• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Manchester Featured Masters Courses
"mobile" AND "communicati…×
0 miles

Masters Degrees (Mobile Communication)

We have 222 Masters Degrees (Mobile Communication)

  • "mobile" AND "communication" ×
  • clear all
Showing 1 to 15 of 222
Order by 
On this programme you will learn about recent advances in mobile communication systems with full coverage of both radio-frequency (RF) and data communication networks. Read more
On this programme you will learn about recent advances in mobile communication systems with full coverage of both radio-frequency (RF) and data communication networks. The programme content will reflect the current migration to tetherless networks. In addition to studying the latest protocols used by mobile communication systems, you will also learn to apply the principles of RF engineering to the design of such systems.

You will be taught by experienced research and teaching staff with expertise in the specialist fields and you will be learning about the latest theories, techniques and technologies. You will need an understanding of both generic and domain-specific research techniques, and the ability to apply them in your own work. A module in research methods enables you to develop these techniques, moving from generic skills, such as the design and evaluation of experiments, to focus on the specific skills that you will need for your own project. An important outcome of the module is a well-structured report, augmented by the use of appropriate artefacts and media, presenting your proposals for your specialist project.

In the first two semesters of the programme you take modules exploring a variety of current research topics in electronics and related areas. At the end of the programme you complete a project which enables you to demonstrate your understanding of the principles and concepts that you have learned and your ability to apply them to a substantial piece of development or investigative work.

Why choose this course?

-The School has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field
-We offer extensive lab facilities for engineering students, including the latest software packages
-Learn about mobile communication systems, tetherless networks and all the latest protocols

Careers

You will typically be employed in the design and implementation of advanced digital systems and networks in the communication and control industries. Within your area of expertise, you will be making independent design decisions on mission-critical systems.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition our staff are active in research and useful elements of it are reflected on the learning experience. Learning tools such as StudyNet, unique to the University of Hertfordshire, are extremely useful for the learning environment of the student.

Structure

Modules
-Advanced Reconfigurable Systems and Applications
-Broadband Networks and Data Communications
-Digital Mobile Communication Systems
-Information Theory and DSP in Communications
-MSc Project
-Mixed Mode and VLSI Technologies
-Operations Management
-Operations Research
-Wireless, Mobile and Ad-hoc Networking

Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This is an advanced MSc course in the rapidly expanding area of mobile communications and networks. This course is concerned with the concepts, applications, design, development and deployment of mobile communication systems and networks. Read more
This is an advanced MSc course in the rapidly expanding area of mobile communications and networks. This course is concerned with the concepts, applications, design, development and deployment of mobile communication systems and networks. Students will develop a detailed knowledge and critical understanding of the core skills in mobile communications and networks and use a significant range of principal and specialist skills, techniques and practices in the domain of mobile communications and networks. The course will provide a stream of graduates of a calibre capable of developing and implementing creative solutions to the problems encountered in mobile communication systems and networks.

This is a hardware-oriented course and is aimed directly at electrical engineering graduates.

Core Subject Areas
•Digital Signal Processing
•Digital Design
•Networks and Communications
•Research Methods Critical Analysis and Project Planning
•Principles of Mobile Communications
•RF Mobile Communication Systems
•Project Phase 1
•MSc Project
.Optional Subject Areas
•Software Engineering 2
•Network Applications
.
Heriot-Watt University is set in almost 400 acres of woodland, making it one of the most beautiful places to study and live. Less than ten miles and a 15-minute bus ride into the centre of Edinburgh, its proximity to this architecturally famous city only adds to its appeal.

Edinburgh is renowned as a centre of learning and discovery; studying and living here is a stimulating and inspirational experience. It offers a unique city environment. It's culturally diverse, historically significant, socially alive, environmentally aware, politically central and visually stunning. The centre of Edinburgh has been awarded UNESCO World Heritage Site status in recognition of its stunning urban landscape in the medieval Old Town and the Georgian New Town. In addition, the city encompasses some striking modern architecture including the parliament building and the Museum of Scotland.

To top it all, Edinburgh is lucky to have significant and magnificent green spaces: the impressive extinct volcano, Arthur's Seat, and its associated park, lie at the heart of the city. If that wasn't enough, Edinburgh has 112 public parks and more trees per person than any other British city.

You're also within easy striking distance of some of the world's most beautiful wild landscapes, from the Trossachs in the west and the Highlands in the north, to the Borders in the south.

Read less
This course aims to give suitable graduates an in-depth understanding of the technology, and the drivers for the technology, in the area of Broadband and mobile communications. Read more
This course aims to give suitable graduates an in-depth understanding of the technology, and the drivers for the technology, in the area of Broadband and mobile communications. The course will also provide exposure to current research activity in the field.

