• University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"modelling"×
0 miles

Masters Degrees (Modelling)

We have 1,627 Masters Degrees (Modelling)

  • "modelling" ×
  • clear all
Showing 1 to 15 of 1,627
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling in Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling in Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

This MRes in Computer Modelling in Engineering programme consists of two streams: students may choose to specialise in either structures or fluids. The taught modules provide a good grounding in computer modelling and in the finite element method, in particular.

Key Features of MRes in Computer Modelling in Engineering

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

This Computer Modelling in Engineering course is suitable for those who are interested in gaining a solid understanding of computer modelling, specialising in either structures or fluids, and taking the skills gained through this course to develop their career in industry or research.

If you would like to qualify as a Chartered Engineer, this course is accredited with providing the additional educational components for the further learning needed to qualify as a Chartered Engineer, as set out by UK and European engineering professional institutions.

Modules

Modules on the Computer Modelling in Engineering programme typically include:

• Finite Element and Computational Analysis

• Numerical Methods for Partial Differential Equations

• Solid Mechanics

• Advanced Fluid Mechanics

• Dynamics and Transient Analysis

• Communication Skills for Research Engineers

• MRes Research Project

Accreditation

The MRes Computer Modelling in Engineering course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MRes Computer Modelling in Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MRes Computer Modelling in Engineering degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

The Civil and Computational Engineering Centre has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Examples of recent collaborators and sponsoring agencies include: ABB, Audi, BAE Systems, British Gas, Cinpress, DERA, Dti, EADS, EPSRC, European Union, HEFCW, HSE, Hyder, Mobil, NASA, Quinshield, Rolls-Royce, South West Water, Sumitomo Shell, Unilever, US Army, WDA.

Student Quotes

“I was attracted to the MRes course at Swansea as the subject matter was just what I was looking for.

I previously worked as a Cardiovascular Research Assistant at the Murdoch Children’s Research Institute in Melbourne. My employer, the Head of the Cardiology Department, encouraged me to develop skills in modelling as this has a lot of potential to help answer some current questions and controversies in the field. I was looking for a Master’s level course that could provide me with computational modelling skills that I could apply to blood flow problems, particularly those arising from congenital heart disease.

The College of Engineering at Swansea is certainly a good choice. In the computational modelling area, it is one of the leading centres in the world (they wrote the textbook, literally). A lot of people I knew in Swansea initially came to study for a couple of years, but then ended up never leaving. I can see how that could happen.”

Jonathan Mynard, MRes Computer Modelling in Engineering, then PhD at the University of Melbourne, currently post-doctoral fellow at the Biomedical Simulation Laboratory, University of Toronto, Canada

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling in Engineering course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Computer Modelling and Finite Elements in Engineering Mechanics at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

Swansea University has been at the forefront of international research in the area of computational engineering. Internationally renowned engineers at Swansea pioneered the development of numerical techniques, such as the finite element method, and associated computational procedures that have enabled the solution of many complex engineering problems. As a student on the Master's course in Computer Modelling and Finite Elements in Engineering Mechanics, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Key Features: Computer Modelling and Finite Elements in Engineering Mechanics

Computer simulation is now an established discipline that has an important role to play in engineering, science and in newly emerging areas of interdisciplinary research.

Using mathematical modelling as the basis, computational methods provide procedures which, with the aid of the computer, allow complex problems to be solved. The techniques play an ever-increasing role in industry and there is further emphasis to apply the methodology to other important areas such as medicine and the life sciences.

This Computer Modelling and Finite Elements in Engineering Mechanics course provides a solid foundation in computer modelling and the finite element method in particular.

The Zienkiewicz Centre for Computational Engineering, within which this course is run, has excellent computing facilities, including a state-of-the-art multi-processor super computer with virtual reality facilities and high-speed networking.

Modules

Modules on the Computer Modelling and Finite Elements in Engineering Mechanics course can vary each year but you could expect to study:

Reservoir Modelling and Simulation

Solid Mechanics

Finite Element Computational Analysis

Advanced Fluid Mechanics

Computational Plasticity

Fluid-Structure Interaction

Nonlinear Continuum Mechanics

Computational Fluid Dynamics

Dynamics and Transient Analysis

Computational Case Study

Communication Skills for Research Engineers

Numerical Methods for Partial Differential Equations

Accreditation

The MSc Computer Modelling and Finite Elements in Engineering Mechanics course is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The MSc Computer Modelling and Finite Elements in Engineering Mechanics degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

The Zienkiewicz Centre for Computational Engineering has an extensive track record of industrial collaboration and contributes to many exciting projects, including the aerodynamics for the current World Land Speed Record car, Thrust SSC, and the future BLOODHOUND SSC, and the design of the double-decker super-jet Airbus A380.

