• Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
Middlesex University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cardiff University Featured Masters Courses
"mobile" AND "communicati…×
0 miles

Masters Degrees (Mobile Communications)

  • "mobile" AND "communications" ×
  • clear all
Showing 1 to 15 of 195
Order by 
This is an advanced MSc course in the rapidly expanding area of mobile communications and networks. This course is concerned with the concepts, applications, design, development and deployment of mobile communication systems and networks. Read more
This is an advanced MSc course in the rapidly expanding area of mobile communications and networks. This course is concerned with the concepts, applications, design, development and deployment of mobile communication systems and networks. Students will develop a detailed knowledge and critical understanding of the core skills in mobile communications and networks and use a significant range of principal and specialist skills, techniques and practices in the domain of mobile communications and networks. The course will provide a stream of graduates of a calibre capable of developing and implementing creative solutions to the problems encountered in mobile communication systems and networks.

This is a hardware-oriented course and is aimed directly at electrical engineering graduates.

Core Subject Areas
•Digital Signal Processing
•Digital Design
•Networks and Communications
•Research Methods Critical Analysis and Project Planning
•Principles of Mobile Communications
•RF Mobile Communication Systems
•Project Phase 1
•MSc Project
.Optional Subject Areas
•Software Engineering 2
•Network Applications
.
Heriot-Watt University is set in almost 400 acres of woodland, making it one of the most beautiful places to study and live. Less than ten miles and a 15-minute bus ride into the centre of Edinburgh, its proximity to this architecturally famous city only adds to its appeal.

Edinburgh is renowned as a centre of learning and discovery; studying and living here is a stimulating and inspirational experience. It offers a unique city environment. It's culturally diverse, historically significant, socially alive, environmentally aware, politically central and visually stunning. The centre of Edinburgh has been awarded UNESCO World Heritage Site status in recognition of its stunning urban landscape in the medieval Old Town and the Georgian New Town. In addition, the city encompasses some striking modern architecture including the parliament building and the Museum of Scotland.

To top it all, Edinburgh is lucky to have significant and magnificent green spaces: the impressive extinct volcano, Arthur's Seat, and its associated park, lie at the heart of the city. If that wasn't enough, Edinburgh has 112 public parks and more trees per person than any other British city.

You're also within easy striking distance of some of the world's most beautiful wild landscapes, from the Trossachs in the west and the Highlands in the north, to the Borders in the south.

Read less
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances. Read more
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances.

We work closely with industry and understand the skills and knowledge required to operate successfully in this field. Our specialised curriculum comprehensively covers the principles and techniques involved. It will equip you with the toolset needed to design and develop next generation mobile communication and wireless systems. As fresh technologies emerge in this ever-expanding field, you will have the essential formal theory and confidence in your practical skills to support your long-term career development.

Core study areas include fundamentals of digital signal processing, personal radio communications, information theory and coding, communication channels and a research project.

Optional study areas include a research project, digital signal processing for software defined radio, mobile network technologies, intelligent signal processing, advanced individual project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Programme modules

All modules on the programme are compulsory. Together they form an intensive and comprehensive curriculum of the principles and techniques required to design and develop next generation mobile communication systems, enabling successful students to contribute effectively in a commercial environment.

Semester 1:
- Fundamentals of Digital Signal Processing
- Personal Radio Communications
- Information Theory and Coding
- Communication Channels

Semester 2:
- Research Project
- Digital Signal Processing for Software Defined Radio
- Mobile Network Technologies
- Intelligent Signal Processing
- Advanced Individual Project

Facilities

Importantly, the course is supported by the Centre for Mobile Communications Research and by way of advanced projects encourages access to staff and post-doctoral researchers who are part of our University’s thriving academic community. State-of-the-art testing and measurement systems related to communications engineering support this concentration of expertise.

Careers and further study

Gaining this masters degree shows potential employers that you have achieved the highly developed and complex levels of knowledge, which enable you to develop in-depth and creative responses to hardware and software technical challenges in this field.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Read less
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications. Read more
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications.

This course has two main components: 2G - 4G mobile communications, and fixed high-speed and multi-service networks. Emphasis is given to developing essential industrial and commercial skills. The project is a major element of the course and gives you the opportunity to enhance your career prospects by acquiring in-depth knowledge of a key aspect of telecommunications technology.

