• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Birmingham Featured Masters Courses
"mining" AND "engineer"×
0 miles

Masters Degrees (Mining Engineer)

  • "mining" AND "engineer" ×
  • clear all
Showing 1 to 15 of 38
Order by 
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. Read more
The programme provides specialist analytical, design and management skills. The MSc provides skill enhancement for engineers and geologists already employed in the mining, minerals, quarrying and civil engineering industries. It is also suitable for geology and engineering graduates wishing to specialise in either of the following main study areas: mine and general management; excavation (geotechnics and tunnelling).

Taught modules take place at the Camborne School of Mines; projects are often company-based.

This degree is professionally accredited under licence from the Engineering Council, as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree.

Programme Structure

You can either study the course full time over a year or part-time over 3 years.

Compulsory modules

The compulsory modules can include; Project and Dissertation; Excavation and Geomechanics; Health and Safety in the Extractive Industry; Economics, Processing & Environment and Project Management

Optional modules

Some examples of the optional modules are; Surface Excavation Design; Resource Estimation; Tunnelling and Underground Excavation; Production and Cost Estimation; Mine Planning and Design; Geomechanics Computer Modelling for Excavation Design and Soil and Water Contamination.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. For up to date information please see the website at http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/msc-mining-engineering/#Programme-structure

Learning and teaching

The taught part of the programme is structured into two terms. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

For the award of the Masters (MSc), you must pass four modules and complete a project and dissertation. To obtain a Postgraduate Diploma (PgDip), you must pass two modules and a project with dissertation.
Students are encouraged to undertake projects directly linked with industry, which may result in industrial placements for their project period.

Read less
We are surrounded by data. The variety and amount we collect and store grows every day, from the simplest of retail transactions to the complex and intimate medical records of millions. Read more
We are surrounded by data. The variety and amount we collect and store grows every day, from the simplest of retail transactions to the complex and intimate medical records of millions.

There is increasing demand for individuals who can manage and control the way data is used. These individuals require an understanding of computer science and maths as well as a range of sector specific skills.

The emerging era of ‘big data’ brought about by the digital technology revolution shows no signs of abating. In this era, demand for data scientists will continue to grow, with a report from e-skills UK predicting the generation of approximately 28,000 data science jobs opportunities each year by 2017.

There are a broad range of job opportunities which require data science skills, including Business Analyst, Business Intelligence Analyst, Data Scientist, Data Engineer, Data Manager, Data Analyst, Data Architect and Data Modelling and Data Mining Engineer.

The course

This Data Science and Analytics MSc is a highly flexible course, with a wide range of option modules taught by research-active academics. The course combines expertise from our School of Mathematics, School of Computing, School of Business, School of Geography, and the Yorkshire Centre for Health Informatics. This collaboration allows you to benefit from a range of data science perspectives and applications, supporting you to tailor your learning to your career ambitions.

You’ll be supported to develop a range of skills, including analysing structured and unstructured data, analysing large datasets, and critically evaluating results in context.

Course structure

The first two semesters of your course will consist of taught modules, and in the third semester you will devote your time to a dissertation in data science.

Within each semester there is one compulsory module and a wide range of optional modules spanning the areas of mathematics, computing, business, health care and geography. The aim is to support you in developing your understanding of computer science and mathematics, with specific pathways in business management, health care and geographic information systems (GIS), allowing you to tailor the programme to your ambitions.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics
- Data Science Research Methods and Seminars
- Big Data and Data Mining
- Big Data and Machine Learning
- Mathematical Skills for Data Scientists
- Data Visualization
- Human Computer Interaction
- High Performance Computing in C/C++
- Graphics Processor Programming
- Computer Vision and Pattern Recognition
- Modelling and Verification Techniques
- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst
- Data mining Developer
- Machine Learning Developer
- Visual Analytics Developer
- Visualisation Developer
- Visual Computing Software Developer
- Database Developer
- Data Science Researcher
- Computer Vision Developer
- Medical Computing Developer
- Informatics Developer
- Software Engineer

Read less
1. Big Challenges being addressed by this programme – motivation. Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Globally, there is a reported shortage of data analytics talent, particularly of individuals with the required deep technical and analytical skills.
• Accenture, Gartner and McKinsey have all identified Data Analytics as one of the fastest growing employment areas in computing and one most likely to make an impact in the future.
• The Irish Government’s policy is for Ireland to become a leading country in Europe for big data and analytics, which would result in 21,000 potential new employment opportunities in Ireland alone.
• CNN has listed jobs in this area in their Top 10 best new jobs in America.

