• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Imperial College London Featured Masters Courses
Vlerick Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bath Spa University Featured Masters Courses
"mining" AND "geology"×
0 miles

Masters Degrees (Mining Geology)

We have 48 Masters Degrees (Mining Geology)

  • "mining" AND "geology" ×
  • clear all
Showing 1 to 15 of 48
Order by 
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business. Read more
The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry
• Establishing networks with industry professionals and across specialisms
• Opportunity to view world class mines during the mine study tour
• A value chain view of the mining industry
• Industry focused using real world case studies and examples
• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Programme structure

This programme provides a robust understanding of the complete mining life cycle, from exploration and development to extraction and processing methods to waste management and mine closure. It is an excellent programme for new entrants into the mining business as a fast-track career induction.

Modules

The following are examples of the modules you might expect to study;

• Module 1 - Discovery: Introduction to the Mining Value Chain; Introduction to Geology, Rock Properties and Ore Forming Processes; Mineral Exploration; The Mining Business and Mineral Economics.

• Module 2 - Design: Deposit Evaluation and Resource Estimation; Introduction to Mining Methods and Mine Method Selection; Mine Planning and Mine Construction and Pre-production Decision Making

• Module 3 - Recovery: Principles of Surface Mining Operations; Principles of Underground Mining Operations; Mineral Processing; Mine Waste Management and Mineral Products

• Module 4 - Impacts: Environmental and Social Impacts of Mining; Economic Impacts of Mining (downstream and side stream investment); Mine Closure and Remediation and Corporate and Social Responsibility and the License to Operate

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for up to date information http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/pgcert-mining-professional/#Programme-structure

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. High level education covering the whole mine value chain. Shared courses in geosciences and engineering, including both theory and practice. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• High level education covering the whole mine value chain

• Shared courses in geosciences and engineering, including both theory and practice

• Excellent, cutting-edge infrastructure for research and education in close cooperation with the mining industry

The international master´s degree programme in Mineral Resources and Sustainable Mining (MRSM) is a two-year programme focusing on education in mining-related subjects. The programme provides master’s degrees in two fields: geosciences and engineering.

The specialisation lines in the field of geosciences are Economic Geology and Quaternary Geology and in the field of engineering sciences, they are Mining Engineering, Mineral Processing, and Applied Geophysics.

The programme will give you excellent skills and understanding on the whole mine value chain and principles of sustainable mining, including:

• Theoretical studies in geosciences and engineering

• Economical and environmental aspects of mining

• Hands-on practice in the well-equipped Oulu Mining School Research Centre and in the field

• The latest modelling and simulation education related to the topics

• Instrumental skills in mineral analytics

The two-year programme has five specialisation options:

Economic Geology focuses on characterisation of mineral deposits and geological processes behind their genesis, forming a basis for mineral exploration. Central topics include ore geology, regional geology, mineralogy, geochemistry, mining industry, and exploration. The obtained proficiency can be used in mineral exploration or exploitation of natural resources in private companies or research institutes.

Quaternary Geology covers a wide range of sub-disciplines including glacial geology, sedimentology, ore prospecting techniques, and hydrogeology. Education is also covering global change issues in the northern hemisphere and the Arctic. The programme will give in depth understanding of the properties of glacial sediments and deposits, their genesis and use for ore prospecting and for geotechnical purposes.

Mining Engineering covers a wide range of topics, including geotechnique, mining technologies, analysis of production capacity, and financing. The expertise can be used in design and management of metal mines as well as in other operations related to exploitation of raw materials.

Mineral Processing deals with the processes to economically separate valuable minerals from the ores. Oulu Mining School has unique, continuous mode in-house concentrating plant that provides an excellent infrastructure for training and education purposes. The environmental aspects of processing, health and safety in the plants, and collaboration with the mining industry are essential parts of education.

Applied geophysics concentrates on the basic phenomena in geophysics and how to apply the knowledge for example in exploration, mapping and management of natural resources, and in environmental and engineering studies. In the life cycle of a mine, geophysics plays an important role in all stages: before opening the mine in mineral exploration and resource assessment, during active mining operations in exploration for additional resources and environmental monitoring, and after the closure of the mine in environmental monitoring and mapping of potentially contaminated areas.