Why choose this course?

You will be taught industrially relevant techniques using some of the same tools and software used by the communications industry. Our telecommunications laboratories are equipped for the design, testing and analysis of mobile wireless and optical networks using industry standard tools such Asset, Ranopt, OptSim, OpNet and Matlab. You will have the opportunity to analyse real data from operational 2G and 3G networks and to design 3G and LTE networks.

Our networking laboratories are equipped with modern Cisco routers, switches and security devices to enable design construction and testing of complete high bandwidth secure, wired and wireless networks. You will have the opportunity to put the skills you have gained into practice if you choose to undertake our 1 year optional placement. The universal nature of the technical skills developed in our programmes means our courses are of equal relevance to both new graduates and those with many years of industrial experience.

This course in detail

MSc in Mobile and High Speed Telecommunication Networks has a modular course-unit design providing you with maximum flexibility and choice. To qualify for a master’s degree, you must pass modules amounting to 180 credits. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The MSc in Mobile and High Speed Telecommunication Networks with placement enables you to work in industry for a year in the middle of your course to give valuable workplace experience. Placements are not guaranteed, but the departments dedicated placement team will help with the process of finding and applying for placements. To qualify for a master’s degree with placement, you must pass modules amounting to 180 credits plus the zero credit placement module. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Diploma in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to brush up their skills. To qualify for a Postgraduate Diploma, you must pass modules amounting to 120 credits. This comprises six taught modules (20 credits each). In some cases, it may be possible for a student on a Postgraduate Diploma to do 3 taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Certificate in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to learn a specific area in this rapidly changing discipline. To qualify for a Postgraduate Certificate, you must pass modules amounting to 60 credits. This comprises three taught modules (20 credits each).

We also offer a Postgraduate Certificate Mobile and High Speed Telecommunication Networks Research Project.

In Semester 1 you can choose from the following modules:
-Research and Scholarship Methods (compulsory for MSc)
-Digital Mobile Communications (alternative compulsory for MSc and PGDip)
-Digital Communications (alternative compulsory for MSc)
-Network Principles (alternative compulsory for MSc)

In Semester 2 you can choose from the following modules:
-Advanced Mobile Communications (compulsory for MSc and PGDip)
-High Speed Mobile Communications (compulsory for MSc and PGDip)
-Optical and Broadband Networks (alternative compulsory for MSc)
-Multiservice Networks (alternative compulsory for MSc)

As courses are reviewed regularly, the list of taught modules you choose from may vary from the list here.

Students undertaking an MSc with placement will do a 1 year placement in industry. The placement will be undertaken after the taught component and before doing the dissertation.

Students studying for an MSc will also take:
-MSc Dissertation (completed over summer)

Teaching and learning

The taught modules include lectures, seminars, library and internet research, and practical design and experimentation. Assessments include coursework exercises, presentations, essays and examinations (maximum 50% for taught modules).

Teaching staff include experienced academic staff and recent recruits from the telecommunications industry. Visiting speakers give you relevant and up-to-date developments from within the industry.

Laboratory facilities include the latest industry standard tools for mobile and wireless network analysis and software modelling facilities to enable network design.

Careers and professional development

Our MSc students come from all over the world and follow careers in many countries after their graduation. They are engaged in activities such as 3G network design, WiMax and LTE roll-out, handset compliance, DVB-H planning, communications software development and university lecturing. Many of them have commented on how the course content and training enabled their careers to flourish.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Communications Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Communications Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As a student on the MSc in Communications Engineering, you will be provided with an in-depth understanding of the technology and architecture of computer communications, photonics and telecommunication networks, wireless telecommunications and related wireless information technologies.

Key Features of MSc in Communications Engineering

The practical knowledge and skills you will gain as a student on the MSc Communications Engineering course include being presented with the essential element of modern optical communication systems based on single mode optical fibres from the core to the access, evaluating bandwidth-rich contemporary approaches.

The MSc Communications Engineering course also covers advanced networking topics including network performance and network security. This is supported with some practical knowledge and skills for project and business management principles.

As a student on the MSc Communications Engineering course, you will also be introduced to technologies underlying the compressions and transmission of digital video over networking platforms, gain knowledge on the channel models and associated impairments that typically limit the performance of wireless systems, and learn to design optimum digital communication receivers for some basic communications channel models.