2. Programme objectives & purpose

This is an advanced programme that provides Computing graduates with advanced knowledge and skills in the emerging growth area of Data Analytics. It includes advanced topics such as Large-Scale Data Analytics, Information Retrieval, Advanced Topics in Machine Learning and Data Mining, Natural Language Processing, Data Visualisation and Web-Mining. It also includes foundational modules in topics such as Statistics, Regression Analysis and Programming for Data Analytics. Students on the programme further deepen their knowledge of Data Analytics by working on a project either in conjunction with a research group or with an industry partner.

Graduates will be excellently qualified to pursue careers in national and multinational industries in a wide range of areas. Our graduates currently work for companies as diverse as IBM, SAP, Cisco, Avaya, Google, Fujitsu and Merck Pharmaceuticals as well as many specialised companies and startups. Opportunities will be found in:
• Multinational companies, in Ireland and elsewhere, that provide services and solutions for analytics and big data or whose business depend on analytics and big data technologies;
• Innovative small to medium-sized companies and leading-edge start-ups who provide analytics solutions, services and products or use data analytics to develop competitive advantage
• Companies looking to extend their research and development units with highly trained data analytic specialists
• PhD-level research in NUI Galway, elsewhere in Ireland, or abroad

3. What’s special about CoEI/NUIG in this area:

• The MSc in Computer Science (Data Analytics) is being delivered by the Discipline of Information Technology in collaboration with the Insight Centre for Data Analytics (http://insight-centre.org) and with input from the School of Mathematics, Statistics and Applied Mathematics in NUI Galway
• The Discipline of Information Technology at NUI Galway has 25-year track record of education, academic research, and industry collaboration in the field of Computer Science
• The Insight centre at NUI Galway is Europe’s largest research centre for Data Analytics

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Foundational Modules:

• Tools and Techniques for Large Scale Data Analytics
• Programming for Data Analytics
• Machine Learning and Data Mining
• Modern Information Management
• Probability and Statistics
• Discrete Mathematics
• Applied Regression Models
• Digital Signal Processing

Sample Advanced Modules:

• Advanced Topics in Machine Learning and Information Retrieval
• Web Mining and Analytics
• Systems Modelling and Simulation
• Natural Language Processing
• Data Visualisation
• Linked Data Analytics
• Case Studies in Data Analytics
• Embedded Signal Analysis and Processing

6. Testimonials

Ms. Gofran Shukair, MSc, Research Engineer at ZenDesk, Ireland

After graduating with an MSc at NUI Galway, Gofran worked with Fujitsu’s Irish Research Lab as a research engineer before moving to a software engineering position at Zendesk, Ireland.

“The mix of technical and soft skills I gained through my Masters studies at NUI Galway is invaluable. I had the chance to work with great people and to apply my work on real world problems. With the data management and analysis skills I gained, I am currently pursuing my research in an international research project with one of the leading IT companies. I will be always thankful for studying at NUI Galway, a great historic place based in a culturally-rich vibrant city with an international mix of young and ambitious students that made me eager to learn and contribute back the moment I graduated.”

For further details

visit http://www.nuigalway.ie/courses/taught-postgraduate-courses/msc-in-computer-science-data-analytics.html

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC) https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Computer Science – Data Analytics - PAC code GYE06

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Visit the M.Sc. Computer Science – Data Analytics page on the National University of Ireland, Galway web site for more details!

Read less
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding. This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. Read more
Engineering is constantly changing, and graduates often need to deepen their technical skills and understanding.

This course is especially relevant for mechanical and manufacturing engineers and technicians wishing to broaden their industrial and managerial skills. It is ideal for continuing professional development and updating technical skills.

You study eight taught modules drawn from a wide choice of technical and management modules. This gives you advanced tuition in areas of engineering tailored to your career needs such as design, manufacturing, materials, networking or electronics and telecommunications.

We emphasise applying knowledge to relevant workplace skills in areas such as:
-Design, manufacture, electronics, telecommunications and information technology, networking and materials.
-Core management disciplines of quality, finance and marketing and others.

The international product development module involves working in multidisciplinary teams to design and develop a product in the global market.

This flexible course helps you to develop your career based your needs, and helps you on your path towards Chartered Engineer status.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-engineering

Professional recognition

Accredited by the Institute of Materials, Minerals and Mining (IOM3).

Accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Course design
You choose a combination of management, technical and optional modules from a choice of 36. Your choice must total eight 15-credit modules and be agreed with your course leader. At least four must be technical modules.

