• Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Swansea University Featured Masters Courses
"mitochondrial" AND "biol…×
0 miles

Masters Degrees (Mitochondrial Biology)

We have 12 Masters Degrees (Mitochondrial Biology)

  • "mitochondrial" AND "biology" ×
  • clear all
Showing 1 to 12 of 12
Order by 
Our Mitochondrial Biology and Medicine MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more
Our Mitochondrial Biology and Medicine MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed to provide a thorough understanding of human mitochondrial genetics. It is for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of mitochondrial biology and medicine. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of mitochondrial biology and medicine under the supervision of an expert academic researcher in the field.

Read less
The aims of the MRC Mitochondrial Biology Unit are to study the biology of the mitochondria, the powerhouses of the cell. Read more

Overview

The aims of the MRC Mitochondrial Biology Unit are to study the biology of the mitochondria, the powerhouses of the cell. There is a growing realisation that the dysfunction of various aspects of mitochondrial biology are connected to major neurodegenerative diseases including Parkinson's and Alzheimer's, and that as the major source of reactive oxygen species, the mitochondrion is likely also to be involved in ageing. Therefore, the Unit is developing its interests in the cell biology of mitochondria and is linking its activities to clinical science.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blmbmpbsc

Learning Outcomes

For students wishing to continue on to the PhD, the MPhil provides a good foundation. For students not wishing to continue, the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group.

Teaching

MPhil is by research. The MBU has a programme of seminars and lectures delivered by visiting speakers and members of the Unit. Journal classes are Journal Clubs, organised by the Unit's graduate students and postdoctoral scientists.

- Feedback
Feedback is given both formally and informally on a regular basis by the supervisor and/or adviser. Regular reports are provided by the supervisor via the University's online reporting system.

Assessment

- Thesis
MPhil (research): Examination is by thesis.
The scheme of examination for the one-year full-time or two-year part-time course of study in Biological Science for the degree of Master of Philosophy shall consist of a thesis, of not more than 20,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Biology. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out an original investigation, assess and interpret the results obtained, and place the work in the wider perspective of the subject.

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Find out how to apply here http://www.graduate.study.cam.ac.uk/courses/directory/blmbmpbsc/apply

See the website http://www.graduate.study.cam.ac.uk/courses/directory/blmbmpbsc

Read less
The aims of the MRC Mitochondrial Biology Unit are to study the biology of the mitochondria, the powerhouses of the cell. Read more
The aims of the MRC Mitochondrial Biology Unit are to study the biology of the mitochondria, the powerhouses of the cell. There is a growing realisation that the dysfunction of various aspects of mitochondrial biology are connected to major neurodegenerative diseases including Parkinson's and Alzheimer's, and that as the major source of reactive oxygen species, the mitochondrion is likely also to be involved in ageing. Therefore, the Unit is developing its interests in the cell biology of mitochondria and is linking its activities to clinical science.

Visit the website: http://www.graduate.study.cam.ac.uk/courses/directory/blmbmpbsc

Course detail

This MPhil is by research. The MBU has a programme of seminars and lectures delivered by visiting speakers and members of the Unit. Journal classes are Journal Clubs, organised by the Unit's graduate students and postdoctoral scientists.

- One to one supervision: 4 hours per week
- Seminars & classes : 2 hours per week
- Lectures: 1 hour per week
- Journal clubs: 2 hours per week

Assessment

The scheme of examination for the one-year full-time or two-year part-time course of study in Biological Science for the degree of Master of Philosophy shall consist of a thesis, of not more than 20,000 words in length, exclusive of tables, footnotes, bibliography, and appendices, on a subject approved by the Degree Committee for the Faculty of Biology. The examination shall include an oral examination on the thesis and on the general field of knowledge within which it falls. The thesis shall provide evidence to satisfy the Examiners that a candidate can design and carry out an original investigation, assess and interpret the results obtained, and place the work in the wider perspective of the subject.

Continuing

For students wishing to continue on to the PhD, the MPhil provides a good foundation. For students not wishing to continue, the MPhil provides specialist training in scientific methodology relevant to the project subject area and based on the expertise of the supervisor and research group.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.2016.graduate.study.cam.ac.uk/finance/funding

Read less
At the beginning of the 21st century, novel technologies are allowing us to make exciting new discoveries and obtain detailed knowledge of how molecules, cells, tissues, and organisms operate. Read more
At the beginning of the 21st century, novel technologies are allowing us to make exciting new discoveries and obtain detailed knowledge of how molecules, cells, tissues, and organisms operate. Furthermore, these advances are changing the way in which we diagnose and treat human disease. In light of these developments, it is crucial that we educate today’s students about biology at the molecular level. Koç University’s Molecular Biology and Genetics Masters Program succeeds in providing broad and deep education in the biological sciences. The Molecular Biology and Genetics Masters Program offers advanced cell and molecular biology and genetics courses as well as electives in areas, such as cancer biology, neuroscience, and bioinformatics. Students in the Molecular Biology and Genetics program will engage in experimental research by working with faculty members in their cutting-edge research programs. The program will prepare students for careers in areas including: academia, pharmaceutical discovery and development, biotechnology, environmental sciences, food quality control, and forensics.