The MSc in Communications Engineering is modular in structure. Communications Engineering students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation. Students on the Communications Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time MSc in Communications Engineering Delivery mode:

The part-time scheme is a version of the full-time equivalent MSc in Communications Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Timetables for the Communications Engineering programme are typically available one week prior to each semester.

Modules

Modules on the MSc Communications Engineering course can vary each year but you could expect to study:

RF and Microwave
Signals and Systems
Entrepreneurship for Engineers
Nanophotonics
Micro and Nano Electro-Mechnical Systems
Lasers and applications
Wireless Communications
Digital Communications
Optical Communications
Optical Networks
Communication Skills for Research Engineers
Research Dissertation
MSc Dissertation - Communications Engineering

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching which benefit students on the MSc in Communications Engineering course. In addition the University provides open access IT resources.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

This discipline has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students.

Careers

The MSc Communications Engineering is suitable for those who have a career interest in the field of communication systems, which has been fundamentally changing the whole world in virtually every aspect, and would like to gain lasting career skills and in-depth knowledge to carry out development projects and advanced research in the area of communication systems.

Communications Engineering graduates can seek employment in wireless communication systems and network administration, and mobile applications development.

Student Quotes

“I was fascinated by the natural beauty of Swansea before I came here. Swansea University is near the beach so you can walk around the beach at any time. This Master’s is very useful to enhance your ability and enrich your principle of the academic knowledge.”

Zhang Daping, MSc Communication Systems (now Communications Engineering)

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.

Read less
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Read more
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Embedded systems are the backbone of the digital revolution.

As the complexity of embedded systems increases, the industry needs skilled graduates to fill the talent shortage.

Course detail

With the MSc Embedded Systems and Wireless Networks you'll develop a sound technical knowledge of the fundamentals of electronics, embedded systems, software and hardware, and become an embedded system designer with a multidisciplinary background. You'll develop software programming and hardware design skills, and a broad knowledge of electronics fundamentals.

Graduates of electronic engineering, systems engineering or other appropriate sciences can develop, deepen or update their skills and knowledge in advanced electronic engineering technology and cutting-edge research fields.

This course is ideal for graduate engineers interested in electronics, embedded systems, signal processing, mobile communications and wireless technology.

Modules

• Embedded Real-time Control Systems
• Safety Critical Embedded Systems
• Wireless and Mobile Communications
• Advanced Control and Dynamics
• System Design using HDLs
• Wireless Sensor Networks
• Group Project Challenge
• Dissertation

Format

You'll be taught by experienced specialist academic staff who are experts in basic and advanced electronics, control systems, basic and advanced robotics, mobile communications, wireless sensor networks, embedded systems, power systems, power electronics, signal processing and sensor technology. Many of them are involved in cutting-edge research.

You'll attend lectures, then apply what you've learned to real life through tutorial sessions, case studies, classroom discussions, project work, laboratory exercises and visits to or guest lectures from professionals working in engineering organisations.

Assessment

You are assessed through examinations, coursework, lab-based assessment and oral presentations. An independent examiner assesses your dissertation.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Programme offers core, introductory modules followed by specialised topical modules on the latest aspects of communications technology. Read more
Programme offers core, introductory modules followed by specialised topical modules on the latest aspects of communications technology. Includes an individual research project. Ideal for careers in industry and commerce or further study.

Key benefits

- In depth understanding of the fundamental principles of today’s modern telecommunications systems providing the foundations for further study at PhD level or entrance to the job market in a growing telecommunications industry.

- Unrivalled location in the heart of London giving access to major libraries and leading scientific societies, including the IET.

- Access to speakers of international repute through seminars and external lectures, enabling students to keep abreast of emerging knowledge in the telecommunications field.

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/mobile-and-personal-communications-msc.aspx

Course detail

- Description -

Our programme offers introductory modules followed by specialised topical courses on the latest aspects of communications technology, including personal and mobile wireless communications, communication networks, advanced digital communications theory and techniques and communications signal processing. You will complete eight taught modules. You will also undertake a substantial individual project.

- Course purpose -

For students wishing to work in the telecommunications industry.

- Course format and assessment -

Lectures; tutorials; seminars. Assessed through: coursework; written examinations; and final project report.