Optional management modules
-Finance and marketing
-Project and quality management
-Management of strategy, change and innovation
-Lean operations and six sigma
-Manufacturing systems

Optional technical modules
-Group project - international product development
-Competitive materials technology
-Advanced CAD/CAM
-Competitive design for manufacture
-Advanced manufacturing technology
-Advanced metallic materials
-Sustainability, energy and environmental management
-Computer networks
-Communication media
-Network applications
-Communication engineering
-Digital signal processing
-Applicable artificial intelligence
-Microprocessor engineering
-Software engineering
-Operating systems
-Object oriented methods
-Digital electronic system design
-VLSI design
-Industrial applications of finite element methods
-Industrial automation
-Robotics
-Machine vision
-Equipment engineering and design
-Control of linear systems
-Advanced investigatory techniques for materials engineers
-Advanced control methods
-Advanced vibration and acoustics

MSc
-Project and dissertation (60 credits)

Assessment: by final examination; coursework and project reports.

Other admission requirements

Overseas applicants from countries whose first language is not English must normally produce evidence of competence in English. An IELTS score of 6.0 with 5.5 in all skills (or equivalent) is the standard for non-native speakers of English. If your English language skill is currently below an IELTS score of 6.0 with a minimum of 5.5 in all skills we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English level.

Read less
This course is for engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies. Read more
This course is for engineers or graduates who want to become technical specialists or managers in industrial and manufacturing companies.

It increases your career potential by improving your:
-Knowledge and experience of engineering.
-Technical and problem solving skills.
-Management skills.
-Ability to take on greater responsibility.

This course helps you understand concepts and theories behind developing, manufacturing and managing engineering products and systems. You learn to explore and apply developments in engineering and management academic thinking and industrial practice.

You study:
-Two management modules.
-Two technical modules.
-Four optional modules.

There is a wide range of optional modules including:
-Lean operations and six sigma.
-Advanced manufacturing technology.
-Applicable artificial intelligence.
-Computer-aided design/computer-aided manufacture.
-Advanced computer system architecture.
-Network applications.

The international product development module involves working in multidisciplinary teams to develop a new product in a global market. This allows you to develop much sought after advanced technical and business skills and improves your career prospects in engineering industry, and public service. This project also develops your particular interest in a supported environment.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/msc-advanced-engineering-and-management

Professional recognition

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This course is accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirement for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration. It should be noted that graduates from an accredited MSc programme, who do not also have an appropriately accredited Honours degree, will not be regarded as having the exemplifying qualifications for professional registration as a Chartered Engineer with the Engineering Council; and will need to have their first qualification individually assessed through the Individual Case Procedure if they wish to progress to CEng.

This programme is CEng accredited by the Institution of Engineering and Technology (IET) and fulfils the educational requirements for registration as a Chartered Engineer when presented with an CEng accredited Bachelors programme.

Course structure

Full time – 12 to 18 months.
Part time – typically 3 years, maximum 6 years.
Starts September and January.

Core management modules
-Finance and marketing
-Project and quality management

Core technical modules
-Group project – international product development
-Sustainability, energy and environmental management

Optional modules (two from)
-Lean operations and six sigma
-Management of strategy, change and innovation
-Manufacturing systems

Plus two from:
-Advanced control methods
-Advanced investigatory techniques for materials engineers
-Advanced manufacturing technology
-Advanced metallic materials
-Advanced vibration and acoustics
-Applicable artificial intelligence
-Computer-aided design/computer-aided manufacturing
-Communication engineering
-Communication media
-Computer networks
-Competitive design for manufacture
-Competitive materials technology
-Control of linear systems
-Digital electronics system design
-Digital signal processing
-Embedded systems
-Equipment engineering and design
-Industrial applications of finite element methods
-Industrial automation
-Machine vision
-Microprocessor engineering
-Advanced computer system architecture
-Network applications
-Object-oriented methods
-Operating systems
-Robotics
-Software engineering
-VSLI

MSc
-Project and dissertation

Assessment: examination; coursework; project reports.

Other admission requirements

International students
If English is not your first language you typically need an IELTS 6.0 score with a minimum of 6.0 in writing and 5.5 in all other skills or equivalent. If your English language skill is currently below IELTS 6.0 we recommend you consider a Sheffield Hallam University Pre-sessional English course which will enable you to achieve an equivalent English score.

India
-A first class BE in an relevant discipline, or a good second class BE with a strong performance in mechanical and manufacturing subjects.
China
-A four year Bachelors degree in an relevant discipline, with an overall average of at least 80 per cent or equivalent.
Other countries
-A good honours degree or equivalent in an relevant subject.

