• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
University of Manchester Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
University of Manchester Featured Masters Courses
FindA University Ltd Featured Masters Courses
"molecular"×
0 miles

Masters Degrees (Molecular)

We have 969 Masters Degrees (Molecular)

  • "molecular" ×
  • clear all
Showing 1 to 15 of 969
Order by 
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. Read more
Laboratory medicine is facing an exciting era in the transforming Molecular Pathology landscape that aims to foster the delivery of high-impact innovation on the bases of complex informatics, for benefits to patient care, academic research and UK industry. With a vision of creating the next generation of leaders in Molecular Pathology, this programme will provide the state of the art training programme for Molecular Pathology, in order to facilitate the pathologists, clinical scientists, trainees, and to those in the related health professions, to acquire essential knowledge, skills and attributes in the current and future diagnosis that incorporates molecular knowledge.

Why this programme

● In August 2014, MRC published a review of the UK Molecular Pathology Landscape, in which the critical needs and challenges are pin downed in the delivery of improved diagnostics incorporating the molecular approaches.

● With a vision of creating the next generation of leaders, this programme provides state of the art training for Molecular Pathology

● We are one of the few centres where molecular pathology and diagnostic histopathology are amalgamated on one site, permitting the delivery of a clinically relevant molecular pathology course.

● The areas of main focus include diagnostic molecular pathology, clinical trials and translational research in molecular pathology, pathology bioinformatics and digital pathology. The core courses (PgCert) are designed to cover the intended learning outcomes within Royal College of Pathologists curriculum for Specialty Training in Histopathology 2015.

● The programme is led by the national leaders directly engaged in the various molecular pathology initiatives. Students are kept up-to-date with information and the current needs identified by the professional societies, research councils and charity organizations.

● You will be trained at the purpose-built Laboratory Medicine Building at the Queen Elizabeth University Hospital, which provides services to 52% of the Scottish population. This is one of the largest NHS department of pathology in Europe, accommodating about 50 consultant pathologists.

● The courses will be delivered by a range of professionals with expertise from geneticists, pathologists, clinical, lab scientists and academics, informaticians and clinicians provided across hospital practice and primary care. They are experts based in QEUH and those nationally and internationally recognized experts of molecular pathology.

Programme structure

The main aims of the MSc Molecular Pathology programme are to enable students:

• to fully provide a high quality service in molecular pathology diagnosis
• to participate in research in the area of molecular pathology
• to participate in the training of future generations of molecular pathologists

The "Blended Learning" programme offers the maximum flexibility for students who wish to study Molecular Pathology while on clinical duties and pathology training. "Moodle-Based Learning" sessions offer an advantage allowing clinicians to study within their own schedule. "In person review" sessions will enable active interactions with the course contributors and other students. Case-based and "hands-on" sessions facilitate the knowledge and skills acquired in clinical diagnosis as the programme proceeds, so it is easy to keep motivated throughout the course.

Core Courses

– 3 x compulsory, 20-credit courses; 1 per semester

• Fundamentals of Molecular Biology and Genetics for Histopathology (20 credits)
• Molecular Tests and Techniques for Histopathology (20 credits)
• Multidisciplinary Approaches to Molecular Pathology (20 credits)

The first three core components will provide the minimum requirement for students to apply molecular knowledge and skill in pathology diagnosis currently on-going and in the immediate future.

These courses will form the PgCert.

Advanced Courses

- Courses must be selected from the following options to obtain a total of 60 credits.

• Translational Medical Research Approaches (10 credits)
• Medical and Research Ethics (10 credits)
• Molecular Pathology (20 credits)
• Omics technologies for biomedical sciences: from genomics and metabolomics (20 credits)
• Frontiers in Cancer Science (20 credits)
• Disease Screening in Populations (10 credits)
• Governance and ethics in education research (10 credits)

In the advanced component, students will further their training of Molecular Pathology to acquire the knowledge needed to get involved in research, or development and improvement of diagnostics. There are options for learning of advanced technologies, wider disease areas, research methods, in-depth bioinformatics, and health professional education.

Successful completion of core and advanced courses will be awarded with the PgDip.‌

Dissertation

- 1 x 60-credit project-based course assessed by a dissertation of approximately 8,000 words followed by an oral presentation.

The Masters dissertation project gives students the opportunity to conduct research in an area of Molecular Pathology with supervisor(s) assigned to each project. For example, the opportunity to conduct an independent research project, audit or critical review of the literature in selected topics in the area of Molecular Pathology, current and future diagnosis, clinical and scientific research.