Required modules:

- Individual Research Project
- Communication Theory
- Mobile & Personal Communications Systems
- Random Variables & Stochastic Processes
- Network Theory
- Antennas And Propagation
- Communications Theory
- Digital Communications
- Fundamentals Of Digital Signal Processing
- Individual Project
- Mobile And Personal Communications
- Random Variables And Stochastic Processes
- Telecommunications Networks

Career prospects

Careers in industry and commerce or academic research; further study.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This programme will not have a 2016 intake as the content is being extensively improved. Read more

NOTE

This programme will not have a 2016 intake as the content is being extensively improved.

The MSc in Wireless Systems & Logistics Technology provides industry with graduates who possess a thorough knowledge of actual modern radio systems and of the fundamental principles and design constraints embodied in those systems as well as a solid appreciation of the benefits of such systems to the Logistics Industry. The main course components include radiowave propagation, radio systems design, digital signal processing techniques, the rapidly expanding field of mobile radio systems, item-attendant data and RFID/AIDC systems. In line with the overall philosophy of the new University of Hull Logistics Institute, students of the course will study the foundations of Logistics & Supply Chain Management alongside management-oriented students and will enhance their experience through this perspective. Each of these subject areas is addressed by the current research interests and undergraduate teaching of the Logistics Institute and the related Centre for Communications Systems and Technology. The output from many of the Radio Communications area's projects over the past five years forms an important contribution to the course material, particularly in the areas of radio system design, propagation analysis and monitoring and signal processing.

Aims and Objectives

* Enable participants to become reflective practitioners in the areas of radio communications and applications of item attendant data, with particular applications in Logistics
* Provide a theoretical underpinning of RFID, Short Range Radio and more general radio communications systems
* Develop participants understanding of the requirements for appropriate support technology in business
* Develop research and critical thinking skills.

Distinctive features

* A broadly-based course which addresses up-to-the-minute systems and issues
* Utilises industrial case studies to convert theory into practice
* Utilises industry-standard hardware and software
* Development of project skills through Industrially relevant 5-month project

The course has clear links with the mobile communications and Logistics industries which currently offer very good career prospects having shown an almost explosive increase of activity related to the mobile communications industry both in the UK and elsewhere. In particular there has been a recent upsurge of interest in Logistics Technology and RFID with many major industries establishing initiative in the field. Graduates of the course will be suitable for entry into engineering posts in these industries or in government service related to the fields of radio systems and communications equipment design, Logistics and AIDC equipment manufacture and marketing.

It is intended that candidates will gain both subject-specific skills (from specialist taught courses) as well as more general communications skills gained from interaction with other students, assignments and investigative project work.

Read less
We believe that computing and communication networks are two of the most exciting and significant technological developments of modern times. Read more
We believe that computing and communication networks are two of the most exciting and significant technological developments of modern times. Networking is the backbone of all industries and we'll give you the opportunity to explore this technology, making use of materials and equipment from some of the leading industry names.

Based on the feedback we've had from industry, employers and students, we've created this course so that it has a real emphasis on providing you with hands-on technical skills that you can apply in the workplace.

We'll teach you the theories behind core networking principles - looking at how to apply networking technologies to create converged networks and how to apply them in industrial scenarios. You will investigate the tools and techniques required to develop, maintain and secure the various elements that provide 21st century communications.

In addition to this, you will specialise in the design, implementation and management of wired and wireless computer network systems in order to provide the unified communication systems that are becoming the norm.

Our course can also help you to gain the skills needed to get certification of your expertise in using tools from Network Instruments, Cisco Systems and Red Hat.

- Research Excellence Framework 2014: our University demonstrated strength in five emerging areas of research which it entered into the assessment for the first time, including computer science.

Visit the website http://courses.leedsbeckett.ac.uk/networkingsystemsengineering_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Embracing networking technologies is a must for all organisations around the world - that's why there is always a high demand for networking professionals. Possible job titles include network manager, network security specialist, network designer specialist and mobile communications specialist. You will also have a range of career paths available to you in the areas of automation using networking technologies in businesses.

- Network Manager
- Network Security Specialist
- Mobile Communications Specialist

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Careers

We're tremendously proud of our strong links with industry and the research activity of our teaching team ensures the content of our course is kept up-to-date and in line with the needs of the sector.