Read less
This course is suited to those with an eye for materials, material structure and material mechanics. Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. Read more

Why take this course?

This course is suited to those with an eye for materials, material structure and material mechanics.

Our course aims to extend your understanding of the core disciplines of civil engineering and widen your professional scope to include expertise in geotechnical engineering. From ground investigations to soil structure testing, you will gain the analytical and technical skills required to make informed decisions when faced with the complex geotechnical problems of construction projects.

What will I experience?

On this course you can:

Attend lectures and seminars given by practitioners from client, contracting and consulting organisations
Gain experience of environmental assessment techniques plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Opt to study overseas at a variety of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Here are some routes our graduates have pursued:

Civil engineering
Mining companies
Petroleum companies
The military
Consultancy

Module Details

The course is divided into three stages, the first two stages are generally taught through formal tuition, with stage three covering independent research in an academic or industrial setting.

You will build upon established fundamental civil/construction engineering and project management principles in order to confidently apply them to a range of complex construction project problems with due regard to related geotechnical factors.

Here are the units you will study:

Environmental Management for Civil Engineering: This unit introduces you to the main environmental issues associated with civil engineering projects and how they are considered and mitigated in the Environmental Assessment process.

Civil Engineering Science: In this unit you will study integrated topics of analytical structural analysis, numerical analysis and solving engineering problems. Whilst being an introduction to the finite element method (FEM) and application of FEM software packages, this unit aims to give you the ability to solve engineering problems in the design of real structures.

Geotechnical Engineering Design Project: This unit gives you an opportunity to simulate the design activities of a civil engineering consultancy. Project briefs are typically drawn from the work of professional contacts in the civil engineering industry. You will be required to make professional contacts, obtain advice and guidance, carry out research and conduct site visits outside the University.

Strategic and General Management: You will cover management in the construction industry, and the development of organisational and project strategic direction, taking into account internal and external environments.

Independent Research Project: This covers the generic research framework within which new knowledge is discovered, and involves the practical application of research skills and techniques to a chosen system within the construction industry.

Programme Assessment

Teaching on this course will focus on small lectures, seminars and discussion groups. It will also centre on supporting your independent learning strategies, which tutorials will help to develop.

Assessment can take many forms and is geared towards the subject matter in a way that encourages a deeper understanding and allows you to develop your skills. It includes:

Examinations
Coursework
Projects
A dissertation

Student Destinations

This course is designed to equip you with knowledge, skills and competencies that employers in the construction industry expect. Alongside the technical topics, you will develop commercial and interpersonal skills required of construction industry professionals.

There is currently a huge demand for geotechnical engineering specialists within the civil engineering sector. This fact, combined with the vocational nature of this course and the extensive training you will receive, means that you are likely to quickly find employment in the industry. Potential roles will include geotechnical engineers, mining engineers and tunnelling engineers for major mining companies, as well as environmental and geotechnical consultancies.

Overall, the delivery of this course and its opportunities for you to interact with the industry throughout your studies means the employment rate of our civil engineering graduates is excellent.

Read less
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. Read more
The world is awash with data and much more is on the way, creating a tidal wave of Big Data. Data Engineers develop the infrastructure to store, manage, analyse this wave of data, to bridge the gap between Data and Computer Science. This unique course will give you the skills you’ll need to succeed as a Data Engineer.

Why study Data Engineering at Dundee?

The role of “Data Scientist” has been described as the “sexiest job of the 21st Century. However, there is a emerging a new role, that of Data Engineer as more companies are realising they need employees with specific skills to handle the amount of data that is being generated and the coming tidal wave from the Internet of Things.

This MSc has been created with industry input to prepare its students with the skills to handle this wave of data and to be at the forefront of its exploitation. Students on the sister programmes (“Data Science” and “Business Intelligence”) have gone on to work for some of the biggest companies in the industry and we are confident that graduates from this MSc will have the same success.

The School of Computing at the University of Dundee has been successfully offering related MSc programmes such as Business Intelligence and Data Science since 2010. These innovative programmes attract around 40 students per year, drawn from across Europe and Overseas.

What's so good about Data Engineering at Dundee?

Our facilities:
You will have 24-hour access to our award winning and purpose-built Queen Mother Building. It has an unusual mixture of lab space and breakout areas, with a range of conventional and special equipment for you to use. It's also easy to work on your own laptop as there is wireless access throughout the building. Our close ties to industry allows us access to facilities such as Windows Azure and Teradata, and university and industry standard software such as Tableau for you to evaluate and use.