Upon completing of the course, students will have a detailed understanding of the current practices and directions in this topic, and will be able to apply them to the task of continuing the roll-out of advanced communication services across the globe.

Course Topics
Data networks and communications, project foundations and management tools, broadband communication systems, technologies for Internet systems, introduction to distributed systems mobile systems, project and dissertation.

Taught Modules:

Data Networks and Communications: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide an end-to-end connection.

Modelling and Design: focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

Broadband Communication Systems: This module aims to provide students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focused on the following aspects: 1) Fundamental concepts, 2) Operating principles and practice of widely implemented communications systems; 3) Hot research and development topics, and 4) Opportunities and challenges for future deployment of broadband communications systems.

Mobile Communication Systems: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

RF and Optical MEMS: This module aims to introduce the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Advanced Sensor Systems: This course aims to provide students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

Read less
Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. Read more

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This Programme in Mobile and Satellite Communications reflects the importance of mobile telephony, mobile data communications and satellite-based communications as complementary technologies.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology, and satellite-based communications and networking.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, RF design, the Internet of Things, and network management.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment. Read more

Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment.

Taught jointly by the School of Computing and the School of Electronic and Electrical Engineering, this course will give you a grasp of all layers needed for mobile communication and computation, from the physical network layer through to the applications that run on mobile devices.

You’ll gain a full understanding of the web and cloud computing infrastructure, as core modules give you a foundation in key topics like systems programming and data communications. A range of optional modules will then allow you to focus on topics that suit your interests and career plans, from cloud computing to embedded systems design and high speed web architecture.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

You’ll take two core modules in Semester 1 that introduce you to fundamental topics like systems programming and network security. With this foundation, you’ll be able to gain high-level specialist knowledge through your choice of optional modules taught by the School of Computing and the School of Electronic and Electrical Engineering.

The optional modules you choose will enable you to direct your studies towards topics that suit your personal interests and career ambitions such as mobile app development, digital media engineering, big data, cloud computing and embedded systems design, among others.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Data Communications and Network Security 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Functional Programming 10 credits
  • Big Data Systems 15 credits
  • Mobile Applications Development 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Graph Theory: Structure and Algorithms 15 credits
  • Communication Network Design 15 credits
  • Optical Communications Networks 15 credits
  • High Speed Internet Architecture 15 credits
  • Digital Media Engineering 15 credits

For more information on typical modules, read Mobile Computing and Communication Networks MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Career opportunities are extremely broad, covering jobs in the design of embedded software running on multi-core devices through to jobs involving the design and implementation of new mobile-applications centric systems for business. In the application of mobile computing skills, job opportunities span every area, from the automotive sector through to retail and banking.

You could launch a career in fields such as mobile app development, mobile systems architecture, project management, network consultancy. You could also work as an engineer in embedded mobile communications, network security or research and development among many others – and you’ll even be well-prepared for PhD study.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
By studying this MA in Media and Communication you will develop an advanced knowledge and understanding of different forms of communication in their social, political and cultural contexts, focusing either on the relationship between the media and politics in contemporary societies or, on digital culture and communication. Read more
By studying this MA in Media and Communication you will develop an advanced knowledge and understanding of different forms of communication in their social, political and cultural contexts, focusing either on the relationship between the media and politics in contemporary societies or, on digital culture and communication.

The Digital Culture and Communication pathway offers an excellent opportunity for you to engage with contemporary issues and debates on culture, media and society in the digital age. The pathway critically examines the relationship between media, technology and everyday life and it encourages students to analytically reflect on their own digital cultures, identities and everyday practices.

The pathway is built around core modules which focus on the theories and debates surrounding:

the role and impact of cultures of communication and media in the digital age
technologies that are in the contemporary public eye, such as the Internet, social media, “Big Data”, mobile devices etc.
research methods used in media and communication research.
You will develop skills that directly enhance employability, including applying critical reviewing skills, giving presentations, plus data management, problem-solving, team-working and research design and implementation.

You'll able to pursue your own specific research/study interest in political communication via a 12,000-15,000 word dissertation and by choosing two further modules from a range of other M-level modules provided by the department or wider school.

Key Facts

We can offer you:-
- Excellent library facilities
- Opportunities for interdisciplinary inputs
- High quality research methods training
- A regular programme of communication and media seminars open to everyone

Why Communication and Media?