Recognising the importance for you to learn hands-on skills which you can demonstrate to employers is at the heart of our course. We invite experts from industry to deliver guest lectures and we have strong ties with Generix - a company that provides industry standard networking tools and software. Generix have previously provided our students with workshops on how to use Observer Network Management platform. You will also get the opportunity to study using other industry standard software such as OpenNMS.

Our course recognises the need to have in-depth knowledge of networking principles, design and simulation. Practical elements include network design and performance simulations with OPNET and configuring LAN switches. In addition to this, we will teach you how to deploy and manage convergence networks and employ remote monitoring techniques in industrial scenarios.

Core Modules

Dissertation (40 Credits)
This is an opportunity for you to engage in research and advanced scholarship in a subject area that is appropriate to the course and of your own choosing.

Option Modules (20 Credits Each)
Linux Computing Essentials, Service Oriented Architecture, Mobile Application Development

Mobile & Wireless Communications (20 Credits)
Develop your understanding of mobile cellular networks, satellite communications, and applications that can be implemented on mobile devices. You will build applications and investigate the issues associated with the deployment of these applications.

Network & Convergence Architectures (20 Credits)
An in-depth look at the principles of networking with a focus on the techniques for deploying modern converged networks. We will help you identify the parameters that contribute to network performance in modern day converged networks.

Project Management (20 Credits)
Develop your understanding of the key concepts associated with project management - primarily the planning, organisation and control of resources in order to move a specific task, event or project toward completion.

Engineering Systems Control (20 Credits)
Study real time control issues using the latest PLC controls and emulation software. You will conduct remote monitoring using web enabled software and wireless connectivity.

Network Management (20 Credits)
Study the techniques used by modern network managers to collect management data, look for faults on the network and to identify diagnostic procedures that are on a par with industry standards.

Facilities

- IT Labs
The University is home to a number of modern specialist IT labs equipped with all the up-to-date hardware and software our computing students could need

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Headingley Campus
Our historic Headingley Campus is set in 100 acres of parkland with easy access to Leeds city centre.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols. Read more
We are placing ever greater demands on the Internet, and traditional telecommunication infrastructures are migrating to Internet-based architectures and protocols.

This programme benefits from the research that experts in our 5G Innovation Centre are undertaking to lead the world in the race to the next generation of communications networks.

PROGRAMME OVERVIEW

Our MSc in Communications, Networks and Software covers the key aspects of the changing Internet environment, in particular the convergence of computing and communications underpinned by software-based solutions.

Some of our students undertaking their project are able to work on one of our wide range of testbeds, such as internet technologies, wireless networking, network management and control, and internet-of-things (IoT) applications.

We also have specialist software tools for assignments and project work, including OPNET, NS2/3, and various system simulators.

PROGRAMME STRUCTURE

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Object Oriented Design and C++ (+Lab)
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Speech and Audio Processing and Recognition
-Internet of Things
-Applied Mathematics for Communication Systems
-Data and Internet Networking Compulsory
-Advanced Signal Processing
-Mobile Communications B
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced 5G Wireless Technologies
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing and Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin communications, networks and software
-Be able to analyse problems within the field of communications, networks and software and more broadly in electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within communications, networks and software
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The Department's taught postgraduate programmes are designed to enhance the student's technical knowledge in the topics within electronic and electrical engineering that he/she has chosen to study, and to contribute to the Specific Learning Outcomes set down by the Institution of Engineering and Technology (IET) (which is the Professional Engineering body for electronic and electrical engineering) and to the General Learning Outcomes applicable to all university graduates.

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Workshop and laboratory skills. Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Relevant part of: Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more
This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

PROGRAMME OVERVIEW

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:
-Communications Networks and Software
-RF and Microwave Engineering
-Mobile Communications Systems
-Mobile and Satellite Communications
-Mobile Media Communications
-Computer Vision, Robotics and Machine Learning
-Satellite Communications Engineering
-Electronic Engineering
-Space Engineering
-Nanotechnology and Renewable Energy
-Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