Special features

The University of Dundee has close ties with the Big Data industry, including Teradata, Datastax and Microsoft. We have worked with SAS, Outplay, Tag, GFI Max, BrightSolid and BIPB, and our students have enjoyed guest lectures from Big Data users such as O2, Sainsbury’s, M&S and IBM.

You will be able to work with a range of leading researchers and tutors, including top vision and imaging researchers and BI experts. Our honorary staff include legal experts, entrepreneurs and renowned industry experts such as John Richards of the newly formed IBM Watson Group.

How you will be taught

The course will be taught by staff of the School of Computing. Depending on the modules you take this will include Andy Cobley, Professor Mark Whitehorn, and Professor Stephen McKenna.

What you will study

The course will be taught in 20 credit modules with a 60 credit dissertation. Students will require to complete 180 credits for the award of the MSc (including 60 credits for the dissertation). Students completing 120 credits (without the dissertation) will be eligible for a Postgraduate Diploma.

Course content

Each module on the course is designed to give the student the skills and understanding they need to succeed in the Data Engineering/ Science field. Content on the course includes (but is not limited to):

CAP theorem
Lamda Architecture
Cassandra, Neo4j and other nosql databases
The Storm distributed real time computation system
Hadoop, HDFS, MapReduce, and other Hadoop/SQL technologies
Spark and Shark frameworks
Data Engineering languages such as Python, erlang, R, Matlab
Vision systems, which are becoming increasingly important in data engineering for extracting features from large quantities of images such as from traffic, medical and industrial
RDBMS systems which will continue to play an important role in data handing and storage. You will be expected to research the history of RDMBS and delve in to the internals of modern systems
OLAP cubes and Business Intelligence systems, which can be the best and quickest way to extract information from data stores
Goals of machine learning and data mining
Clustering: K-means, mixture models, hierarchical
Dimensionality reduction and visualisation
Inference: Bayes, MCMC
Perceptrons, logistic regression, neural networks
Max-margin methods (SVMs)
Mining association rules
Bayesian networks

How you will be assessed

The course is assessed through a combination of examinations, coursework, presentations and interviews. Each module is different: for instance the Big data module has 40% coursework, consisting of Erlang programming and a presentation on nosql databases, along with an examination worth 60%.

Careers

Our experience suggests that graduates of this course will have most impact in the following areas:

Cloud and web based industries that handle large volumes of fast moving data that need to be stored, analysed and maintained. Examples include the publishing industry (paper, TV and internet), messaging services, data aggregators and advertising services

Internet of Things. A large amount of data is being generated by devices (robotic assembly lines, home power management, sensors etc.) all of which needs to be stored and analysed.

Health. The NHS (and others) are starting to store and analyse patient data on an unprecedented scale. The healthcare industry is also combining data sources from a large number of databases to improve patient well-being and health outcomes

Games industry. The games industry records an extraordinary amount of data about its customers' play activities, all of which needs to be stored and analysed. This course will equip students with the knowledge and skill to engage with the industry.

Read less
Drawing on our research excellence in this area, this innovative programme of study in big data and business intelligence is designed to give graduates a competitive advantage in the modern, fast growing business domain. Read more
Drawing on our research excellence in this area, this innovative programme of study in big data and business intelligence is designed to give graduates a competitive advantage in the modern, fast growing business domain. This is one of the first MSc programmes in the UK covering these leading-edge technologies. The programme provides students with the deeper knowledge, advanced skills and understanding that will allow them to contribute to the development and design of big data systems as well as distributed/internet-enabled decision support application software systems, using appropriate technologies, architectures and techniques (e.g. data analytics, business intelligence, NoSQL, data mining, data warehousing, distributed data management and technologies, Hadoop, etc.).

Additionally, the programme enables students to understand and assess the security and legal implications of e-commerce applications and provides students with appropriate knowledge of business and commerce relevant to transacting business on the internet. The courses take a software engineering approach to the construction of applications and focus on modern software engineering methods, tools and techniques that enable an integrated life-cycle software development view.

Through our short course centre opportunity may also be provided to study for the following professional qualifications: Microsoft Technology Associate Exams; Certified Professional Java SE Programmer; Java Certified Associate; Oracle Certified Associate (OCA).

Visit the website http://www2.gre.ac.uk/study/courses/pg/com/cgbdbi

Computing - General

Come and study in the award-winning Department of Computing & Information Systems on the magnificent Greenwich Campus. Welcoming home and international students from all backgrounds, CIS provides an exciting, diverse and friendly environment in which to study.