Successful completion of all core and advanced courses and the dissertation will lead to the award of the MSc.

Read less
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. Read more
Molecular biology is a key area underpinning modern biology in the post-genomic era. The science of molecular biology analyses the structure and function of organisms – viral, microbial and eukaryotic – at a molecular level. The structure and function of nucleic acids, genes, proteins and cell-signalling molecules are also analysed by molecular biology. Molecular biology techniques can be used to investigate errors in cellular systems that are fundamental to an advanced understanding of disease aetiology. In addition, innovations in molecular biology permit sophisticated modification of organisms, and manipulation of their functions, to permit the production of novel products and the development of novel therapeutic technologies. The burgeoning global bioscience sector creates a continuing demand for the education of scientists at postgraduate level skilled in molecular biology.

The MSc Molecular Biology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

This course is intended for life science graduates from both home and overseas courses who wish to develop their knowledge and skills in biosciences with an emphasis on molecular biology. The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of molecular biology. This course is also an excellent foundation for those wishing to pursue research in molecular biology at PhD level.

You will have the opportunity to study a broad range of Molecular Biology at a theoretical and a practical level. You will have the opportunity to gain hands-on experience of molecular biology techniques. You will have the opportunity to develop a range of transferrable and research skills that will develop your knowledge and enhance your employment potential.

WHAT WILL I LEARN?

The course is focused on the key elements of molecular biology and comprises modules on the following topics:
-Genomes and DNA Technology
-Cell Culture and Antibody Technology
-Mammalian Cell and Molecular Biology
-Molecular Microbiology
-Molecular Biology of Disease

The course will also comprise a Research Skills module. In addition, a Research Project forms part of the MSc course.

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST104), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Molecular biology is one of the most buoyant sectors of the biosciences jobs market. Indeed, molecular biology is a key area underpinning modern biology in the post-genomic era. Consequently, many different branches of biology in both the academic and industrial sectors make use of molecular biology skills and rely on analyses at the molecular level to drive developments. It is predicted that growth in the Molecular Biology employment market will be above average over the period 2010–20.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine. Read more
There is a separate entry on admission to the P.Grad.Dip. in Molecular Medicine.

This course aims to give participants an indepth understanding of the emerging field of molecular medicine which draws together developments in molecular and cellular biology to describe disease processes at a functional level - that of molecular interactions.

The course aims to provide students with an understanding of the molecular basis of human disease and its implications for the practice of clinical medicine and research in the life sciences. The course will ensure that students from all disciplines have the skills necessary to conduct research and critically evaluate the scientific and medical literature.

The course includes lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and to disease processes. Modules on molecular signalling and therapeutics, bioinformatics and ethical-legal aspects of the discipline are included, as well as literature reviews, laboratory practicals and a laboratory project.

The course is available in a one-year, full-time and a two-year, part-time format. It consists of lectures on cellular biology and molecular genetics as they apply generally to normal cell and tissue function and more specifically to disease processes such as cancer, immune dysfunction, and diseases with an inherited component. The course content includes molecular signalling and therapeutics, molecular and population genetics, nanoscience, and high content cell analysis. There is a core, 'Research Skills' module which encompasses bioinformatics and ethical-legal aspects of the emerging discipline, literature reviews, and laboratory practicals in basic molecular and cellular techniques. Candidates will complete a laboratory project of three months (full-time) or six months (part-time) duration. Candidates must also complete the taught module, Molecular Mechanisms of Human Disease I. This course provides the applicant with state-of-the-art information and critical analysis of: The human genome at a molecular level, the integration of molecular and cellular biology in relation to human diseases; the molecular basis of human genetic disease; the molecular interactions between microbiological pathogens and the human host; the technology currently employed in researching molecular medicine; the molecular basis of common human inflammatory diseases and malignancies; the utilisation of knowledge on the molecular basis of human disease in planning and design of novel therapies, using pharmacological agents or gene therapy; the ethical and legal aspects of molecular medicine as it impinges on clinical practice. You will also gain a working appreciation of molecular and cellular biology at the practical level and development of the ability to perform independent research with the ability to apply bioinformatic and computational techniques in medical and biological research, and information retrieval. The student is examined on the basis of a submitted critical literature review essay, a written examination, assessment of laboratory practicals and the writing of a dissertation based on a research project. Candidates from health science (medical, dental, veterinary), biological science and other science disciplines (e.g. chemical or pharmacy), are invited to apply.