PROGRAMME STRUCTURE

This programme is studied full-time over 24 months and part-time over 60 months. It consists of ten taught modules and an extended project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Digital Signal Processing A
-Object Oriented Design and C++
-RF and Microwave Fundamentals
-Nanoscience and Nanotechnology
-Space Dynamics and Missions
-Space Systems Design
-Antennas and Propagation
-Image Processing and Vision
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Space Robotics and Autonomy
-Speech and Audio Processing and Recognition
-Satellite Communication Fundamentals
-Satellite Remote Sensing
-Molecular Electronics
-RF Systems and Circuit Design
-Internet of Things
-Nanofabrication and Characterisation
-Space Avionics
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Digital Design with VHDL
-Computer Vision and Pattern Recognition
-Mediacasting
-Semiconductor Devices and Optoelectronics
-AI and AI Programming
-Advanced Signal Processing
-Advanced Guidance, Navigation and Control
-Image and Video Compression
-Launch Vehicles and Propulsion
-Advanced Mobile Communication Systems
-Microwave Engineering Optional
-Nanoelectronics and Devices
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Nanophotonics Principles and Engineering
-Mobile Applications and Web Services
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Renewable Energy Technologies
-Engineering Professional Studies 1 (with industrial Placement)
-Engineering Professional Studies 1
-Engineering Professional Studies 2
-Extended Project

PARTNERS

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:
-Brno University of Technology, Czech Republic
-University of Prague, Czech Republic
-Universität di Bologna, Italy
-Universität Politècnica de Catalunya, Barcelona, Spain
-Universita' degli Studi di Napoli Federico II, Italy

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:
-Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
-Be able to analyse problems within the field of electronic engineering and find solutions
-Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
-Be aware of the societal and environmental context of his/her engineering activities
-Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Be able to carry out research-and-development investigations
-Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:
-Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
-Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
-Have gained comprehensive understanding of design processes
-Understand customer and user needs, including aesthetics, ergonomics and usability
-Have acquired experience in producing an innovative design
-Appreciate the need to identify and manage cost drivers
-Have become familiar with the design process and the methodology of evaluating outcomes
-Have acquired knowledge and understanding of management and business practices
-Have gained the ability to evaluate risks, including commercial risks
-Understand current engineering practice and some appreciation of likely developments
-Have gained extensive understanding of a wide range of engineering materials/components
-Understand appropriate codes of practice and industry standards
-Have become aware of quality issues in the discipline

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Use of quantitative methods for problem solving. Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Surrey is a world leader in satellite communications, broadcasting, terrestrial mobile networks and the Internet. essential components of communication and information infrastructures. Read more
Surrey is a world leader in satellite communications, broadcasting, terrestrial mobile networks and the Internet: essential components of communication and information infrastructures.

This has allowed us to create a Masters programme in this burgeoning field that is delivered by academics and researchers with extensive theoretical expertise and practical experience.

PROGRAMME OVERVIEW

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Satellite Communications Fundamentals
-RF Systems and Circuit Design
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Advanced Signal Processing
-Advanced Mobile Communication Systems
-Networking and Service Management & Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Advanced 5G Wireless Technologies
-60-Credit Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment. Read more
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment.

Taught jointly by the School of Computing and the School of Electronic and Electrical Engineering, this course will give you a grasp of all layers needed for mobile communication and computation, from the physical network layer through to the applications that run on mobile devices.

You’ll gain a full understanding of the web and cloud computing infrastructure, as core modules give you a foundation in key topics like systems programming and data communications. A range of optional modules will then allow you to focus on topics that suit your interests and career plans, from cloud computing to embedded systems design and high speed web architecture.

Read less
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard. Read more
Surrey’s satellite and space technology programmes are renowned internationally, and our graduates are held in equally high regard.

The Masters in Satellite Communications Engineering is a leader in Europe in equipping students with the necessary background to enter the satellite industry or to continue on to a research degree.

PROGRAMME OVERVIEW

Our Masters programme in Satellite Communications Engineering is designed to give you the specialist multidisciplinary skills required for careers in the satellite and space industries.

We have an exceptional concentration of academic staff experienced in the satellite area, in addition to well-established contacts with all the major satellite manufacturers, operators and service providers.