Graduating students understand and govern the technical, geological, financial, regulatory, environmental and social aspects of sustainable mining. Job opportunities exist in all fields related to the mining value chain including exploration, mining, mineral processing, and other kinds of rock engineering both in the industry and in research.

Email Now



Read less
The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business. Read more
The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

[[Course aims ]]
The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry
• Establishing networks with industry professionals and across specialisms
• Opportunity to view world class mines during the mine study tour
• A value chain view of the mining industry
• Industry focused using real world case studies and examples
• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Read less
Join us at our. Masters Open Day. to find out more about our courses. The only applied structural geology Masters in the UK. Read more

Join us at our Masters Open Day to find out more about our courses.

The only applied structural geology Masters in the UK. Providing you with advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building.

This will enable you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this course.

Course highlights:

  • The only applied structural geology Masters in the UK, offering you a route to both industry or a PhD.
  • Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
  • A key focus of this Masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
  • Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
  • Undertake free fieldwork in the UK and EU that is directly linked to your classroom learning.
  • Choose from hydrocarbon and mining module options, depending on your interests.
  • Access high-spec computing facilities and industry-standard software.
  • Produce an industry or research focused dissertation in your final year.

Fieldwork

The following fieldwork to the UK and overseas is free, and forms an integral part of the course. It is directly linked to learning outcomes in the classroom.

  • An introductory field day to Ingleton, North Yorkshire.
  • A 6-day trip to the South West of England. Consider both extensional and compressional tectonics, basin-scale to fault to reservoir scale deformation, fault seal analysis, kinematic and geometric fault evolution, restorations, and 3D fault analysis.
  • A 12-day trip to the Central Spanish Pyrenees. This trip serves as a summary trip where you will pull together elements from the entire course. Consider regional scale orogenic deformation through to basin scale to fracture scale. And the influence of sediment-structure interaction in basin evolution, and tie outcrop scale observations with seismic examples.

Course content

Develop personal skills and a professionalism that will make you employable, as well as increasing your knowledge and technical ability.

You will take 9 months of taught classes, followed by approximately 3 months of independent research and dissertation writing in association with industry or research collaborators.

Carry-out free fieldwork, which forms an integral part of the course, and is directly linked to learning outcomes in the classroom. Besides local visits, there is a 6-day trip to South West England and a 12-day visit to the Spanish Pyrenees.

Some of the modules you will study are spread over 2 semesters, while most are short and intensive. They are devised to develop your advanced understanding of key topics (including large scale tectonics, basin evolution and reservoir scale deformation) and your technical ability through the use of industry-leading software.

Begin, by reviewing the fundamentals of structural geology, maps, and mathematics before moving onto the more advanced modules.

You’ll receive advanced training in structural geology and tectonics, in geological model construction, and the practical application of structural geology. And gain training in interpreting seismic data and the principals underlying data acquisition and processing.

You’ll also undertake professional and research level training in structural geology and basin evolution from regional, to basin, to reservoir/deposit scale.

In semester 2, you can choose from hydrocarbon or mining modules.

Course structure

Compulsory modules

  • Structural Geology Independent Project 60 credits
  • Applied Geophysical Methods 15 credits
  • Integrated Sub Surface Analysis 30 credits
  • Applied Structural Models 20 credits
  • Geomechanics 10 credits
  • Applied Geodynamics and Basin Evolution 15 credits
  • 3D Structure: Techniques and Visualisation 15 credits

For more information on typical modules, read Structural Geology with Geophysics MSc in the course catalogue

Learning and teaching

Teaching is varied, with some of your modules being very practical based e.g. fieldwork, presentations, learning new software. While other methods are tutorial or lecture based. You will also have the opportunity to work individually or as a group. Regardless of method, you will be supported by substantial online learning material.

Facilities

The School of Earth and Environment’s £23m building gives you access to world-class research, teaching and laboratory facilities. As a Masters student, you will have access to a 3D visualisation suite, and to your own dedicated computer facilities, which runs industry standard software.