Careers

Employment in a wide range of industries, which require the skills developed during the Computer Modelling and Finite Elements in Engineering Mechanics course, from aerospace to the medical sector. Computational modelling techniques have developed in importance to provide solutions to complex problems and as a graduate of this course in Computer Modelling and Finite Elements in Engineering Mechanics, you will be able to utilise your highly sought-after skills in industry or research.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.



Read less
There is a growing need for qualified professionals with expertise in environmental modelling. The UCL Environmental Modelling MSc is a cross-disciplinary degree that provides rigorous technical and scientific training for the next generation of environmental modelling professionals. Read more
There is a growing need for qualified professionals with expertise in environmental modelling. The UCL Environmental Modelling MSc is a cross-disciplinary degree that provides rigorous technical and scientific training for the next generation of environmental modelling professionals.

Degree information

You will gain a well-rounded training in the role, implementation and application of models in environmental science. Core modules provide a critical perspective on model-based science, and introduce essential computational and numerical methods. The programme is contextualised with reference to the challenges of understanding both natural and human-induced changes to a variety of environmental systems.

Students take modules to the value of 180 credits. The programme consists of four core modules (60 credits), optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months, part-time two years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time one year) is offered.

Core modules
-Models in Environmental Science
-Global Environmental Change
-Scientific Computing
-Analytical and Numerical Methods

Optional modules - options may include:
-Climate Modelling
-Coastal Change
-Environmental GIS
-Impacts of Climate Change on Hydro-Ecological Systems
-Lakes
-Ocean Circulation and Climate Change
-Surface Water Modelling
-Terrestrial Carbon: Monitoring and Modelling
-Other MSc modules offered across UCL may be taken at the discretion of the MSc convenor

Dissertation/report
All students undertake an independent research project, culminating in a dissertation of approximately 12,000 words and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, and laboratory and computer-based practical classes. Assessment is through independent project work, practical-based and written coursework, written examinations and the dissertation.

Careers

The programme has been designed to provide an ideal foundation for PhD research, or for employment with environmental monitoring and protection agencies, industry and environmental consultancies. Graduates have gone on to careers as management consultants, business analysts and university researchers.

Top career destinations for this degree:
-Research Fellow, University of Girona and studying PhD Sanitas, Universitat de Girona (University of Girona)
-Risk Analyst, Canopius

Employability
Modelling was identified as the highest priority UK skills gap in a government review of the environmental sector. This MSc programme exposes students to the full range of environmental modelling which places graduates in a strong position to find employment. We anticipate that graduates of this MSc are either employed in the private environmental consulting sector or undertake a PhD.

Why study this degree at UCL?

The Environmental Modelling MSc is run by UCL Geography which enjoys an outstanding international reputation for its research and teaching. Research groups contributing to the MSc include those concerned with environmental modelling and observation, past climates, and recent environmental change and biodiversity.

The programme draws on the unrivalled strengths of UCL in environment modelling. Our expertise encompasses state-of-the-art global climate models, regional ocean models, advanced hydrodynamic and hydrological simulations, palaeoclimate reconstruction over geological to recent historical timescales, earth observation-derived vegetation and carbon cycle modelling, and model-based assessment of climate change impacts on coastal, estuarine and freshwater systems.

Read less
Mathematical models are fundamental to how we understand, analyse and design transportation systems, but these models face challenges from the rapidly changing nature of mobility. Read more

Mathematical models are fundamental to how we understand, analyse and design transportation systems, but these models face challenges from the rapidly changing nature of mobility.

Innovative technologies are being harnessed to deliver new approaches to transport services, and huge volumes of data create new opportunities to examine how patterns of movement are evolving.

If you’re a highly numerate graduate with a desire to apply your quantitative skills to the real world, or a practitioner working in the sector, this course will take you to the next level and prepare you for a career as a transport modelling specialist.

97% of our graduates find employment in a professional or managerial role, or continue with further studies.*

Experience a course designed in collaboration with employers, learning skills the industry desperately needs to unlock the full potential of big data.

Learn to think creatively, beyond the standard application of established solutions, and use your technical expertise across multiple scenarios.

Develop and apply mathematical models to analyse and improve the performance of transportation networks and flows:

  • Use mathematical models to represent transport systems and forecast demand
  • Test solutions and strategies using different models
  • Apply optimisation algorithms to traffic networks
  • Develop computer code to enhance and visualise outputs
  • Critically evaluate and adapt existing modelling techniques
  • Write scientific reports for technical and lay audiences
  • Develop research and advanced scholarship skills.