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
Aspiring to contribute to the development of new therapies for metabolic, infectious and immunological diseases or cancer? Radboud University's internationally acclaimed Research Master's programme in Molecular Mechanisms of Disease provides an excellent foundation for a career in academic or commercial research. Read more

Understanding the molecular basis of disease

Aspiring to contribute to the development of new therapies for metabolic, infectious and immunological diseases or cancer? Radboud University's internationally acclaimed Research Master's programme in Molecular Mechanisms of Disease provides an excellent foundation for a career in academic or commercial research.

Only by dissecting the molecular mechanisms that trigger and advance diseases and dysfunctions can we design effective treatments and medicines. The Research Master's in Molecular Mechanisms of Disease (MMD) offers you an intensive two-year programme that provides you with in-depth knowledge and research experience of disease-related molecular mechanisms. In addition, you will acquire skills such as academic writing and presentation skills and learn how to successfully apply for grants and market yourself.

Passion for molecular biomedical research

As an MMD student you will be part of the unique research community that is found within the Radboud Institute for Molecular Life Sciences (RIMLS). Like you, RIMLS researchers have a strong passion for research. They will assist you throughout the programme with guidance and expertise, supporting you in acquiring knowledge and developing excellent research skills. The RIMLS is one of the research institutes of the Radboud university medical center, so their research is closely linked to the clinic and thus aimed at translating results into treatments for patients. Examples include the translation of insights into the biology of antigen-presenting cells into new immunological cancer therapies and understanding the mutations underlying blindness into the development of gene therapies for patients with inherited blindness.

See the website http://www.ru.nl/masters/mmd

Why study Molecular Mechanisms of Disease at Radboud University?

- You will follow a broad biomedical programme that allows you to specialise in your specific field-of-interest.
- You will have intense daily contact with established researchers.
- You will participate in group-oriented education and be part of a small group of highly motivated national and international students.
- A personal mentor will help you to reflect on your study programme and career perspective.
- You will do two 6-months research internships one of which will be abroad.
- There is a 92% pass rate of MMD students within the two years.
- International MMD students can apply for scholarships from the Radboudumc Study Fund.

Career prospects

There is considerable demand for experts in the molecular biomedical sciences as well as in their application to the development of treatments for diseases such as cancer, autoimmune and inflammatory disorders, and metabolic diseases.

Graduates in MMD are equipped with cutting-edge knowledge of multidisciplinary research in the mechanisms of disease and in state-of-the-art diagnostic methods and technologies. During the programme, you will develop a highly critical, independent approach to problem-solving. You will also acquire the basic management skills needed to lead R&D projects in the biotechnology and pharmaceutical industries.

Most of our graduates will enter an international PhD programme to continue with research in academia or industry.

PhD opportunities

The MSc Molecular Mechanisms of Disease aims to provide all skills and knowledge necessary to rapidly enter an international PhD programme. In the Netherlands and many places in Europe, it is impossible to start a PhD programme directly after obtaining a Bachelor's degree. This research Master’s programme seriously increases your chances for obtaining an excellent PhD training position by giving you a mature perspective and a broad range of experimental approaches. In fact, over 90% of our graduates has started a (funded) PhD project.

The Radboud Institute for Molecular Life Sciences (RIMLS) recruits about fifty PhD students a year. MMD graduates are excellent candidates for these positions. Furthermore, the Radboud university medical centre offers the opportunity for its research-oriented Master's students to write their own research project. The best candidates are awarded a fully funded four-year PhD studentship at the department of their choice.

Our approach to this field

The molecular regulation of cellular processes is crucial for human development, and maintenance of health throughout life. It's evident that cellular malfunction is the cause of common multi-factorial diseases such as diabetes, immune and inflammatory disorders, renal disease, cardiovascular, metabolic and neurodegenerative diseases as well as obesity and cancer.

The Radboud Institute for Molecular Life Sciences (RIMLS) Graduate School plays a key role in developing new therapies for the fight against such diseases. RIMLS aims to improve diagnostics and develop new treatments by generating basic knowledge in the molecular biomedical life sciences and translating it into clinical application and experimental research in patients.

The RIMLS – which is part of Radboud university medical center – offers an exclusive Master's programme in Molecular Mechanisms of Disease. Top researchers and clinicians teach the programme.