Industry standard software:

  • 2D and 3D seismic interpretation is done via Kingdom Suite software.
  • Geocellular modelling is delivered on the Petrel platform.
  • Structural modelling and restoration is learnt using Midland Valley's 2DMove software.
  • PCs run a range of structural modelling, GIS and 3D visualisation programmes.
  • If you choose the optional Ore Deposits module, train in Leapfrog 3D deposit modeller.

Assessment

Given the variety of learning outcomes and teaching methods, you will be assessed differently between modules but generally assessed on a combination of presentations, practicals and/or formal examinations.

Industry links

We have very strong links with industry, which you’ll benefit from throughout the year. This includes the provision of scholarships, data for dissertation projects, teaching of short courses and free licenses for industry standard software.



Read less
From the field to the lab, the knowledge you will gain in this course will help drive advancements in areas such as petroleum exploration, or mineral exploration. Read more
From the field to the lab, the knowledge you will gain in this course will help drive advancements in areas such as petroleum exploration, or mineral exploration.

This course provides advanced technical training for professionals intending to upgrade their geology qualifications or to enter a new branch of geoscience. This is achieved by attendance at lectures, seminars and group discussions, and the preparation and submission of a thesis-based research project.

Each major in this course comprises core units together with optional units in geology and related disciplines. Note that unit availability is often limited to specific semesters, which may affect the order in which you can take each unit. You will specialise in basin analysis and petroleum geology or mineral exploration and mining geology. You will complete a supervised project related to your stream, usually in collaboration with industry or government partners.

Basin Analysis and Petroleum Geology

Sedimentary basins contain a unique record of the tectonic, structural and sedimentological processes that created them. By understanding these processes, often using subsurface data sets, we can gain insights into the valuable energy resources that they contain. This stream will provide you with the technical and practical skills that you need to evaluate petroleum systems and to pursue a career in hydrocarbon exploration or production.

Mineral Exploration and Mining Geology

The mining industry is critical to our future. Without fossil fuels for power generation, silicon chips for computer chips, fertiliser for bumper harvests, metal for cars and buildings, and many raw materials for other growing industries, our current standard of living could not be maintained. This stream offers detailed knowledge of mining operations and mineral systems. You will learn about the principal types of ore deposits, the fundamentals of mineral exploration, collecting and displaying geophysical data, geochemical processes and magnetics theory, among other topics. This stream provides specialised technical and professional training for graduates in geology or closely related disciplines.

Career opportunities

This course can open up a wide range of geoscience career opportunities depending on your choice of units.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Other notes

There is considerable flexibility in the course structure with some units available in a concentrated, short-course format. Part of the research project may be undertaken in a short, intensive period.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. Read more
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. The Master's Programme in Geology and Geophysics trains you to address pressing questions concerning our home planet's evolution, its role as the source of raw materials needed by modern civilisation, and environmental issues. Key questions include:
-How can we decode Earth’s rock record to reveal the evolution of Earth’s crust and mantle over billions of years?
-How do we make natural resource exploration and extraction more sustainable and environmentally friendly?
-What can the Earth’s history tell us to help us forecast the impacts of climate change?
-Where can we safely construct power plants or store nuclear waste?

The programme includes four specialist options: Petrology and Economic Geology; Hydrogeology and Environmental Geology; Palaeontology and Global Change; and Solid Earth Geophysics.

Upon completion of the programme, you will have gained expertise in a number of scientific and professional skills, including, depending on your specialist option:
-Assessment of geological materials (minerals, rock types, bedrock, groundwater).
-Understanding the genesis and sustainable use of mineral commodities.
-Sustainable use of the environment from the Earth Science perspective.
-Palaeontology and modelling global change using the geological record.
-The physical evolution of the Earth (plate tectonics, interplay of the mantle and crust).
-Independent and team-driven project research.
-High-level scientific writing (M.Sc. thesis and related work).
-Presentation of scientific results to scientists, students, and the general public.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

At the beginning of the advanced studies, you will familiarise yourself with the central research methods in the field. The studies consist of intensive learning in small groups on practical work courses, guided laboratory work on specialised courses, and tailored short-term courses led by international and Finnish experts. In addition, you will be able to take part are a variety of field courses and excursions (in Finland and beyond) to familiarise yourself with research topics in their natural surroundings.