And experience what it is like to be part of a project team working across disciplinary boundaries within the transport sector. Through this, gain insights into how modelling, environmental science, planning, economics and engineering can work together to develop sustainable solutions to global challenges. This industry-inspired approach will enable you to apply your knowledge to real-world issues in the field.

Your colleagues will be among the best and brightest from the UK and across the globe. Together you will learn mathematical modelling skills that can be applied to design smarter transport solutions founded on robust methods.

With a strong focus on industry needs, our degrees will prepare you for employment in your chosen field. They will also address the multi-disciplinary nature of transport – enabling you to make effective decisions for clients, employers and society.

Other Study Options

This programme is available part time, allowing you to combine study with other commitments. You can work to fund your studies, or gain a new qualification without giving up an existing job. We aim to be flexible in helping you to put together a part-time course structure that meets your academic goals while recognising the constraints on your study time.

You can also study this subject at Postgraduate Diploma level, part time or full time, or at Postgraduate Certificate level with our PGCert in Transport Studies.

Course content

Alongside specialist modules, study common modules that will address key issues currently facing transport industry professionals. These provide you with a holistic overview of transport problems and approaches to policy formulation.

Our new Transport Integrated Project module enables you to employ project management scenario-based learning. You will cover a range of transport disciplines and be supervised by experts in the field. Join forces with a project team of other students from our other degrees to develop a solution to a ‘real-world’ transport problem, identifying how your own interests need to interact effectively with others to achieve an effective solution.

You will learn about the methods and models used in transport analysis and the software packages that implement them. You will be trained to think creatively, beyond the standard application of established ‘solutions’ and learn how to use your technical expertise as a mathematical modeller in interdisciplinary teams. Being equipped with these skills will open up a range of future career paths, whether in government, consultancy, academia or going on to further study.

The core of the programme includes the following compulsory modules, which have been designed together to enhance the learning potential of this programme:

  • Concepts and Mathematics for Modelling Transport – examines how transport systems can be modelled and the methods, assumptions, tools and algorithms involved (Semester 1).
  • Transport Modelling in Practice – applies the theory covered above to realistic example scenarios. Includes use of state-of-the-art commercial software (Semester 1).
  • Transport Data Science – how to manage, interrogate and visualise ‘big data’, and incorporate it into transport modelling (Semester 2).

Course structure

Compulsory modules

  • Shaping Future Transport Systems 15 credits
  • Concepts and Mathematics for Modelling Transport Systems 30 credits
  • Transport Data Science 15 credits
  • Transport Modelling In Practice 15 credits
  • Transport Dissertation 60 credits
  • Transport Integrated Project 15 credits

For more information on typical modules, read Mathematical Modelling for Transport MSc Full Time in the course catalogue

For more information on typical modules, read Mathematical Modelling for Transport MSc Part Time in the course catalogue

Learning and teaching

The programme involves a range of teaching methods, supported by independent learning. In addition to the traditional lecture and seminar formats, students experience a blend encompassing workshops, computer exercises, practical sessions, directed reading, reflective journal, student-led discussions and tutorials.

Assessment

Assessment is equally varied and will include coursework essays, case-study reports, group assignments, posters, presentations and exams.

Career opportunities

Links with Industry

This programme was developed in consultation with practitioners in the transport modelling sector, to ensure that its graduates will be highly employable. Many consultancies, local authority planning departments and other organizations in the transport industry have expressed interest in this new programme.

Jacobs, one of the world's leading professional services firms, has pledged their support for this new course by offering two prizes for academic excellence, a commitment to engage with students through lectures and workshops, and an invitation to students on the course to attend the Summer Placements they run each year around the UK.

Many of Jacobs' current Directors and Senior Professionals are ITS Alumni and this year it made offers to six of our Transport Masters students.



Read less
Our highly sought-after graduates benefit from a programme that integrates training in identifying, framing and effectively researching social problems with a leading computational approach to social science. Read more
Our highly sought-after graduates benefit from a programme that integrates training in identifying, framing and effectively researching social problems with a leading computational approach to social science.

Furthermore, we are home to the Centre for Research in Social Simulation (CRESS) and its world-leading expertise in agent-based modelling.

PROGRAMME OVERVIEW

Interest in simulation has grown rapidly in the social sciences. New methods have been developed to tackle this complexity. This programme will integrate traditional and new methods, to model complexity, evolution and the adaptation of social systems.

These new methods are having an increasing influence on policy research through a growing recognition that many social problems are insufficiently served by traditional policy modelling approaches.