Current faculty projects and research interests:

• Bioinformatics
• Genomics
• Proteomics
• Cancer
• Mitochondrial Function and Ageing
• Neuroscience
• Cell division/Cell Cycle
• Molecular Biology of Human Diseases
• Circadian Rhythm
• Plant Biotechnology
• Stem Cell Biology

Read less
Our Diabetes MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more
Our Diabetes MRes is a research-based course with a taught component that is equivalent to an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of diabetes. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of diabetes under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Diabetes MRes is closely linked to a suite of MRes courses that you may also be interested in:
-Ageing and Health MRes
-Animal Behaviour MRes
-Biotechnology and Business Enterprise MRes
-Cancer MRes
-Cardiovascular Science in Health and Disease MRes
-Epidemiology MRes
-Evolution and Human Behaviour MRes
-Immunobiology MRes
-Medical Genetics MRes
-Medical Molecular Biosciences MRes
-Mitochondrial Biology and Medicine MRes
-Molecular Microbiology MRes
-Musculoskeletal Ageing (CIMA) MRes
-Neuromuscular Diseases MRes
-Neuroscience MRes
-Stem Cells and Regenerative Medicine MRes
-Systems Biology MRes
-Toxicology MRes
-Translational Medicine and Therapeutics MRes
-Transplantation MRes

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.

Read less
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

Degree information

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits. The programme consists of eight core modules (120 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) is also offered. A Postgraduate Certificate (60 credits) is also offered. There are no optional modules for this programme.

Core modules
-Bioinformatics and Structural Biology
-Target Identification and High Throughput Screening
-Cheminformatics and Computer Drug Design
-Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
-Biophysical Screening Methods, Protein NMR and Phenotypic Screening
-Fragment Based Drug Design (FBDD)
-Target Selection - Scientific Grounds
-Target Selection - Commercial and Intellectual Property

Dissertation/report
All MSc students undertake an independent research project which can take the form of a literature project, wet lab/computer modelling based project or an external project with an industrial sponsor.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Top career destinations for this degree:
-Industrial Chemistry, University of Oxford
-PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)
-Cancer Research, Imperial College London
-PhD Drug Design, University College London (UCL)
-PhD Oncology, Tianjin University

Employability
Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Why study this degree at UCL?

UCL is listed among the top five universities in the TImes Higher Education QS World University Rankings 2015/16 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Read less
The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. Read more

Programme Description

The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. The course provides a springboard into a career that involves a working knowledge of scientific research in academia and industry.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of cell signalling in health and disease. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of cell signalling in health and disease under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Cell Signalling in Health and Disease MRes is closely linked to a suite of MRes courses that you may also be interested in:
•Ageing and Health MRes
•Animal Behaviour MRes
•Biotechnology and Business Enterprise MRes
•Cancer MRes
•Cardiovascular Science in Health and Disease MRes
•Diabetes MRes
•Epidemiology MRes
•Evolution and Human Behaviour MRes
•Medical Genetics MRes
•Medical Molecular Biosciences MRes
•Mitochondrial Biology and Medicine MRes
•Molecular Microbiology MRes
•Musculoskeletal Ageing (CIMA) MRes
•Neuromuscular Diseases MRes
•Neuroscience MRes
•Stem Cells and Regenerative Medicine MRes
•Systems Biology MRes
•Toxicology MRes
•Translational Medicine and Therapeutics MRes
•Transplantation MRes

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.

Modules, Fees and How to Apply

Full information in our Prospectus online.

Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Read more
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

Degree information

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Optional modules - students will select three from the following Drug Design MSc modules:
-Bioinformatics and Structural Biology as applied to Drug Design
-Biological Molecules as Therapeutics
-Biophysical Screening Methods, X-ray Crystallography, Protein NMR and Phenotypic Screening
-Cheminformatics and Modelling for Drug Design
-Fragment-based Drug Design
-Target Selection – Commercial and Intellectual Property Aspects
-Target Selection – Scientific Grounds

Core modules - plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching):
-Investigating Research
-Researcher Professional Development

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD level research. The first cohort of students on the Drug Design MRes graduating in 2015 have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities.

Employability
The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Read less
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Read more
Recent years breakthrough discoveries in health sciences have generally been achieved by effective cooperation between interdisciplinary research teams, which included members from medicine, basic sciences and engineering. Such a cooperation provides a broad visionary approach and strong scientific basis for a better understanding of the health related problems and allows the development of novel technologies to improve the quality of life.
Koç University Biomedical Sciences and Engineering (BMSE) MS and PhD programs have been developed with this philosophy in mind and offer unique, truly interdisciplinary graduate education and leading edge research opportunities for students with different disciplines, which include basic sciences (chemistry, physics and biological sciences) engineering (chemical, mechanical and electrical engineering), medicine and related health sciences programs and provide them with the vision, knowledge and tools to become the future leaders.