Industry participates in the MSc programme in both lecturing and projects, and facilitates excellent engagement for our students. Graduation from this programme will therefore make you very attractive to the relevant space-related industries that employ over 6,500 people in the UK alone.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Space Dynamics & Missions
-Space Systems Design
-Antennas and Propagation
-Principles of Telecommunications & Packet Networks
-Satellite Communications Fundamentals
-RF Systems & Circuit Design
-Data & Internet Networking
-Advanced Guidance, Navigation & Control
-Launch Vehicles & Propulsion
-Network & Service Management & Control
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Standard Project

FACILITIES, EQUIPMENT AND SUPPORT

Through consistent investment, we have built up an impressive infrastructure to support our students and researchers. The University of Surrey hosts Surrey Space Centre – a unique facility comprising academics and engineers from our own spin-out company, Surrey Satellite Technology Ltd.

Our mission control centre was designed and developed by students to support international CubeSat operations as part of the GENSO network, and it also supports the development of the University’s own educational satellites.

Our teaching laboratories provide ‘hands-on’ experience of satellite design and construction through the use of EyasSAT nano-satellite kits. They also house meteorological satellite receiving stations for the live reception of satellite weather images.

Elsewhere, our fully equipped RF lab has network analyser, signal and satellite link simulators. The Rohde and Schwartz Satellite Networking Laboratory includes DVBS2-RCS generation and measurement equipment, and roof-mounted antennas to communicating live with satellites.

A security test-bed also exists for satellite security evaluation. We have a full range of software support for assignments and project work, including Matlab, and you will be able to access system simulators already built in-house.

Satellite Communications Engineering students can also make use of SatNEX, a European Network of Excellence in satellite communications supported by ESA; a satellite platform exists to link the 22 partners around Europe. This is used for virtual meetings and to participate in lectures and seminars delivered by partners.

Our own spin-out company, Surrey Satellite Technology Ltd, is situated close by on the Surrey Research Park and provides ready access to satellite production and industrial facilities. In addition, we have a strategic relationship with EADS Airbus Europe-wide and several other major communications companies.

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin satellite communications engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within satellite communications engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:
-General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our aim is to provide a focus for creativity and innovation across a wide range of research fields. We provide a vibrant, intellectually challenging environment for postgraduate students who are keen to deepen their understanding of international communications issues. Read more

A chance to study a top UK Masters in China

Our aim is to provide a focus for creativity and innovation across a wide range of research fields. We provide a vibrant, intellectually challenging environment for postgraduate students who are keen to deepen their understanding of international communications issues.

This course will enable you to delve into the theory and practice of communications from many different angles. You will explore a range of critical-theoretical concepts, including globalisation, multiculturalism, mass culture, mass media, ‘the information society’ and post-modernity.

You will apply your knowledge to internationally relevant issues. This degree programme is designed to meet the needs of graduates from all disciplines who want to add international communications to their specialist knowledge. You will have the opportunity to study communications against the background of recent theoretical and methodological developments and will gain vital insights into the skills required by the contemporary communications sector.

Modules

Compulsory Modules

Communications Theory and Research Methodologies
Approaches to Globalisation and Contemporary Communications
International Communications and Cultural Difference
Dissertation in International Communications Studies

Optional Modules Group 1 (students must take a minimum of 0 and a maximum of 20 credits from this group)

A European language (Spanish, French or German) or East-Asian language (Chinese or Japanese) for International Students (students cannot elect to study their first language) and a European Language (Spanish, French or German) or Japanese for Chinese students. Students will be able to enter study at a level appropriate to their individual needs ranging from beginners through to intermediate and advanced.

Optional Modules Group 2 (students must take 40 to 60 credits from this group)

Journalism: Theory and Practice
Chinese Journalism
Digital and Creative Media
Digital Games as Communication
Comparative Mobile Studies

Read less
This programme is aimed at providing knowledge and expertise in the latest mobile and wireless communications technologies driving the evolution of mobile Internet. Read more

INSTITUTE FOR DIGITAL TECHNOLOGIES

This programme is aimed at providing knowledge and expertise in the latest mobile and wireless communications technologies driving the evolution of mobile Internet. The demand for low-latency, high-speed mobile data access is increasing, with the use of smart phones and bandwidth-intensive wireless multimedia applications.

This exciting programme has been designed to uncover these key areas and provide advanced knowledge of broadband, mobile, and wireless communication networks, as well as discuss future internet and related application areas.