The latest university league table published in the Sunday Times, has rated the computer science department as seventh in the UK for teaching excellence.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Data Warehousing (15 credits)
Database Architectures and Administration (15 credits)
Database Tools (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)
Big Data (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Software Tools and Techniques (15 credits)
User Centred Web Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

System Modelling (15 credits)
Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Multi-structured Data and NoSQL Technology (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Database Architectures and Administration (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)
Big Data (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (CIS) (60 credits)
Data Warehousing (15 credits)
Database Tools (15 credits)

Students are required to choose 15 credits from this list of options.

Requirements Analysis & Methods (15 credits)
Software Tools and Techniques (15 credits)
User Centred Web Engineering (15 credits)

Students are required to choose 15 credits from this list of options.

System Modelling (15 credits)
Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Multi-structured Data and NoSQL Technology (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Graduates from this programme can pursue careers as data scientists, database designers and administrators, consultants, senior team members, programmers, analysts.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Designed for those working in the IT industry who hold a degree in computer science and/or experience in software engineering and wish to develop their career further into project management whilst working. Read more
Designed for those working in the IT industry who hold a degree in computer science and/or experience in software engineering and wish to develop their career further into project management whilst working.

Course Outline & Key Facts

The programme is designed for students with a degree in computer science and/or experience in software engineering who wish to develop their career further into project management while working in the IT industry. Graduates will be prepared for the challenges of their industrial career as software project managers.

Although the statistics on IT project success worldwide are more promising than a decade ago, there is still scope for further improvement. Appropriate project management and development processes can avoid some problems and capture others at an early stage, hence lead to higher success rates. Project management skills and qualifications are increasingly being recognised as key to the success of IT projects.

This new programme combines the specific technical content of the full-time taught MSc IT Project Management programme with the benefits of the work-based MSc Professional Engineering programme.

The programme is designed to equip its graduates with both generic project management and specific software project management skills, which is expected to lead to a career managing successful software projects with the potential to reach a leadership role.

Primarily, to enable participants to acquire the Masters level knowledge, understanding and skills required for full UK registration as a Chartered Engineer, whilst remaining in full time employment and studying through a suitable programme of work based learning.

Secondly, to provide a framework in which participants can plan and carry through a structured schedule of activities designed to permit acquisition and demonstration of the full range of competences required for Chartered Engineer registration.

The programme aims to support a wide range of IT specialisations and participant needs. The learning and assessment undertaken by each participant, and the associated learning outcomes, will be specified in an individually agreed learning contract based on the participant’s specialisation and previous experience. The learning contract will specify how the generic modules listed below are interpreted to suit the participant’s needs.

Subject Guide and Modules

The programme combines the development of practical IT project management skills and academic knowledge and understanding through a series of work-based activities so that the software engineer:
-Develops an in-depth knowledge of managing software projects
-Learns how to integrate theory with practical application, and use critical thinking skills to generate breakthrough knowledge
-Uses their learning through immediate application to real-life work problems to reduce costs or increase value for their employer.

Compulsory Modules
-Professional Development Audit (SE4001)
-Current Technologies and Applications (SE4011)
-Software Process and Management (CS4675)
-Project Management (SE4024)
-Major Project (CS4700)

Elective Modules (choice of three or four totaling 60 credits)
-Scientific Foundations (SE4021)
-Enterprise Computing Strategies (CS4815)
-Reliability in Software Engineering (CS4825)
-Data mining (CS4850)
-Emerging Technologies (SE4012)
-Professional Literature Study (SE4027)
-Extended Integrative Option (SE4031)

Learning, Teaching & Assessment

The course begins with a Professional Development Audit (PDA), where we help students evaluate what they have done previously and what they need to add to gain the MSc and qualify for CEng. Based on the PDA, the student and Aston University set up an individual Learning Agreement which specifies the areas of study to be undertaken and how that study will be carried out, through suitable combinations of workplace projects and distance learning, and assessed – mainly through reports on the workplace projects. The student then works through the agreed study and assessment, with support from Aston University staff and a workplace mentor, gradually building over an agreed period to completion and award of the MSc.

Professional Accreditation

Successful completion of the programme in accordance with a learning contract, approved by a professional engineering institution signatory to the relevant Engineering Council protocol (BCS or IET), guarantees access to the institution’s process for professional review for CEng registration. Confirmation of CEng registration will be at the discretion of the engineering institution concerned.

Read less
This programme involves advanced software engineering modelling and architecting concepts and practice for designing and building modern enterprise software systems. Read more
This programme involves advanced software engineering modelling and architecting concepts and practice for designing and building modern enterprise software systems. It includes an understanding of system administration and security, distributed programming, contemporary software technologies and a critical understanding of enterprise architectures, frameworks and strategies for building internet-enabled enterprise systems.