Close knit-community

Communication and Media is a close-knit community of dedicated, innovative teachers and researchers that extend a warm welcome to postgraduate taught and research students. You can benefit from a personalised approach which treats you as an individual and encourages you to become involved in the life of the department. Our approach enables a productive dialogue to be created between and amongst our postgraduate community and our staff, so that we are all engaged in the pursuit of excellent scholarship and research and, more broadly, making a contribution to the development of our field.

Active Research

Key areas of research strength include: communication, politics and power; media theory; political and independent cinema; gender and identity in media; media, ethics and human rights; media and war; new media and digital communication; media discourse; global entertainment and media industries; media, space and place; media and heritage; sociolinguistics, communication and language; and media and cultural identity.

This broad range of research expertise underpins the two pathways we offer – ‘Media and Politics’ and ‘Digital Culture and Communication’. We also run two regular research seminar series – the Liverpool Film Seminar and the Media and Politics Seminar Series – which postgraduate students are encouraged to participate in.

The department's actively contributing to the development of our field through research, key subject associations, conference organisation and speaking engagements, and editorial board membership of significant journals. Our activities include internationally recognised research, linking political science and communication studies primarily through crossover interests in public and digital communication within the British, European and International political and cultural contexts.

Liverpool

Immerse yourself in a city known as a political and creative force. What better place to immerse yourself in the subject than Liverpool, a city with a reputation as a political and creative force, with a thriving production sector and a unique cultural heritage? The Department has close links to cultural industries and venues in the city, some of which collaborate with us in offering assessed work placements as part of our programme of study.

Read less
This course enables students to understand the fundamentals of information theory and apply appropriate performance and quality measures to engineer enhanced data communication systems. Read more
This course enables students to understand the fundamentals of information theory and apply appropriate performance and quality measures to engineer enhanced data communication systems.

Students design state-of-the-art networks using legacy as well as emerging optical and wireless technologies, developing the students’ ability to define and apply appropriate analytic, algorithmic and a mix of simulation and hardware tools for reliable data transfer.

Students will cover subject specific subjects such as Digital Mobile Communication Systems and Optical Communication Technologies alongside cohort taught subjects to develop their management skills and their employability.

The successful postgraduates of the course will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering and manufacturing through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Why choose this course?

Students who undertake this course will gain knowledge and understanding of the advanced theoretical issues and their practical implementations that underlie recent developments in Communications and Information Engineering.

Students will be able to explore, explain the engineering challenges inherent in a variety of data communication applications.

Supported by the School which has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field.

We offer extensive lab facilities for engineering students, including the latest software packages.

Careers

Communications engineers prepare and maintain communications systems and the marketplace increasingly relies on highly advanced communications systems, so communications engineering is a valued field. Careers may be sought in telecommunications or related fields that use computer networking and satellite, digital TV, Internet or radio technology.

Graduates may therefore expect employment across a very wide range of engineering companies.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition, our staff are active in research and useful elements of it are reflected on the learning experience.

The School of Engineering and Technology has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussions with staff and other students.

A heavy emphasis is placed on theory and practice, and the School of Engineering and Technology has a policy of using industrial standard software wherever possible.

Structure

Core Modules
-Broadband Networks and Data Communications
-Digital Mobile Communication Systems
-Information Theory and DSP in Communications
-MSc Project
-MSc Projects
-Multicast and Multimedia Networking
-Operations Management
-Operations Management
-Operations Research
-Operations Research
-Optical Communication Technologies
-Wireless, Mobile and Ad-hoc Networking

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. Read more
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. This one-year programme offers six-month taught modules covering a wide range of subjects from fundamental information and communications technology (ICT) to contemporary developments in wireless and mobile industry. It also includes a six-month individual project with opportunities of participating in the project provided by industry. This programme is suitable for those who want to develop the knowledge and skills needed for a successful career in these specific and related areas.

The delivery of the programme is fully supported by the dedicated facilities in the Electronic Engineering Department and across the University, such as teaching and computing laboratories, and the involvement of experienced member of staff. Our research facilities in the Adaptive Communications and Networks Research Group and Wireless Network Laboratory are also available for use on MSc projects. To ensure its continuing relevance the programme is monitored by an industrial steering committee which includes representatives from major employers.

About the MSc in Wireless Communications and Networking:
-Prepares students for an intellectually challenging career as a qualified engineer.
-Provides students with a thorough grounding in the principles and the requisite specialist knowledge and skills to develop, manage and adapt current systems.
-An industrial advisory group (Steering Committee) reviews the programme on a continual basis.
-Guest lecturers presented by acknowledged experts from industry and academic institutions.
-An active alumni group on LinkedIn.
-Free student membership of the IET.