Key themes

The MMD programme is organised along three major educational themes which reflect the main research areas present in the RIMLS and which each include both a fundamental and a disease-related aspect:
- Theme 1 Infection, Immunity and Regenerative Medicine / Immunity-related Disorders and Immunotherapy
- Theme 2 Metabolism, Transport and Motion / Metabolic Disorders
- Theme 3 Cell Growth and Differentiation / Developmental Disorders and Malignancies

See the website http://www.ru.nl/masters/mmd

Read less
Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.
- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.
- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area
In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.
- Organic chemistry: e.g. Organic Chemistry (Bruice)
- Biochemistry: e.g. Biochemistry (Lehninger)
- Physical chemistry: e.g. Physical chemistry (Atkins)
- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of >575 (paper based) or >90 (internet based)
- An IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:
- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Read less
Overview. Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Read more
Overview
Advances in molecular biology have enabled major developments in biotechnology which in turn has lead to huge advances in medicine, molecular biology and industry. Students choosing this MSc degree will enjoy a comprehensive course that covers the key aspects of practical and theoretical medically-related molecular biology, developing advanced skills in this area.

Description
The course is composed of a modular 120-credit taught component and a 60-credit research project and dissertation. The taught component covers a broad range of medical molecular topics and techniques and includes thorough laboratory training. The course is run in conjuncture with our School of Medicine to ensure that students gain a broad view of modern molecular biology and laboratory techniques.

Overseas Students
A two-year course aimed at students from non-European Union countries who come to the UK requiring pre-MSc level training in English language and basic pre-MSc molecular biology. The first year of this course will bring students up to a level where they will be capable of studying for a full MSc degree and it will develop English language skills to the minimum level required for MSc level learning. Year one will be run in conjunction with ELCOS (English Language Courses for Overseas Students). Students can obtain the minimal English certification for MSc entry.

Module list (1st year of English-life sciences modules)
The English language content and life sciences teaching are integrated to enable students to undertake MSc level life-sciences modules through the medium of English

Life-sciences for none native English speakers - 50 credits
Academic Writing & Grammar
Speaking & Listening
Ad.Vocabulary Use & Reading
Near Native English 1
Near Native English 2

Modules list: (for first year of 1 year course and 2nd year of 2 year course)

Semester 1
Molecular and Medical Techniques
Techniques of molecular biology and biotechnology
Medical microbes viruses and parasites
Development, cancer and the human body
Genomes and Genetics
IT skills for medical and molecular research

Semester2
Project preparation course
Medical Biotechnology
Cellular causes of disease
Biomarkers in autoimmunity

Summer term
Research Project (Experimental research into a medical/molecular or genetics research topic)

Aims and Objectives
* Provide an excellent grounding in laboratory techniques and a critical approach to research planning and implementation.
* Develop understanding of molecular biology and the molecular basis of disease.
* Develop transferable skills, including their ability to work as a member of a team, and communicate in scientific writing and speech.
* Provide the opportunity for students to gain and enhance skills required by research organisations and biotechnology companies.
*Provide the ability to attain a level required to carry out research for a higher degree (PhD) in medical molecular and related areas.

Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments. Read more

The MSc in Molecular Medicine gives you the opportunity to develop as a scientist or scientifically-literate clinician through an advanced understanding of the molecular basis of many diseases and their treatments.

You’ll study how to apply molecular approaches to the diagnosis, prevention and treatment of a range of cancers, chronic, autoimmune and genetic diseases. You’ll also carry out a research project in one of these areas within a research group at the forefront of the field. Project supervision is assured by outstanding academics and clinicians working on cutting-edge research.

This flexible programme allows you to develop core scientific skills and follow your professional interests with a choice of optional modules. You'll be part of a world-renowned School and will be taught by internationally recognised scholars.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Course content

You’ll build core scientific skills through four compulsory modules studied over two terms. Alongside these, your optional modules (two each term) allow you to tailor your study to your interests. Modules typically last 11 weeks.

Throughout the programme you will:

  • gain an in-depth knowledge and understanding of the principles, application and potential of molecular medicine
  • learn techniques in the field of molecular biology, immunology, cell biology and chemistry
  • develop the ability to carry out molecular, biological and bioinformatics research for investigation of human diseases
  • be able to engage in research projects using the latest technologies that generate results with scientific impact and the potential for improving patient health
  • learn to critically evaluate current issues in molecular medicine, translate research findings into clinical applications, and recognise commercial opportunities.