Selection of the Major

As a student in the Master’s Programme in Geology and Geophysics, you are free to choose among the four specialist options offered:
In Petrology and Economic Geology you will study solid rock, mineral material and associated fluid systems, with targets ranging from the microscopic (and submicroscopic) scale to continents. The focus is on study of magmatic systems (volcanic and plutonic); the composition, lithology and structure of bedrock; evolution of continental crust and mantle; and the origin and assessment of economically important commodities in rock systems.

Hydrogeology and Environmental Geology combines understanding of earth surface systems such as 3D sedimentary environments, groundwater and low temperature geochemistry. The specialist option is based on practical training using top-notch analytical facilities and survey methods in cooperation with industry and authorities. In addition to basic research, the line aims to build your expertise for future careers.

Palaeontology and Global Change deals with the changing conditions and evolution of life on Earth. Research topics include fossil mammals and their environments during the last 25 million years, the environmental and evolutionary context of early humans in Africa, and the history of climate change and ecosystems during the last 100,000 years. The effect of humankind on the biosphere is a multidisciplinary topic.

Solid Earth Geophysics combines geology with geophysics to study the structure of the Earth’s interior and the physical processes related to its evolution. These ideas are not only crucial for understanding phenomena such as earthquake and volcanic activity related to Plate Tectonics, but also important for exploration of natural resources, environmental studies and engineering, for example.

Programme Structure

A Master’s degree in Geology and Geophysics requires 120 credits (ECTS) and is designed to be completed in two years of full-time study. The study requirements are:
-Advanced studies in your specialist option (60-70 credits).
-Joint studies in topics related to your specialist option (25-30 credits).
-Master’s thesis (30 credits).

Career Prospects

Expert geoscientists are in demand and employed in a range of fields nationally and internationally. Recent graduates have gone on to pursue:
-Employment in the mining and mineral resource exploration industry.
-Work as environmental and groundwater scientists in private companies and in the public sector.
-Doctoral studies in geoscience or geophysics both in Finland and abroad.
-Research work on the geology of Finland at the Geological Survey of Finland (GTK).
-Work as experts in the field of engineering geology and applied mineralogy.

Research Focus

There are many ongoing interdisciplinary research projects in the Faculty of Science. These projects are conducted in active cooperation with research institutes on the Kumpula Science Campus, as well as with other faculties, universities, and private industry.

The field of Geosciences is broad, and our research focus covers multiple branches of it. Some of the main interests at the moment include environmental topics related to groundwater and contaminated soils, the genesis of plutonic and volcanic igneous rocks, evolutionary palaeontology of mammals based on fossil teeth, and the structure and evolution of the continental crust. We are focusing on scientific research that makes it possible to understand geological processes and the structure of the Earth using our modern and diverse laboratory infrastructure.

Read less
This course is designed to help you enter the mining industry. You will develop a detailed knowledge of the mining industry and become particularly familiar with mining engineering methods. Read more
This course is designed to help you enter the mining industry. You will develop a detailed knowledge of the mining industry and become particularly familiar with mining engineering methods.

This course is designed for those outside the discipline of mining engineering who wish to become knowledgeable in the specialist skills of the mining industry and in particular become familiar with mining engineering methods. It prepares you for positions in the mining industry, both operational and management, in both open-pit and underground work and partially satisfies the entry requirements for the postgraduate Master of Engineering Science (Mining) study.

The Master of Engineering Science (Mining) is available for further studies upon completion of this course.

Career opportunities

Graduates may be employed as underground and/or open pit mining engineers or quarry managers, or hold other senior management positions once the necessary experience is gained.

Credit for previous study

No recognition of prior learning (RPL) is considered for this course. The course will be structured to suit your individual background.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
Join us at our. Masters Open Day. to find out more about our courses. Please note. From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. Read more

Join us at our Masters Open Day to find out more about our courses.

Please note: From 23 May 2017 we are not making any further offers on this course (starting in September) due to a high demand. However, you can still submit an application for review. If you meet the usual entry requirements, we will hold your application until we can assess whether further places can be offered. This will likely be the end of July-early August 2017 when we can be more confident of numbers. Please contact our if you have any questions.

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields appropriate to civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work.

Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites.

They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change.

Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

  • Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
  • The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society.
  • Complete a 4 month individual dissertation project often involving organisations outside the University such as consulting engineers, civil engineering contractors and the British Geological Survey.
  • The School's £23m building gives you access to world-class research, teaching and laboratory facilities, many of which will be available to you throughout your studies.

Benefit from our strong connections with industry:

  • We have been training Engineering Geologists over 50 years and maintain links with alumni who can be found in many companies across the globe.
  • Industry colleagues contribute to the taught programme and an Industry Advisory Board informs the content of this course.

Accreditation

When you choose a degree with accredited status, you can be assured that the teaching is of the highest standard. The quality and relevance of our teaching has been recognised by an independent body of academics and industrialists through our Geological Society of London Professional Accreditation.

If you have an appropriate degree, our Geological Society accreditation will reduce the amount of experience required for you to reach Chartered Geologist (CGeol) status, an important career step in Geoscience.

Our designation as a “Technical MSc” through Engineering Council means that if you have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree, the degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng). In addition the degree is also an accredited European Engineering degree. 

Course content

You will take 2 terms of lectures (class and computer-based practical work) and laboratory classes, followed by approximately 4 months of individual work, leading to the submission of a dissertation. You will also take part in supervised fieldtrips and ground investigation and construction site visits.

You can also study this course part-time. Please contact the if you are already working within the industry, we can discuss possible routes to allow continued employment.

Course structure

Compulsory modules

  • Geological Investigation and Characterisation 30 credits
  • Soils Engineering 30 credits
  • Rock Engineering 30 credits
  • Engineering Geology: Dissertation Project 60 credits
  • Hydrogeology and Contaminant Processes 15 credits
  • Hazards, Resilience and Sustainable Engineering 15 credits

For more information on typical modules, read Engineering Geology MSc Full Time in the course catalogue

For more information on typical modules, read Engineering Geology MSc Part Time in the course catalogue

Learning and teaching

You will be taught via lectures, individual and group class-based practicals, laboratory practicals, field courses and independent project work.

Facilities

  • Access your own dedicated computing suite for use by Masters students only.
  • Collect and interpret data related to the geotechnical and mining sectors around the world in our Geotechnical and Engineering geology laboratories.
  • Carry out soil and rock description and testing including uniaxial, triaxial testing, direct shear tests, slake durability and permeability tests all to ISRM, CIRIA, EuroCode and other recognised standards.
  • For independent project work, access state-of-the-art methods for establishing the composition of rocks and soils through thin section analysis, X-ray diffraction, Scanning Electon Microscopy and other advanced techniques.
  • Use a suite of industry-standard software packages including RocScience, ArcGIS and gINT.

Assessment

You will be assessed on your written and oral assignments, field-based assessments and exams, as well as seminars and a dissertation project.



Read less
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Read more
Professional geologists working in consultancies, regulatory authorities and government environmental agencies are required to apply a wide range of transferrable skills to their jobs. Candidates who are able to demonstrate skills in public engagement, communication, professional research and report-writing, in addition to academic knowledge and field skills, are therefore highly sought after in these professions.

This full-time MSc Applied Environmental Geology is part taught and part professional project. We aim to develop your transferrable skills in a professional context and give you a head start in the geology profession of your choice or starting a PhD.

Distinctive features:

• Our location in South Wales provides us with a wide range of highly relevant geoenvironmental and geotechnical locations, which we visit during fieldtrips and use in case studies.

• Embed your skills in professional practice through a five month professional project, usually as part of a placement.

• Strong links with industry and government agencies ensure the quality and relevance of the course, and give you the opportunity to make contacts.

• Fully integrated with the professional development (CPD) lecture programme of the Southern Wales Group of the Geological Society of London.

Structure

There are two stages to the MSc Applied Environmental Geology.

Stage 1 lasts for 7 months (September – April), where you will complete taught modules and fieldwork, with significant contributions from industry professionals.

In these modules, we will investigate general themes, such as the principles of geotechnical engineering and geophysics. We will also look into environmental themes in more depth including land contamination, environmental regulation, behaviour of soils and water.