The Masters in Social Science and Complexity will equip you to develop expertise in the methods necessary to tackle complex, policy-relevant, real-world social problems through a combination of traditional and computational social science methods, and with a particular focus on policy relevance.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time over two academic years. It consists of eight taught modules and a dissertation. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Data Analysis
-Field Methods
-Computational Modelling
-Theory Model Data
-Modelling the Complex World
-Policy Modelling
-Theory and Method
-Statistical Modelling
-Evaluation Research
-Dissertation

EDUCATIONAL AIMS OF THE PROGRAMME

The main aims of the programme are to:
-Provide an appropriate training for students preparing MPhil/PhD theses, or for 
 students going on to employment involving the use of social science and policy research
-Provide training that fully integrates social science, policy modelling and computational methodologies to a high standard
-Provide training resulting in students with high quality analytic, methodological, computational and communication skills

PROGRAMME LEARNING OUTCOMES
The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-Develop skills in tackling real world policy problems with creativity and sound methodological judgment
-Cover the principles of research design and strategy, including formulating research 
questions or hypotheses and translating these into practicable research designs and models
-Introduce students to the methodological and epistemological issues surrounding research in the social sciences in general and computational modelling in particular
-Develop skills in programming in NetLogo for the implementation of agent-based models for the modelling of social phenomena
-Develop skills in the acquisition and analysis of social science data
-Make students aware of the range of secondary data available and equip them to evaluate its utility for their research
-Develop skills in searching for and retrieving information, using library and Internet resources
-Develop skills in the use of SPSS, and in the main statistical techniques of data analysis, including multivariate analysis
-Develop skills in the use of CAQDAS software for the analysis of qualitative data
-Develop skills in writing, in the preparation of a research proposal, in the presentation ofresearch results and in verbal communication
-Help students to prepare their research results for wider dissemination, in the form of seminar papers, conference presentations, reports and publications, in a form suitable for a range of audiences, including academics, stakeholders, policy makers, professionals, service users and the general public

Knowledge and understanding
-Show advanced knowledge of qualitative, quantitative and computational methodologies in the social science
-Show advanced knowledge of modelling methodologies, model construction and analysis
-Show critical understanding of methodological and epistemological challenges of social science and computer modelling
-Show critical awareness and understanding of the methodological implications of a range of sociological theories and approaches
-Show understanding the use and value of a wide range of different research approaches across the quantitative and qualitative spectra
-Show advanced knowledge in data collection, analysis and data driven modelling
-Show advanced knowledge of policy relevant social science research and modelling
-Show advanced understanding of the policy process and the role of social science and modelling therein
-Show advanced knowledge of statistical modelling

Intellectual / cognitive skills
-Systematically formulate researchable problems; analyse and conceptualise issues; critically appreciate alternative approaches to research; report to a range of audiences
-Conceptual development of Social Science and Complexity models to creatively enhance the understanding of social phenomena
-Integration of qualitative, quantitative and computational data
-Judgement of problem-methodology match
-Analyse qualitative and quantitative data drawn both from ‘real world’ and ‘virtual world’ environments, using basic and more advanced techniques, and draw warranted conclusions
-Develop original insights, questions, analyses and interpretations in respect of research questions
-Critically evaluate the range of approaches to research

Professional practical skills
-Formulate, design, plan, carry out and report on a complete research project
-Use the range of traditional and computational techniques employed in sociological research
-Ability to produce well founded, data driven and validated computational models
-Generate both quantitative and qualitative data through an array of techniques, and select techniques of data generation on appropriate methodological bases
-Employ a quantitative (SPSS) and qualitative software package to manage and analyse data
-Plan, manage and execute research as part of a team and as a sole researcher
-Ability to communicate research findings models in social science and policy relevant ways
-Ability to manage independent research

Key / transferable skills
-Communicate complex ideas, principles and theories by oral, written and visual means
-Apply computational modelling methodology to complex social issues in appropriate ways
-Creativity in approaching complex problems and a the ability of communicating and justifying problem solutions
-Apply computing skills for computational modelling, research instrument design, data analysis, and report writing and presentation
-Work to deadlines and within work schedules
-Work independently or as part of a team
-Demonstrate experience of a work environment

PLACEMENTS

On the MSc Social Science and Complexity, we offer the opportunity to take a research placement during the Easter vacation. This will provide you with first-hand experience of real-life policy research in action.

Organisations in which placements might be possible are a number of consultancies (e.g. Sandtable), government departments (e.g. Defra) and academic research centres (e.g. Centre for Policy Modelling at Manchester).

CAREER OPPORTUNITIES

Computational methods and especially computer-based simulations, are becoming increasingly important in academic social science and policy making.

Graduates might find career opportunities in government departments, consultancies, government departments, consultancies, NGOs and academia.