Research project

You’ll spend approximately half of the programme on your individual research project, which usually runs from April to August. The research project allows you to work as part of a research team in a cutting edge discipline.

You will have a wide choice of research opportunities in Applied Health Research, Cancer and Pathology, Cardiovascular, Genes and Development and Musculoskeletal Research. You select your project from a range of research projects offered to MSc Molecular Medicine students.

The research project is based in one of the research laboratories at the St James’s University Hospital campus.

Course structure

Compulsory modules

  • Research Informatics and Dissemination 15 credits
  • Preparing for the Research Project 15 credits
  • Research Project 75 credits
  • Research Methods 15 credits

Optional modules

  • Introduction to Genetic Epidemiology 15 credits
  • Human Molecular Genetics 15 credits
  • Immunity and Disease 15 credits
  • Animal Models of Disease 15 credits
  • Stem Cell Biology: A Genomics and Systems Biology Approach to Haematopoiesis 15 credits
  • Cancer Biology and Molecular Oncology 15 credits

For more information on typical modules, read Molecular Medicine MSc in the course catalogue

Learning and teaching

The taught components of the programme provide a perfect knowledge background and research training to get the best out of your research project.

You’ll be taught by active scientists and clinicians who are world-leading in their research fields, through lectures, workshops, laboratory practicals, seminars and tutorials. All our students judged the programme as “intellectually stimulating” in 2014 student survey.

Teaching is mainly at St James's University Hospital, a busy research facility with research laboratories and a teaching laboratory, computer cluster, library and meeting rooms. You can easily get to and from the University campus with the free NHS shuttlebus.

We encourage you to participate in the School of Medicine Institutes’ activities, such as the invited speaker seminar series. You also have access to all the wider University of Leeds facilities.

Assessment

A major objective of the programme is to train you to formulate your own ideas and express them logically, and this will be tested in every module assessment.

A typical module will be assessed by two assignments. Assessments include written assignments, as well as delivering presentations and posters, and leading discussions.

The MSc programme comprises 180 credits. You may choose to exit the programme at an earlier stage, with either a PG Certificate (60 credits) or a PG Diploma (120 credits).

Career opportunities

This exciting programme provides excellent training for:

  • science graduates looking for an opportunity to go on to do doctoral research, enter academic medicine or pursue a career in industry, clinical service




Read less
What is the Master of Molecular Biology all about?.  This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by. Read more

What is the Master of Molecular Biology all about?

 This programme, commonly referred to as the Internuniversity Programme in Molecular Biology (IPMB), is jointly organised by

  • KU Leuven
  • Vrije Universiteit Brussel
  • Universiteit Antwerpen

IPMB is endorsed and supported as an international programme by the Flemish Interuniversity Council (VLIR-UDC). Although originally designed to meet the needs of students from developing countries, the programme also welcomes non-traditional and reorienting student seeking to enter the fascinating world of molecular biology. Erasmus-Socrates students studying at one of the organising universities for one or two semesters are also most welcome to attend classes and acquire laboratory skills.

Students are awarded a joint degree from the participating institutions. 

Structure

The IPMB is organised over two academic years. In view of the diverse background of its students, the first year consists of in-depth courses covering the most important topics in molecular biology. By the end of the first year, you will have obtained the level of knowledge required to take succesfully part in the advanced, specialisation courses of the second year.

Intensive laboratory training will prepare you to embark on the preparation of your thesis, which you will complete in the second year along with four advanced courses followed by three specialisation courses in the field of either human health, animal production or plant production. Much attention is also paid to the preparation and writing of the thesis, which is an original research project completed under the guidance of a supervisor and defended in public.

Objectives

The Master of Molecular Biology (Interuniversity Molecular Biology - IPMB) programme is intended to offer theoretical and practical training to young scientists from developing countries, who are involved in education/research in human medicine, animal production or plant production.

This programme is designed to train these students to become capable, critical and self-reliant scientists who are able to apply the knowledge acquired to contribute to the further development of their country through their involvement in education, research and policymaking.

IPMB graduates will be able to ensure that the potential offered by molecular biology and biotechnology in terms of human and veterinary medicine and animal and plant production, find due application in their country.

Although originally conceived to meet the needs of students from developing countries, the programme offers an excellent opportunity for all students, including non-traditional and reorienting students, to study molecular biology in an international context.