Current faculty projects and research interests:

• Computational and Quantative Biology
• Biometric Materials and Islet Cell Bioengineering
• Robıtics and Mechanics
• Computational Biology and Bioinformatics
• Molecular biochemistry
• Computational Systems
• Biofluids and Cardiovascular Mechanics
• Polymer Science and Technology
• Mitochondrial Biogenesis
• Cell Biology
• Microphotonics
• Optofluidic and Nano-Optics

Read less
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London. Read more
This is a full-time research-based postgraduate degree, run jointly by Imperial College London and the Natural History Museum, London.

OPEN DAY

visit the course pages for more information about the next Open Day at NHM on Wednesday 7 June 2017.

OUTLINE

Taxonomy and systematics provide the foundation for studying the great diversity of the living world. These fields are rapidly changing through new digital and molecular technologies. There is ever greater urgency for species identification and monitoring in virtually all the environmental sciences, and evolutionary ‘tree thinking’ is now applied widely in most areas of the life sciences. These courses provide in-depth training in the study of biodiversity based on the principles of phylogenetics, evolutionary biology, palaeobiology and taxonomy. The emphasis is on quantitative approaches and current methods in DNA-based phylogenetics, bioinformatics, and the use of digital collections.

LOCATION

The course is a collaboration of Imperial College London (Silwood Park) with the Natural History Museum. This provides an exciting scientific environment of two institutions at the forefront of taxonomic and evolutionary research.

[[SYLLABUS ]]
The MRes in Biosystematics features hands-on research projects that cover the main methodological approaches of modern biosystematics. After 6 weeks of general skills training, students will ‘rotate’ through three research groups each conducting a separate 14-week project in specimen-based phylogenetics, molecular systematics/genomics, and bioinformatics. The projects may be of the student’s own design. Students attend small group tutorials, lab meetings and research seminars.

TRANSFERABLE SKILLS]

The GSLSM (Graduate School of Life Sciences and Medicine) at Imperial College London provides regular workshops covering a wide range of transferable skills, and MRes students are encouraged to undertake at least four during the year. Topics include: Applied Writing Skills, Creativity and Ideas Generation, Writing for Publication, Introduction to Regression Modelling, Introduction to Statistical Thinking.

RECENT PROJECTS

MORPHOLOGICAL

The Natural History Museum’s Dorothea Bate Collection of dwarfed deer from Crete: adaptation and proportional size reduction in comparison with larger mainland species
Cambrian lobopodians and their position as stem-group taxa
Atlas of the Caecilian World: A Geometric Morphometric perspective
Tooth crown morphology in Caecilian amphibians
Morphometrics of centipede fangs: untapping a possible new source of character data for the Scolopendromorpha
Phylogeny of the Plusiinae (Lepidoptera: Noctuidae): Exploring conflict between larvae and adults
A comparison between species delineation based on DNA sequences and genital morphometrics in beetles (Coleoptera)

MOLECULAR

Geographical distribution of endemic scavenger water beetles (Hydrophilidae) on the island of Madagascar based on DNA sequence data
Cryptic diversity within Limacina retroversa and Heliconoides inflate
Phylogenetics of pteropods of the Southern Oceans
Molecular discrimination of the European Mesocestoides species complex
A molecular phylogeny of the monkey beetles (Coleoptera: Scarabaeidae: Hopliini)
The molecular evolution of the mimetic switch locus, H, in the Mocker Swallowtail Papilio dardanus Brown, 1776
Phylogenetic and functional diversity of the Sargasso Sea Metagenome

BIOINFORMATICS

A study into the relation between body size and environmental variables in South African Lizards
Cryptic diversity and the effect of alignment parameters on tree topology in the foraminifera
Delimiting evolutionary taxonomic units within the bacteria: 16S rRNA and the GMYC model
Testing the molecular clock hypothesis and estimating divergence times for the order Coleoptera
Taxon Sampling: A Comparison of Two Approaches
Investigating species concepts in bacteria: Fitting Campylobacter and Streptococcus MLST profiles to an infinite alleles model to test population structure
Assessing the mitochondrial molecular clock: the effect of data partitioning, taxon sampling and model selection

ON COMPLETION OF THE COURSE, THE STUDENTS WILL HAVE:

• a good understanding of the state of knowledge of the field, together with relevant practical experience, in three areas of biosystematic science in which he or she has expressed an interest;
• where applicable, the ability to contribute to the formulation and development of ideas underpinning potential PhD projects in areas of interest, and to make an informed decision on the choice of potential PhD projects;
• a broad appreciation of the scientific opportunities within the NHM and Imperial College;
• knowledge of a range of specific research techniques and professional and transferable skills.

FURTHER INFORMATION

Students are encouraged to view the NHM website for further information, and to contact the course administrator if they have any queries. Visits can be arranged to the NHM to meet the course organisers informally and to be given a tour of the facilities. Applications should be made online on the Imperial College London website.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X