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The course addresses the design, development, procurement, use and management of models and simulations for applications in experimentation, training, testing, analysis and assessment of military forces, systems and equipment. Read more

Course Description

The course addresses the design, development, procurement, use and management of models and simulations for applications in experimentation, training, testing, analysis and assessment of military forces, systems and equipment.

Overview

On successful completion of the course you will be familiar with the technologies, methodologies, principles and terminology of Modelling and Simulation as used across defence, including the challenges and issues as well as the benefits. Through use of facilities such as the Simulation and Synthetic Environment Laboratory (SSEL), with its wide range of specialist applications, students will gain a broad understanding of modelling and simulation in areas such as training, acquisition, decision-support, analysis and experimentation.

•10 places are normally available for the full-time cohort
•The course is suitable for both military and civilian personnel, including those from defence industry and government departments

Start date: Full-time: annually in September. Part-time: by arrangement

Duration: Full-time MSc - one year, Part-time MSc - up to three years, Full-time PgCert - one year, Part-time PgCert - two years, Full-time PgDip - one year, Part-time PgDip - two years

English Language Requirements

Students whose first language is not English must attain an IELTS score of 6.5.

Course overview

The modular form of the course, consisting of a compulsory core and a selection of standard and advanced modules, enables each student to select the course of study most appropriate to their particular requirements.

Standard modules normally comprise a week of teaching (or equivalent for distance learning) followed by a further week of directed study/coursework (or equivalent for part time and distance learning).

Advanced modules, which enable students to explore some areas in greater depth, are two week (or equivalent for part time and distance learning) individual mini-projects on an agreed topic in that subject, which includes a written report and oral presentation.

- MSc students must complete a taught phase consisting of eight standard modules, which includes two core modules (Foundations of Modelling and Simulation and Networked and Distributed Simulation), plus four advanced modules, followed by an individual thesis in a relevant topic. Thesis topics will be related to problems of specific interest to students and sponsors of local industry wherever possible.

- PgDip students are required to undertake the same taught phase as the MSc, but without the individual thesis.

- PgCert students must complete the core module (Foundations of Modelling and Simulation) together with five other modules; up to three of these may be advanced modules.

Modules

Part-time students will typically not study as a cohort, but will follow an agreed individual programme of study, attending courses as convenient.
Advanced Modules, which typically comprise individual self-study, can be selected to follow on from any standard modules that have been chosen.
Standard Modules, which typically involve traditional classroom instruction and/or VLE-based delivery, can be chosen from the following:

Core:
- Foundations of Modelling and Simulation
- Networked and Distributed Simulation

Elective:
- Advanced Computer Graphics
- Advanced Discrete and Continuous Simulation
- Advanced Logistics Modelling
- Advanced Modelling and Simulation
- Advanced War Gaming and Combat Modelling
- Computational Statistics
- Computer Graphics
- Discrete and Continuous Simulation
- High Performance and Parallel Computing
- Intelligent Systems
- Intelligent Systems - Research Study
- Logistics Modelling
- Networked and Distributed Simulation Exercise
- Neural Networks
- Programming and Software Development in C
- Statistical Analysis and Trials
- War Gaming and Combat Modelling
- Weapon System Performance Assessment

Individual Project

An individual research project on an agreed topic that allows you to demonstrate your technical expertise, independent learning abilities and critical appraisal skills.

Assessment

Continuous assessment, written examinations, oral vivas and (MSc only) thesis.

Proportions of different assessment types will vary according to programme and modules taken. For an MSc these might typically comprise 15-24% continuous assessment (written and oral), 36-45% written examinations and 40% thesis/dissertation.

Career opportunities

Equips you for simulation-specific appointments within the armed forces or government, or in the defence related activities of commercial organisations.

For further information

On this course, please visit our course webpage http://www.cranfield.ac.uk/Courses/Masters/Defence-Simulation-and-Modelling

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
IN BRIEF. Maximise your employability potential by developing much needed environment-sector knowledge and skills. Develop the interdisciplinary expertise that will enable you to excel in your career. Read more

IN BRIEF:

  • Maximise your employability potential by developing much needed environment-sector knowledge and skills
  • Develop the interdisciplinary expertise that will enable you to excel in your career
  • Develop your professional network by working on projects in both an academic and business context
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The MSc Environmental Modelling offers a broad curriculum that extends from the technical detail of environmental process modelling, to critical analysis of the role of modelling within decision-making processes, and the relevance of modelling to risk perception and management.

By bridging the divide between science and decision-making across a range of modelling contexts, this course adopts a truly interdisciplinary approach to the subject of environmental modelling. The inclusion of strong vocational and professional elements, in addition to traditional academic approaches is intended to ensure that graduates are equipped to enter a range of environment-related careers.