Students are expected to:

  • have developed an advanced knowledge of fundamental sciences;
  • have developed an in-depth insight into biological processes;
  • have developed an in-depth insight into the functioning of living organisms in all their forms;
  • have developed a critical mind allowing them to appraise scientific and social aspects of applied molecular biology;
  • be capable of analysing and/or summarising and critically reflecting on scientific literature;
  • be capable of detecting and analysing problems and of proposing solutions to solve them;
  • be able to contribute, through molecular biological research, to solving problems faced by developing countries;
  • be able to operate as a member of a team;
  • be able to report, both orally and in writing;
  • be able to contribute to efforts to set up nationwide and international cooperation (South-South, South-North);
  • be able to operate in nationwide and international networks;
  • be able to disseminate the acquired knowledge in their country and region through their activities in education and research and through peer reviewed publications;
  • have developed skills to act as reliable advisors for local policymakers by making proposals for the further development of molecular biology in education and research, and, as such, to contribute to the further development of their country and improve the living conditions of the populations in the South;
  • be trained to a level sufficient to beginning a doctoral programme (PhD).

Career path

IPMB graduates find employment in universities, hospitals, private and governmental research laboratories and patenting bureaus, as lecturers, consultants and advisors to policy makers, among other careers. Many graduates go on to begin PhD programmes in Belgium or abroad. Students from developing countries can apply for a VLIR-UOS sandwich PhD scholarship. Flemish students can apply for a PhD scholarship of VLIR-UOS to make a PhD on developmental relevant topics.



Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine. Read more
Molecular Pathology (MP) is a rapidly growing discipline in 21st century medicine. It integrates genomics and bioinformatics with modern pathology to underpin molecular diagnostics, theranostics as well as clinical trials delivery within the academic, health services and industry sectors in an era of precision medicine.

This MSc is an exciting, innovative blended learning programme aimed to enhance the participant’s theoretical knowledge and practical skills in MP and to empower them to pursue a career in academia, healthcare or industry. The course has a strong focus on innovation and entrepreneurship; emphasising MP’s central role in molecular diagnostics, clinical trials and biotech/biopharma.

This Masters programme has been developed with a number of options in order to provide maximum flexibility of training. Candidates can take the Certificate/Diploma/MSc in Molecular Pathology of Cancer which will provide a solid foundation for those wishing to study MP at PhD level. The full-time MSc is also available as an intercalated degree for Medical and Dental students. Additionally, the three modules which are offered by Distance Learning are available as a ‘stand-alone’ Certificate in Pathology Informatics and Business Application.



Semester 1

All candidates will undertake traditional ‘face to face’ teaching for the three modules in Semester 1. This will be timetabled teaching. Some of the teaching sessions within the modules also form aspects of formal teaching for other PG programmes, providing the students with the opportunity to interact with other Masters students from different disciplines, which we feel enhances the student experience. Collectively, the modules would be sufficient for a Certificate in Molecular Pathology

(1) Cancer Biology, Immunology and Genomics (15 CATs)

(2) Molecular Pathology – Diagnostics and Technologies (25 CATs)

(3) Translational Research (20 CATs)



Semester 2

Candidates will complete three modules which will be available ‘online’ as distance learning modules. Successful completion of Semester 1 modules plus Semester 2 modules without the research dissertation would be sufficient for a Diploma in Molecular Pathology. Collectively, the modules in Semester 2 without the Semester 1 modules would be sufficient for a Certificate in Pathology Informatics and Business Application.

(1) Digital Molecular Pathology (20 CATs)

(2) Biostatistics and Bioinformatics (20 CATs)

(3) Academia/Industry Interface (20 CATs)



Research component

Students will be able to plan their research project and work on their literature review during semester 1; beginning the practical work for their research project in Semester 2. Research projects will be available across a variety of subjects. Potential project areas for the MSc will include – Molecular Neuropathology; Cancer Immunology; Liquid Biopsies; Digital Pathology; Biobanking; Molecular Diagnostics; Bioinformatics. A number of projects will be put forward from the network of CRUK Accelerator Partners for those students with CRUK Accelerator bursaries who may wish to undertake their research as a placement at one of the partner sites.

Read less
Our flexible, blended Molecular Pathology MSc course will enable you to take advantage of growing opportunities within this field, which is critically important for translational medicine, both in cancer and non-cancer diseases. Read more
Our flexible, blended Molecular Pathology MSc course will enable you to take advantage of growing opportunities within this field, which is critically important for translational medicine, both in cancer and non-cancer diseases.