If you pass Stage 1 you will progress onto Stage 2, which is a 5-month professional project from May to September culminating in a dissertation. We will, wherever possible, offer you an industrial placement with a professional company either in the UK or overseas over the summer to complete your project.

For the first seven months, from September to April, you will complete taught modules and fieldwork at Cardiff University. After this, you will progress onto a 5-month placement in the UK or overseas where you will undertake a professional project and complete your dissertation.

Core modules:

Project Planning, Design and Management For Applied Environmental Geology
Geotechnical Engineering
Engineering Behaviour of Soils
Contaminated Land
Environmental Assessment and Regulation
Remote Sensing and Applied Geophysics
Transferable Skills
Water in the Environment
Dissertation AEG

Optional modules:

Environmental Geology/Hydrogeology Report

Teaching

The methods of teaching we employ may vary from module to module. Generally we teach using a mixture of lectures, practical work and fieldwork. We also have a series of lectures with invited speakers from across the profession, as well as strong links with the Geological Society.

On the course, you will undertake laboratory work in several modules. This includes standard laboratory tests covering the physical and mechanical properties of soils, and water flow experiments to learn hydrologic and hydrogeologic concepts.

You will also develop your knowledge of numerical tools to model real-world geotechnical problems. Application software, such as CorelDraw, Surfer, ArcGIS, as well as professional geoengineering software, such as Rockscience and Landsim, are used throughout the course.

Throughout the course we encourage communication and teamwork. For example, we may ask you to work in teams in laboratories and on field-trips. Our project training includes skills in supervision and co-ordination of a range of tasks designed to address specific geotechnical and geoenvironmental problems.

Assessment

We use a wide range of assessment methods, depending on the module. These include exams, coursework, presentations, practical assessment, your industrial placement and dissertation (20,000 words).

Placements

You will undertake a professional placement in industry as part of the second stage of the course. This placement will last for 5 months (May - September), during which you will undertake a research project and complete your dissertation.

We endeavour wherever possible to place students with industrial partners. This placement can be located in the UK or overseas as long as the project is deemed to be logistically safe and academically viable.

Fieldwork

South Wales provides a wide range of highly relevant geoenvironmental and geotechnical case studies and site visits. These include site visits to the Cardiff Bay Barrage, acid mine drainage from abandoned mines and active landslides in the south Wales Valleys. Field work includes surveying skills, rock engineering to the Rhondda Valley and Cardigan, site investigation visits to the Mumbles, Bournville landslide, as well as contaminated land studies at Barry Docks and Bryn Pica landfill site. All fieldwork on this course is compulsory.

Career prospects

Our graduates are widely sought after in industry and often have an advantage in the job market, due to the applied nature of the course and the transferrable skills they have been equipped with.

Following this degree you may choose to work in consultancy, regulatory authorities or government environmental agencies across the world. You may also decide to conduct further research and complete a PhD.

Former students can be found working for the likes of Network Rail, Mott McDonald, Natural Resources Wales, Environment Agency England, WSP, Ove Arup, Atkins and numerous other specialist geo-environmental consultancies and agencies based around the UK.

Read less
With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. Read more
With the rapid development of smart sensors, smartphones and social media, "big" data is ubiquitous. This new MSc teaches the foundations of GIScience, database, spatial analysis, data mining and analytics to equip professionals with the tools and techniques to analyse, represent and model large and complex spatio-temporal datasets.

Degree information

Students will be equipped with computational foundations and skills needed for big data analytics including visualisation, prediction, clustering and simulation with statistical and machine learning approaches, as well as retrieving and mining big (open) data, web services and cloud computing, web and mobile applications, by practising with real case data and open software.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a dissertation/report (60 credits).

A Postgraduate Diploma, four core modules (60 credits), two optional modules (60 credits), full-time nine months is offered.

Core modules
-GIS Principles and Technology
-Principles of Spatial Analysis
-Spatial Databases and Data Management
-Spatio-temporal Analysis and Data Mining

Choose four options from the following:
-Introductory Programming (requires Applied Machine Learning option)
-Complex Networks and Web
-Representation, Structures and Algorithms
-Mapping Science
-Supervised Learning (requires Applied Machine Learning)
-Web Mobile GIS
-Information Retrieval & Data Mining (requires Introductory Programming)
-Geographic Information System Design
-Applied Machine Learning (requires Introductory Programming, and Supervised Learning)

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 15,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, and laboratory practicals. Assessment is through examination, coursework, practicals, dissertation, and poster presentation.