This course is particularly suited to those who wish to pursue a career with an environmental modelling focus, which is a priority area for environment sector employers in both the UK and abroad. This course will also prepare you to enter a broad range of careers across consultancy, business, research and government organisations. Graduates of this course will also be well placed to continue to a PhD programme.

COURSE STRUCTURE

This course has both full-time and part-time routes, comprising of three, 14-week semesters or five, 14-week semesters, which you can take within one or three years respectively.

TEACHING

This course offers a blended learning experience designed to cater for a range of learning styles:

  • Lectures, tutorials and seminars are supported by in-class exercises
  • Pre- and post-session study is administered through the Virtual Learning Environment
  • Practical classes enable you to develop your environmental modelling skills
  • Case studies and business-focused projects develop your professional and subject-specific skills
  • Field work and site visits develop your practical, observational and analytical skills
  • You also have the opportunity to discuss and exchange professional experiences with the course team and invited specialist speakers

ASSESSMENT

Each module is assessed individually through coursework, comprising individual essays or group report presentations.

CAREER PROSPECTS

This course is particularly suited to those who wish to pursue a career with an environmental modelling focus, which is a priority area for environmentsector employers in both the UK and abroad. This course will also prepare you to enter a broad range of careers across consultancy, business, research and government organisations. Graduates of this course will also be well placed to continue to a PhD programme.

LINKS WITH INDUSTRY

Through this course students have the opportunity to undertake some unpaid consultancy work for a client.  Potential clients include business, Government and academic institutions.  Working for clients in this way provides students with ‘real world’ experience to add to their CV and develops a broad range of highly attractive employability skills, including project management, communication, negotiation and problem solving.

FURTHER STUDY

After completion of this course, you may wish to specialise in a chosen subject area in one of the School’s two main research centres: Ecosystems and Environment Research Centre (EER) or Biomedical Research Centre (BRC).



Read less
Environmental Monitoring, Modelling and Management enables you to gain a deeper understanding of environmental processes and techniques for managing environmental change. Read more
Environmental Monitoring, Modelling and Management enables you to gain a deeper understanding of environmental processes and techniques for managing environmental change. Study how to assess the causes and manage the consequences of environmental, climatic and land use change. Students choose to take either a research or a consultancy stream.

Key benefits

- Focuses on the delivery of important technical skills (GIS, Remote Sensing, modelling and monitoring).

- Students form strong links with departmental research groups and external organisations in the UK and beyond.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/environmental-monitoring-modelling-and-management-msc.aspx

Course detail

- Description -

The MSc Environmental Monitoring, Modelling and Managementprogramme provides advanced-level core training in environmental modelling and monitoring, remote sensing and Geographical Information Systems (GIS), and in the research methods training required to use them effectively. Modules examine how to assess the causes and consequences of environmental, climatic and land-use change. Students can opt for a research pathway or a consultancy pathway. The two pathways share key training elements. The research pathway links a student with a departmental research group working on research aspects of environmental modelling and monitoring, and is designed explicitly for those going on to a career in research. The consultancy pathway focuses on the application of key training to environmental management, and is designed for those who wish to use their skills directly in environmental management.

- Course purpose -

For those seeking a deeper understanding of environmental processes and techniques for managing environmental change. Provides advanced-level training in the application of environmental modelling and monitoring, remote sensing and geographical information systems (GIS) to environmental management and the prevention, mitigation or adaptation to environmental change.

- Course format and assessment -

Specialist taught modules assessed by report, presentation, lab work and occasionally by examination. The three-month dissertation is compulsory and can be taken overseas or in the UK.

Career prospects

National or international consultancies and NGOs; private and public service research and management; further higher level research in UK and overseas universities and research centres.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. Read more
Our MSc Complex Systems Modelling programme enables you to apply mathematical techniques in the rapidly developing and exciting interdisciplinary field of complex systems. This field of study is applicable to areas as diverse as biomedical, natural, economic and social sciences. It is suitable for those who wish to work in research and development in an academic or industrial environment.

Key benefits

- Unrivalled location at the centre of London.

- Research-led interdisciplinary programme.

- Modern theory of complex systems modelling.

- Taught by experts in the field.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/complex-systems-modelling-msc.aspx

Course detail

- Description -

Modern societies rely on a wide range of infrastructures, institutions and technologies whose complexity has grown dramatically in the recent past. Consequently there is an ever-growing demand for expertise in complex systems modelling as a prerequisite to understanding, maintaining and further developing such systems.