The main tasks facing industry at the moment involve the design and development of new internet-enabled systems, the integration of legacy systems into intranets and extranets, and advanced internet publishing. There is a recognised need for the efficient management of the software engineering process using modern approaches to software development management and system administration.

There is also a pressing need for people with skills in designing, building and maintaining modern enterprise systems, project management and management of the software engineering process. These skills should be accompanied by an appreciation of the business context and market forces behind the new technologies.

This programme educates students in the theory, practice, tools and applications necessary for the design, management and deployment of enterprise computing systems. Students can choose options specialising in network technologies, data architectures and database technologies, web services and clouds, or user centred and interactive systems.

Through our short course centre opportunity may also be provided to study for the following professional qualifications: Microsoft Technology Associate Exams; Certified Professional Java SE Programmer; Java Certified Associate.

The availability of some courses is subject to satisfying constraints that may come into effect in the year of entry. In addition, some options are negotiable, indicating that a course selection will need to be approved prior to the student undertaking the requested option.

Visit the website http://www2.gre.ac.uk/study/courses/pg/com/cgese

Computing - General

Come and study in the award-winning Department of Computing & Information Systems on the magnificent Greenwich Campus. Welcoming home and international students from all backgrounds, CIS provides an exciting, diverse and friendly environment in which to study.

The latest university league table published in the Sunday Times, has rated the computer science department as seventh in the UK for teaching excellence.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (SST) (60 credits)
Mobile Application Development (15 credits)
Systems Development Management and Governance (15 credits)
Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)
Programming Enterprise Components (15 credits)
Enterprise Systems Integration (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Database Architectures and Administration (15 credits)
User Centred Web Engineering (15 credits)
Clouds, Grids and Virtualisation (15 credits)
Big Data (15 credits)

Students are required to choose 15 credits from this list of options.

Enterprise Web Programming (15 credits)
System Administration and Security (15 credits)
Database Tools (15 credits)
Business Intelligence and Data Mining (15 credits)
Mobile and Network Technologies (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Mobile Application Development (15 credits)
Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)

Students are required to choose 30 credits from this list of options.

Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Enterprise Systems Integration (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (SST) (60 credits)

Students are required to choose 15 credits from this list of options.

Mobile Application Development (15 credits)
Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)

Students are required to choose 15 credits from this list of options.

Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Enterprise Systems Integration (15 credits)

Students are required to choose 15 credits from this list of options.

Database Architectures and Administration (15 credits)
User Centred Web Engineering (15 credits)
Clouds, Grids and Virtualisation (15 credits)
Big Data (15 credits)

Students are required to choose 15 credits from this list of options.

Enterprise Web Programming (15 credits)
System Administration and Security (15 credits)
Database Tools (15 credits)
Business Intelligence and Data Mining (15 credits)
Mobile and Network Technologies (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. Please contact the BCS for further information. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Graduates from this programme will be proficient in software engineering and can pursue careers in such areas as the integration of legacy systems into intranets or extranets and advanced internet publishing. Students also have an appreciation of the business context and role of market forces.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643966

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Materials Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

This MRes degree includes modules covering a range of areas within the Materials discipline, which are linked to the College of Engineering’s main research strengths of aerospace materials, environmental materials and steel technology.

Key Features of MRes in Materials Engineering

Through this course in Materials Engineering, you will be provided with training and experience in a broad range of topic areas, including metallurgy and materials selection, aerospace materials, recycling techniques, and modern business management issues and techniques.

The Materials Engineering course will provide you with the depth of knowledge and breadth of abilities to meet the demands of the international materials industry.

Combination of taught modules (60 credits) and a research thesis, which presents the outcome of a significant research project (120 credits) over 12 months full-time study. An MRes (Master of Research) provides relevant training to acquire the knowledge, techniques and skills required for a career in industry or for further research.

Modules

Modules on the Materials Engineering programme can vary each year but you could expect to study:

Strategic Project Planning
Communication Skills for Research Engineers
Aerospace Materials Engineering
Materials Recycling Techniques
Environmental Analysis and Legislation
Physical Metallurgy of Steel
MSc Research Thesis

Accreditation

This degree is accredited by the Institute of Materials, Minerals and Mining (IOM3).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University provides state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.
- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.
- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Careers

Through this Materials Engineering scheme, you will be provided with the detailed technical knowledge and experience required for a successful career at a technical or management level within the modern steel industry.

At the end of the course, you will have a higher level qualification along with crucial experience of industry allowing you to more quickly enter into the world of work and contribute fully to this important sector.

Links with Industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce
Airbus
Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Read more

Why this course?

