of enzymes in 'green catalysis' and exciting new diagnostic techniques. In the 20th century our lives were transformed by information technology; the 21st century may see an equally great transformation, but this time led by biotechnology.

This Masters degree aims to teach the fundamental molecular bioscience underpinning biotechnology along with examples of its current applications.

PROGRAMME CONTENT
This MSc is taught by research-active staff members in the School of Biological Sciences. In addition, fundamental biological research skills are taught and students are given an understanding of bio-entrepreneurship. The degree culminates in a three-month, intensive research project in a laboratory in Queen's, thus preparing graduates for a career in research biotechnology.

Modules:
- Bio-entrepreneurship
- Biotechnology
- Foundations for Research in the Biosciences
- Literature Review
- Nucleic Acid Structure and Function
- Protein Structure and Function
- Research Project (triple module)

CAREER PROSPECTS
This Masters degree equips students with the necessary skills to enter either PhD programmes or employment directly in the global biotechnology industry.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

Read less
What is the Master of Chemistry all about?. The overall aim of the Master of Chemistry programme is to train students to . Read more

What is the Master of Chemistry all about?

The overall aim of the Master of Chemistry programme is to train students to conduct research in an academic or industrial setting.

Students apply the knowledge and skills they have acquired by identifying a research question, situating it in its proper chemical and social context and designing a study that addresses this research question.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The full programme comprises 120 ECTS (European Credit Transfer System), including 18 ECTS for compulsory courses and 54 ECTS for electives. In addition, students develop advanced practical skills in an internship at KU Leuven to the value of 18 ECTS, while the remaining 30 ECTS are allocated to the Master’s thesis.

There are five majors to choose from:

  • Quantum Chemistry and Physical Chemistry.
  • Molecular Design and Synthesis.
  • Molecular Imaging and Photonics.
  • Polymer Chemistry and Materials.
  • Biochemistry, Molecular and Structural Biology

Department

The Department of Chemistry consists of five divisions, all of which conduct high quality research embedded in well-established collaborations with other universities, research institutes and companies around the world. Its academic staff is committed to excellence in teaching and research. Although the department's primary goal is to obtain insight into the composition, structure and properties of chemical compounds and the design, synthesis and development of new (bio)molecular materials, this knowledge often leads to applications with important economic or societal benefits.

The department aims to develop and maintain leading, internationally renowned research programmes dedicated to solving fundamental and applied problems in the fields of:

  • the design, synthesis and characterisation of new compounds (organic-inorganic, polymers).
  • the simulation of the properties and reactivity of (bio)molecules, polymers and clusters by quantum chemical and molecular modelling methods.
  • the determination of the chemical and physical properties of (bio)molecules, and polymers on the molecular as well as on the material level by spectroscopy, microscopy and other characterisation tools as related to their structure.

Objectives

Knowledge and understanding

  • has extensive knowledge and understanding of a number of chemical fields of expertise and at least one advanced or specialized chemical topic;
  • can acquire autonomously chemical insights and methods;
  • has advanced theoretical and practical knowledge of methods of specialised chemical synthesis and characterisation.

Research

  • knows to organize and carry out original chemical research;
  • can delineate a research topic, postulate a research question and revise this question in the course of the research;
  • can select and apply autonomously proper experimental and theoretical methods;
  • can find, use and interpret with intent specialized literature.

Acquire, use and form an opinion about information

  • has insight in the strategies of acquiring and using knowledge that are central to the domain of the exact sciences;
  • can acquire, adapt, interpret and evaluate quantitatively information and data;
  • can adapt and interpret research results in a multidisciplinary context, position it in the international context and report about this;
  • can apply his knowledge, understanding and problem solving capacities in a broader context;
  • can critically evaluate complex problems in the field of chemistry and formulate scientifically sound solutions.

Communication and social skills

  • can express verbally and in written form the results of research for a group of people of experts and laymen;
  • can take a scientific viewpoint and defend it for a public of fellow students, lecturers and specialist;
  • can function in a heterogeneous environments and teams;
  • has English communication skills;
  • can be in the lead and run a team;
  • can work autonomously.

Motivation and attitudes

  • is open to complementary input from other disciplines;
  • can take responsibility for and give direction to his personal professional development;
  • has professional behavior;
  • can autonomously function and contribute to research.

Employment

  • has competency that gives access to the PhD study and to employment in chemical and various other fields.

Career perspectives

The Master of Science in Chemistry offers a wide range of specialisations and, as such, many career options are available to our graduates. More than half of our alumni work in industry, while others work in academia or other research institutes.

Within industry, graduates can opt for a technical, a commercial, or research-oriented career. Since the chemical industry is also a major industrial sector throughout Europe and the rest of the world, employment opportunities are enhanced by obtaining a PhD. A few examples of professional domains where chemists are needed include industry (chemistry, petrochemistry, medical sector, pharmaceutical industry, agrochemistry, food industry etc.), government or public administration, and research institutes.



Read less

Show 10 15 30 per page



Cookie Policy    X