Programme Aims

a) Develop students’ knowledge and expertise in multimedia signal capturing, rendering, coding, processing, and adaptation through practical application analysing and evaluating problems and responding to challenges in real time.
b) Develop students’ critical thinking to assess the development, evaluation and implementation of high-end home and low-end mobile media applications in response to addressing real world problems/opportunities.
c) Develop students’ critical thinking to assess media applications through user interaction techniques, human perception and quality of experience assessment methods.
d) Use action-based learning to provide individuals and teams with employment skills essential to the digital/tech industry.

Programme Structure

To complete the MSc Mobile Communication Systems students must complete 8 x 15 credit modules. Students must also choose and complete 4 of the 6 optional modules. Students will pick a second subject from the list of nominated second subject modules offered by the other Institutes in the first semester. All students must complete a Dissertation worth 60 credits.

Assessment

Modules are assessed primarily by exams and also include a combination of group exercises, presentations and time-constrained coursework and assignments with varying levels of weighting depending on the nature of each module.

Career Prospects

As the Internet is part of our everyday lives, providing us with the means for many of our personal and business-related activities, choosing this programme will provide a great opportunity to gain the essential knowledge and skill set to be placed in the telecommunications, Internet and mobile communication technologies industry, as well as research, development and academic positions.

Graduates will also have the opportunity to enhance their knowledge and career prospects further by undertaking an MRes or PhD programme.

Compulsory Modules

-Collaborative Project
-Internet and Communication Networks
-Mobile Broadband and Wireless Networks
-Dissertation

Optional Modules

Choose four modules only:
-Media Processing and Coding
-Advanced 3D User Environments
-Internet of Things and Applications
-Introduction to Programming and MatLab
-Media Cloud Applications and Services
-Cloud Technologies and Systems
-Network Security

Second Subject Modules

Choose one module only:
-Design Thinking
-Principles of Entrepreneurship and Innovation Management
-The Key Topics in Media and Creative Industries
-Business Model Development
-Introduction to Diplomacy
-Sports Media and Marketing

Find more information on modules here http://www.lborolondon.ac.uk/study/institutes-programmes/mobile-communication-systems/

For more information on fees, please see our fees and finance page: http://www.lborolondon.ac.uk/study/fees-finance/

Scholarships

We are investing over half a million pounds (£0.5m) in our scholarship and bursary scheme to support your studies at Loughborough University London in 2017. This package of support celebrates and rewards excellence, innovation and community. Our ambition is to inspire students of the highest calibre and from all backgrounds and nationalities to study with us and benefit from the wider Loughborough University experience and network. Our range of scholarships, bursaries and support packages are available to UK, EU and international students.View the sections below to discover which scholarship options are right for you.

What's on offer for 2017?
Inspiring Success Programme
-For unemployed and underemployed* graduates living in the East London Growth Boroughs of Hackney, Newham, Tower Hamlets or Waltham Forest
-Award value: 100% off your tuition fees
-We are joining forces with The London Legacy Development Company to offer a two day programme of specialist support for graduates, including workshops, skills seminars and networking opportunities to increase students' employability and support those looking to enter into postgraduate education.
-Eligibility: At the end of the programme, eight students will be selected for a 100% scholarship to study a masters course of their choice at our London campus in September 2017.

Dean's Award for Enterprise
-For students looking for the skills and support to launch a new business
-Award value: 90% off fees to launch your business idea
-Eligibility: The award will be given at the discretion of the Dean and the Senior Leadership Team, based on a one-page submission of your business idea.

East London Community Scholarship
-For any students who obtained their GCSE’s or A-levels (or equivalent qualifications) from The Growth Boroughs – Barking and Dagenham, Greenwich, Hackney, Newham, Tower Hamlets and Waltham Forest
-Award value: 50% off your tuition fees
-Eligibility: Competitive scholarship based on one-page submission showing your contribution to our community.

Alumni Bursary
-For all Loughborough University alumni
-Award value: 20% off your tuition fees
-Eligibility: International and UK/EU alumni holding a current offer for LoughboroughExcellence Scholarship
-For international and UK/EU high achieving students
-Eligibility: Any student holding a high 2:1 or first class undergraduate degree or equivalent from a recognised high quality institution will be considered.

Find information on Scholarships here http://www.lborolondon.ac.uk/study/scholarships-and-bursaries/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X