Modules

This MSc integrates a taught component of nine modules plus a major project and a project preparation module, constituting in total 180 credits. Taught modules and examinations/assessments are completed during six months, October to March. After successful completion students may then progress to the six month individual research project during April to October. The project is either undertaken in an industrial laboratory or at the University, often with guidance and direction from industrial partners. The module titles are:
-Mobile Data Networks (EE4016)
-Realtime Communication Networks (EE4017)
-Information Theory and Coding and Traffic Theory (EE401A)
-Digital Transmission (EE401B)
-Broadband Wireless Networks (EE4027)
-Pervasive and Mobile communication networks (EE4028)
-Radio Systems and Personal Communications Networks (EE402B)
-Internetworking (EE403B)
-Introductory Programming (EE404B)

Dissertation Stage
-MSc Project (EE4006)
-Project Preperation (EE4019)

Read less
Explore Emerson's Graduate Programs. Become a force in the field of strategic communication with our Master of Arts in Public Relations. Read more

Explore Emerson's Graduate Programs

Become a force in the field of strategic communication with our Master of Arts in Public Relations. You’ll learn what it takes to successfully target individuals and communities through the latest social media and emerging communication technologies. With three tracks to choose from in political communicationsports communication, and strategic public relations, as well as the chance to count prior work experience toward your degree, you can tailor your learning based on your career goals and achievements.

In this program, you will have the chance to:

  • Formulate crisis communication plans, perform speech writing, conduct polls, and learn public diplomacy
  • Develop strategic messaging and media plans for campaign events and sports organizations
  • Become an expert in creating online strategies for brand recognition using social media
  • Apply concepts of user experience design to websites, apps, online content, videos, and mobile communication

Our MA in Public Relations program is incredibly versatile—complete it part-time or full-time, anywhere from one to three years. You'll also have the unique opportunity to travel, taking advantage of our immersive learning experiences abroad in cities such as Los Angeles, Washington, DC, Rosarito, Barcelona, and more.

Ready to effect change? Apply today to our graduate program in Public Relations.

Can't commit to a full master's? Our 16-credit graduate certificate program allows career changers or professionals looking to re-tool in the industry with the credentials and experience necessary to compete for today’s top jobs. Learn more about the Public Relations Certificate.

In Demand in Today’s Market

In a marketplace flooded with information, every organization wants its message to be heard above the noise. That’s why there is such a high demand for skilled communication professionals who can craft and execute compelling communication strategies. Our graduates of the Public Relations program have pursued careers in a wide variety of industries and occupations. No matter your focus area—pharmaceuticals, health and fitness, political campaigns, entertainment, hospitality, financial services, technology or government organizations—a Public Relations degree will have a sustained value during any economic cycle.

Career paths chosen by some of our graduates include:                                         

  • Campaign managers
  • Chief communication officers
  • Communication strategists
  • Directors of digital strategy
  • Directors of executive communication
  • Directors of financial communication
  • Directors of public affairs
  • Directors of corporate social responsibility
  • Online content managers
  • Organizational consultants
  • Political candidates or public affairs officers
  • Press secretaries or government communication directors
  • Social media strategists
  • Speechwriters

Competitive Edge

With the ability to communicate effectively comes the power to bring about positive change. At Emerson, you will learn to analyze and gain meaningful insight into communities, cultures, institutions, and lifestyles, as well as your target audience’s beliefs and values.

Throughout your course of study, you will gain valuable, real-world experience by conducting public opinion polls and organizational social media audits, formulating crisis communication plans, writing speeches, and creating digital content. By investigating the ways in which different types of messaging can engage and persuade, you will leave the program with the skill set and strategic insight required to be a compelling advocate for better business practices, improved policies, and social justices.



Read less
The near STEM route is for admission of mathematics, physics, astrophysics or other relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts. Read more
The near STEM route is for admission of mathematics, physics, astrophysics or other relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts. After accreditation of prior experiential learning (APEL) at Level 5, you will spend three semesters studying towards a General Engineering Transition Masters with the opportunity to specialise in the above options at Level 6 and/or 7.

The Electronics and Communications MScs are also accredited by the Institution of Engineering and Technology (IET) as meeting the academic requirements for Chartered Engineer status.

To obtain a Master's degree, you will need to complete an in-depth independent research project.

Courses

-MSc in Embedded Intelligent Systems
-MSc in Radio and Mobile Communication System
-MSc in Microelectronics and Computer Engineering
-MSc in Power Electronics and Control
-MSc in Mechatronics
-MSc in Communications and Information Engineering

Why choose this course?