Careers

Graduates from this programme are expected to find positions in consultancy, local government, public industry, and the information supply industry, as well as in continued research. Possible career paths could include: data scientist in the social media, finance, health, telecoms, retail or construction and planning industries; developer of spatial tools and specialised spatial software; researcher or entrepreneur.

Employability
Graduates will be equipped with essential principles and technical skills in managing, modelling, spatial and spatial-temporal analysis, visualising and simulating "big" spatio-temporal data, with emphasis on real development skills including: Java, JavaScript, Python and R. Business Intelligence (BI) skills will also be taught via practical case studies and close collaborations with leading industrial companies and institutions. All these skills are highly valued in big data analysis.

Why study this degree at UCL?

As one of the world’s top universities, UCL excels across the physical and engineering sciences, social sciences and humanities.

Spanning two UCL faculties, this interdisciplinary programme exploits the complementary research interests and teaching programmes of three departments (Civil, Environmental & Geomatic Engineering, Computer Science, and Geography).

Students on the Spatio-Temporal Analytics and Big Data Mining programme will be part of a vibrant, enthusiastic, and international research environment in which collaboration and free-ranging debate are strongly encouraged. This is supported by weekly research seminars and industrial seminars from top employers in the field.

Read less
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. Read more
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. It is also suitable for geology and engineering graduates wishing to specialise in either of the following main study areas: mine and general management; excavation (geotechnics and tunnelling).

Taught modules take place at the Camborne School of Mines; projects are often company-based.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry; Economics, Processing & Environment and Project Management

Optional modules

Some examples of the optional modules are; Surface Excavation Design; Resource Estimation; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website at http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/msc-mining-engineering/#Programme-structure

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.
Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
This course is designed for those who have completed an undergraduate geoscience degree and wish to enhance their career prospects with an additional qualification and for graduates of related disciplines thinking of a geoscience career. Read more
This course is designed for those who have completed an undergraduate geoscience degree and wish to enhance their career prospects with an additional qualification and for graduates of related disciplines thinking of a geoscience career.

In this course you will undertake one of three majors to suit your interest area and career aspirations: basin analysis and petroleum, mineral exploration and mining. These majors cater for the minerals, groundwater and petroleum employment areas.

To complete the course you will take a range of coursework units in your chosen specialty and at least one individual research project involving practical laboratory work and/or fieldwork.

Career opportunities

Graduates who complete the basin and analysis and petroleum, mineral exploration, mining or environment geoscience majors are trained specifically for employment in the minerals, groundwater or petroleum industries.
Graduates without an undergraduate qualification in geology or a closely related field may need to undertake further study at master level before embarking on a geoscience career.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Other notes

There is considerable flexibility in the course structure with some units available in a concentrated, short-course format. Part of the research project may be undertaken in a short, intensive period.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
*PLEASE NOTE. This course is pending approval*. The Graduate Diploma in Mining Law, Finance, and Sustainability will provide complementary interdisciplinary training to students whose backgrounds and previous academic disciplines are in fields other than Law. Read more
*PLEASE NOTE: This course is pending approval*

The Graduate Diploma in Mining Law, Finance, and Sustainability will provide complementary interdisciplinary training to students whose backgrounds and previous academic disciplines are in fields other than Law. Our goal is to provide mining professionals (eg geologists, geophysicists, engineers), business professionals (eg those in finance or human resources), public servants, indigenous leaders, and advocates working with non-governmental organizations with knowledge of the key legal frameworks that govern the extractive industries in Canada and abroad. This will help them to understand issues in areas like environmental regulation, the rights of indigenous peoples, and applicable corporate finance provisions.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=271

Part-time students can complete the program in either three or four terms. As the Faculty of Law does not offer Summer courses, students would be limited to taking courses in the Fall and Winter. Part-time students will not be charged tuition during the Summer Term.

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less

Show 10 15 30 per page



Cookie Policy    X