The number of academic pathologists trained in molecular pathology has steadily declined over the past 20 years. As such, it has been identified as an area requiring support and development by the Medical Research Council (MRC) and the Royal College of Pathologists, creating careers opportunities for students and professionals alike.

Our master's course is aimed at medical students, biomedical scientists, medical practitioners and trainee pathologists who want to learn more about molecular pathology. Trainee pathologists can take our course as part of an existing training programme.

You will benefit from a unique focus on the molecular analysis of tissue samples and take optional units in various areas of laboratory medicine and emerging diagnostic methods, such as proteomics and chemical pathology.

Students will also become part of Manchester's world leading precision medicine research community, learning practical skills that will be directly applicable to this emerging field.

In addition, you will benefit from our association with the network of MRC and Engineering and Physical Sciences Research Council funded Molecular Pathology nodes, which have been partly established to train more scientists to work in this field. This will enable you to connect with colleagues and related opportunities across the UK.

Aims

This course aims to provide you with a wide and detailed understanding of the various aspects of molecular pathology.

Provided as part of The University of Manchester MRC/EPSRC Molecular Pathology node (Manchester Molecular Pathology Innovation Centre), we recognise the need for providing more training in molecular pathology among histopathology trainees, clinical scientists and biomedical scientists.

As such, the course addresses a wide audience, and has a broad range of both core and non-core course units to facilitate the different learning and training needs of different groups of professionals.

In addition to the taught components, which will give an in-depth understanding of molecular pathology and associated disciplines (including genomics and bioinformatics), the full MSc course will also develop your experience of and skills in scientific investigation, analytical thought and scientific criticism.

Special features

This course has been designed to take into consideration the training requirements of biomedical scientists, clinical scientists and medical histopathologists. We have consulted with local Postgraduate Deaneries, associated professional bodies including the Institute of Biomedical Scientists (IBMS), and the Royal College of Pathologists, to tailor its content appropriately.

The option to take the course over four years will particularly appeal to specialist trainee pathologists, who will be able to fit study around their clinical training.

They can also use Year 4 to undertake the research project over three months on a full-time, salaried basis, as per RCPath regulations and Deanery funding.

Teaching and learning

Teaching is largely delivered through face-to-face, interactive sessions, consisting of some lecture material, with discussions and group work, and with a range of audio-visual stimuli including PowerPoint slides, images and videos.

All units are supported by the use of Blackboard (a virtual learning environment) on which staff post lecture slides, reading lists and other accompanying material.

Each unit on Blackboard also has its own discussion board, where you can interact with staff and other students on the course, for example, by posting and responding to questions, and making comments related to the course.

For students completing the full MSc, a significant amount of teaching and learning will take place through the dissertation research unit (60 credits or 30 credits), in which you will be expected to take a lead role in developing a research project with regular support, input, and mentorship from your project supervisor.

Coursework and assessment

Formative assessments will be given throughout the taught component of the course and will take the form of MCQs, short answer questions, verbal presentations, data and method analysis exercises.

A range of summative assessments will be employed to assess your knowledge and understanding, and the development of your intellectual and transferable skills including:
-Verbal presentations
-Written assignments
-Data analysis and interpretation exercises
-Analytical method analysis
-Evaluation and formal unseen written examinations consisting of short answer questions and essays

The assessment methods employed by each unit will vary and will be tailored to match the material delivered and stated ILOs of that particular unit.

Your ability to gather information from a wide range of sources, evaluate and critically analyse information, make considered judgments about that information and synthesise material into logical and coherent pieces of work will all be assessed.

Examples of the marking proformas used in the assessment of verbal and written assignments will be provided in student handbooks and on Blackboard, the University's virtual learning environment.

As per the postgraduate taught degree regulations, students exiting with a postgraduate diploma (or postgraduate certificate) may be permitted to rescind this award and upgrade to a master's (or postgraduate diploma) by successfully completing the appropriate further component of the course, providing the following conditions are met:
-The rescinding occurs within five years of your initial registration on the original course, subject to the course still being available
-An overall pass at the appropriate standard to assure admission to a master's course has been obtained for the postgraduate diploma (or postgraduate certificate), including any capped or compensated grades

Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less

Show 10 15 30 per page



Cookie Policy    X