The School has over 25 years' experience of teaching electronic engineering and has established an excellent international reputation in this field;We offer extensive lab facilities for engineering students, including the latest software packages;Study leading-edge applications such as biometric authentication and speech-based interaction.

Teaching methods

Our enthusiastic staff is always looking for new ways to enhance your learning experience and over recent years, we have won national awards for our innovative teaching ideas. In addition our staff are active in research and useful elements of it are reflected on the learning experience. Learning tools such as StudyNet, unique to the University of Hertfordshire, are extremely useful for the learning environment of the student.

Structure

Year 1
Core Modules
-Digital Design & Embedded Systems
-Digital Mobile Communication Systems
-Information Theory and DSP in Communications
-Operations Management
-Optical Communication Technologies
-Quality Reliability & Maintenance
-Sustainability and Smart Systems Engineering
-Wireless, Mobile and Ad-hoc Networking

Year 2
Core Modules
-Advanced Reconfigurable Systems and Applications
-Individual Masters Project
-Microelectronics and VLSI

Read less
This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. Read more

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by CVSSP.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile media communications
  • Engineering problem solving - be able to analyse problems within the field of mobile media communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and media communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Media Communications aims to provide a high-quality advanced training in aspects of multimedia signal processing for audio and video content production, processing and transmission.

The programme examines ways that relevant digital data can be captured or generated, and the digital streams processed, compressed, analysed and communicated over broadcast channels, mobile networks or internet.

Along with a basis of image, video and audio processing, it provides a grounding in communications related elements that include, for example, coding, networking and data transmission. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspiration.

Key to the programme is cross-linking between signals, and delivery of audio and video content. The Programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
About the program. The Master of Communication program allows students to further their careers in Communication by equipping them with an appropriate mix of theory and practice suited to industry. Read more

About the program

The Master of Communication program allows students to further their careers in Communication by equipping them with an appropriate mix of theory and practice suited to industry. It provides an ideal balance of theoretical knowledge, practical skills, problem solving abilities, interpersonal skills and a high level of written communication.

Advance your career

A Master of Communication at Bond, allows graduates to complement their dynamic and flexible skills with a deep understanding of theory and practice. By building upon previously acquired knowledge with problem-solving skills and a high level of written communication, graduates can differentiate themselves in the industry.

Structure and subjects

View the Master of Communication - Program Structure and Sequencing

The Master of Communication comprises 12 subjects, as follows:

Core subjects (2)

Foundation subjects (6)

Dissertation/Elective option subejcts (4)

Students must choose one (1) of the following suites of subjects as their dissertation/portfolio:

Or

  • Minor Dissertation/Portfolio A (HUMR71-705)
  • Minor Dissertation/Portfolio B (HUMR71-706)
  • Plus two (2) elective subjects from the Faculty of Society & Design list of available postgraduate subjects.(COMN71-710 Communication Internship and Portfolio and further Minor Dissertation/Portfolio subjects are available as elective subject options).

Teaching methodology

Bond University’s teaching methodology involves a combination of lectures, tutorials, seminars, examinations, projects, presentations, assignments, computer labs and industry projects.

Available research topics for dissertation / portfolio

The Faculty of Society & Design has highly skilled academic staff who can provide supervision to students in the following research areas:

  • Advertising and Brand Experience in a Multi-Channel Environment
  • Advertising Creativity: Concepts and Applications
  • Advertising Ethics and Corporate Social Responsibility
  • Building Teamwork in the Virtual Workplace
  • Convergence and Digital Industries
  • Crisis Communication Strategies in a Digital World
  • Effects of Different Leadership Styles on Organisational Culture
  • Engaging Employees – Strong Advocates or Harsh Critics?
  • Establishing Authentic Corporate Social Responsibility in a Sceptical Environment
  • Global Factors Contributing to Organisational Change
  • Impact of Social Media on Future Public Relations Practice
  • Interactivity and Consumer Engagement on Social Media Platforms
  • Interpersonal Communication
  • Journalism in the 21st Century
  • Journalism Reinvented
  • Mobile and Pervasive Communications
  • Opportunities and Challenges of Mobile and Real-Time Marketing
  • Paparazzi – The New Face of Journalism?
  • Role of Media Relations in a Social Media Future
  • Serious Games and Gamification
  • Significance of the Media in Bridging the Cultural Divide
  • Social Media and User-Generated Content
  • The Growing Significance of Citizen Journalism
  • The Internationalisation of Advertising
  • The New Journalism
  • The Obama Effect – New Election Campaigning Strategies
  • The Proliferation of Social Networking Sites
  • Virtual Environments for Learning and Work


Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less

Show 10 15 30 per page



Cookie Policy    X