The MSc in Complex Systems Modelling is a taught programme with a significant research component in the rapidly developing and exciting interdisciplinary field of Complex Systems. It covers scientific areas ranging from biomedical and natural to economic and social sciences, and consists of a wide range of modules including the following core modules:

- Research Methods and Advanced Topics in Complex Systems
- Theory of Complex Networks
- Equilibrium Analysis of Complex Systems

You must also complete a project in a relevant area after passing the written examinations. This can be carried out and supervised in the department or in appropriate academic or industrial institutions outside the College.

- Course purpose -

For graduates in mathematics, or in other suitable scientific disciplines with a strong background in mathematics, who want to work in research and development in an academic or industrial environment. The programme aims to develop a knowledge and understanding of complex systems modelling and their uses, and to enable students to use mathematical techniques to quantify, predict and improve such systems.

- Course format and assessment -

Primarily written examinations, some with coursework element, in eight lecture modules, plus an oral presentation and assessed report on the research project.

Career prospects

Our graduates are highly sought after: the applicability of complex systems modelling to areas as diverse as biomedical, natural, economic and social sciences, results in a broad range of opportunities. Some graduates are employed by the companies or laboratories that supervise their MSc research projects, or continue to PhD study.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Global Environmental Modelling at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Global Environmental Modelling at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

The MSc by Research Global Environmental Modelling enables students to pursue a one year individual programme of research. The Global Environmental Modelling programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

You will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features

Swansea is a research-led University and the Department makes a significant contribution, meaning that as a postgraduate Geography student you will benefit from the knowledge and skills of internationally renowned academics.

In the latest Research Assessment Exercise, 95% of Geography research at Swansea was judged to be of international quality, and 60% was regarded as World-leading or internationally excellent.

Facilities

As a student of the Global Environmental Modelling programme you will have access to:

Computer laboratory with 24 computers providing general IT software and programmes dedicated to Geographic Information Systems (GIS) and Remote Sensing Computer laboratory with 10 high-performance Linux workstations delivering software tools for advanced GIS and remote sensing applications

Specialist laboratory suites for stable isotope ratio analysis; tree ring analysis; extraction and identification of organic compounds; pollen extraction and analysis; rainfall simulation; tephra analysis; soil and sediment characterisation

In addition, the computing facilities include 15 dual-processor workstations for Earth Observation, a 20-node multiprocessor Beowulf cluster, and the Department’s IBM ‘Blue Ice’ Supercomputer, used mainly for climate and glaciological modelling.

Research

All academic staff in Geography are active researchers and the department has a thriving research culture and a strong postgraduate community.

The results of the Research Excellence Framework (REF) 2014 show that Geography at Swansea University is ranked joint 9th in the UK for research impact and 11th in the UK for research environment.

Research groups include:

Environmental Dynamics

Glaciology

Global Environmental Modelling and Earth Observation

Migration, Boundaries and Identity

Social Theory and Urban Space



Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This programme develops mathematical modelling skills and provides mathematical techniques required by industry. The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules. Read more
This programme develops mathematical modelling skills and provides mathematical techniques required by industry.

The period October to June is devoted to lectures, tutorials and practical sessions comprising the core modules.

This is followed by a period of about 14 weeks devoted to an individual project either in an industrial or engineering company or at the University.

Core study areas include mathematical modelling, regular and chaotic dynamics, programming and numerical methods, advanced reliability, availability and maintainability, elements of partial differential equations, static and dynamic optimisation and fluid mechanics.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Programme modules

Compulsory Modules:
Semester 1
- Mathematical Modelling I
- Regular and Chaotic Dynamics
- Programming and Numerical Methods
- Advanced Reliability, Availability and Maintainability

Semester 2
- Mathematical Modelling II
- Elements of Partial Differential Equations
- Static and Dynamic Optimisation
- Fluid Mechanics

Assessment

A combination of written examinations, reports, individual and group projects, and verbal presentations.

Careers and further Study

Graduate employment over a wide range of industries encompassing aerospace, automotive electronics, and computer interests as well as software houses, insurance companies, and research establishments and institutions.

Scholarships and sponsorships

A limited number of scholarships are available for this programme as well as the loyalty bonus scheme which reduces fees for Loughborough graduates.

Why choose mathematics at Loughborough?

Mathematics at Loughborough has a long history of innovation in teaching, and we have a firm research base with strengths in both pure and applied mathematics as well as mathematics education.

The Department comprises more than 34 academic staff, whose work is complemented and underpinned by senior visiting academics, research associates and a large support team.

The programmes on offer reflect our acknowledged strengths in pure and applied research in mathematics, and in some cases represent established collaborative training ventures with industrial partners.

- Mathematics Education Centre (MEC)
The Mathematics Education Centre (MEC) at Loughborough University is an internationally renowned centre of research, teaching, learning and support. It is a key player in many high-profile national initiatives.
With a growing number of academic staff and research students, the MEC provides a vibrant, supportive community with a wealth of experience upon which to draw.
We encourage inquiries from students who are interested in engaging in research into aspects of learning and teaching mathematics at Masters, PhD and Post Doc levels. Career prospects With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

- Career prospects
With 100% of our graduates in employment and/or further study six months after graduating, career prospects are excellent. Graduates
go on to work with companies such as BAE Systems, Citigroup, Experian, GE Aviation, Mercedes Benz, Nuclear Labs USA and PwC.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mathematics/industrial-maths-modelling/

Read less
he contribution of mathematical and computational modelling to the understanding of biological systems has rapidly grown in recent years. Read more
he contribution of mathematical and computational modelling to the understanding of biological systems has rapidly grown in recent years. This discipline encompasses a wide range of life science areas, including ecology (e.g. population dynamics), epidemiology (e.g. spread of diseases), medicine (e.g. modelling cancer growth and treatment) and developmental biology.

This programme aims to equip students with the necessary technical skills to develop, analyse and interpret models applied to biological systems. Course work is supported by an extended and supervised project in life science modelling.

Students will take a total of 8 courses, 4 in each of the 1st and 2nd Semesters followed by a 3-month Project in the summer. A typical distribution for this programme is as follows:

Core courses

Modelling and Tools;
Mathematical Ecology;
Dynamical Systems;
Mathematical Biology and Medicine.

Optional Courses

Optimization;
Numerical Analysis of ODEs;
Applied Mathematics;
Statistical Methods;
Stochastic Simulation;
Partial Differential Equations;
Numerical Analysis;
Geometry;
Climate Change: Causes and Impacts;
Biologically Inspired Computation;
Climate Change: Mitigation and Adaptation Measures.

Typical project subjects

Population Cycles of Forest Insects;
Modelling Invasive Tumour Growth;
The replacement of Red Squirrels by Grey Squirrels in the UK;
Wiring of Nervous System;
Vegetation Patterning in Semi-arid Environments;
Daisyworld: A Simple Land Surface Climate Model.

Read less
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Read more
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Computational modelling has become an essential part of industrial product development; the manufacturing sector in particular has been experiencing a significant uptake of computational engineering technologies to increase its competitiveness in the global market. This programme is designed for engineering and science graduates, providing a wide exploration of these new and advanced technologies. Problem based learning facilities the application of the modelling techniques.

Subject guide and modules

The range of modules reflects the nature of engineering modelling and the uses it is put to in engineering and commercial practice.
Core modules:
-Computational Fluid Dynamics and Applications (ME4501)
-Practical Numerical Methods (ME4510)
-CAD Principles and Materials Selection (ME4505)
-Advanced Computer Aided Design (ADVCAD) (ME4518)
-Major Project (PD4000)
-Research Project (PD4001)
-Renewable Energy (ME4504)
-Sustainable Design (PD4005)

Elective Modules:
-Solid Mechanics and Finite Element Analysis (ME3070)
-Strategic Finance (EM4001)
-Project Management (EM4003)
-New Product Development (EM4006)
-Innovation Business Development (PD4008)
-Finite Element Analysis: Theory and Application (ME4502)

Learning, teaching & assessment

The modules in this programme are delivered with lectures and lab-based tutorials giving a good balance between scientific methodologies and hands-on practice.

There is a heavy emphasis on the use of computational engineering methods and this is reflected in the way the programme is delivered and assessed.

Modules are assessed through either course work or exams. The major project is assessed by dissertation; examples of past major projects include development of CFD code, aero and structural dynamics of vehicles and aircraft, and analysis of development of industrial machines.

Personal development

Along with the range of technical skills, the Programme aims to develop self reliance, project management, IT communications and research skills.

You will develop and deliver a major dissertation and the necessary project management processes. You will also make several individual presentations and get chance to hone your interview techniques.

Career prospects

Career prospects for graduates are excellent. The programme puts practical engineering modelling, research and project management skills in to the hands of graduate. This helps career progression in industries where computer-based technology is required including manufacturing, R&D, science, IT, design and academia.

Recent graduates have been employed in a range of jobs including:
-Product development with a manufacturer of domestic heating products
-Computer aided design with a manufacturer of military/surveillance equipment

Professional accreditation

The MSc Mechanical Engineering (Modelling) is accredited by the Institution of Mechanical Engineers (IMechE) for the purpose of meeting the educational requirements of Chartered Engineer (CEng).

Read less

Show 10 15 30 per page



Cookie Policy    X