Civil engineering develops and improves facilities and services that society needs – from the supply of clean water and energy to the design and construction of roads, railways and stations. Solving problems of air, land and water pollution and protecting society against natural disasters are also important aspects of civil engineering.

Engineering graduates are in high demand from recruiting companies worldwide.

This 18-month MSc course has been designed to meet the needs of a broad range of engineering industries. As a Masters student, you’ll gain the specialist and generic skills necessary to lead future developments, with practical experience provided by the industrial placement.

The course has a significant design element based on the most up-to-date specialist design guidelines. This includes a major design project that integrates acquired knowledge and acts as a platform for structured self-learning.

This MSc in Civil Engineering with Industrial Placement is suitable for graduates with a background in any discipline of civil engineering. Applicants with a degree in environmental engineering, earth science, mathematics, physics and mechanical engineering may also be considered.

The MSc in Civil Engineering with Industrial Placement has three optional specialist streams:
- Structural Engineering & Project Management
- Geotechnical Engineering & Project Management
- Geoenvironmental Engineering & Project Management

See the website https://www.strath.ac.uk/courses/postgraduatetaught/civilengineeringwithindustrialplacement/

Industrial placement

A wide range of companies, such as AECOM, ATKINS, CAPITA, CH2M HILL and ClimateXChange (Scotland’s Centre of Expertise on Climate Change), are offering placements exclusively for this MSc. A full list of companies can be provided upon request. The 8 to 12 weeks industrial placement will take place in the period from June to September.

You’ll study

You'll take the compulsory module Civil Engineering Design Projects. This module gives you the opportunity to work on real projects. You can choose between a renewable energy project or an industrial project. You’ll develop comprehensive and innovative designs that involve structural engineering, geotechnical engineering and water engineering, management, environmental and financial planning.

In additional to the industrial placement you'll also take the compulsory module Research Protocols for Science & Engineering which supports the dissertation project. You also have a wide choice of optional modules.

Following successful completion of the taught component, you’ll undertake a dissertation. If you’re on one of the specialist streams you’ll undertake a research project on a topic related to that stream. The dissertation can be linked to the industrial placement and worked on together with the industrial partner.

Facilities

In the Department of Civil & Environmental Engineering we’ve invested £6million in state-of-the-art laboratories which cover core areas of activity including:
- geomechanics
- microbiology
- analytical chemistry
- structural design

- Field investigation
We’re equipped with:
- nanoseismic systems for monitoring the mechanical evolution of soil and rock masses
- Electrical Resistivity Tomography systems to detect clay fissuring and ground water flow in earth-structures
- dielectric permittivity-based sensors to monitor water flow in the sub-surface environment

- Geomechanics Laboratory
We’re equipped with state-of-the art technologies for testing multiphase (unsaturated) porous geomaterials. These include:
- suction-controlled double-wall triaxial cells
pressure plates
- triaxial cells equipped with bender elements for dynamic testing
- image analysis unit to monitor soil specimen deformation
- instruments for measurement of pore-water tensile stress
- Mercury Intrusion Porosimeter and SEM for microstructure investigation

- Software and numerical modelling
You’ll have access to a wide range of software packages relevant to civil and geotechnical engineering applications, including:
- GEOSTUDIO suite (Slope, Seep, Sigma, Quake, Temp, CTran, Air and Vadose)
- ABAQUS finite element packages
- Ansys
- Autodesk Civil 3D
- Limit State
- Strand 7
- Talren 4

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

Additional requirements

For candidates whose first language is not English, minimum standards of English proficiency are an IELTS score of 6.5. Applicants with slightly lower scores have the opportunity to attend the University's Pre-Sessional English classes to bring them up to the required level. Some exceptions to the above may apply to nationals of UKBA-approved Majority English Speaking countries.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at the University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options
To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Some classes involve fieldtrips and/or lab work. For fieldtrips, you need to wear warm clothing, waterproof jacket/trousers and sturdy shoes/boots (e.g. hiking boots or non-slip wellington boots).
For lab work, you’ll need a lab coat. At the start of your course you’ll attend a two-day induction welcoming you to the department

Careers

High-calibre civil engineers are in demand throughout the world. As a graduate you'll have many different career options including:
- engineering consultancies, where the work normally involves planning and designing projects
- contractors, where you’ll be managing and overseeing works on-site
- working for utilities or local authorities
- working for large companies such as those within oil production, mining and power generation

How much will I earn?

As a contracting civil engineer the average graduate starting salary is around £23,500. With five years' experience this could rise to £28,523*.

*Information is intended only as a guide.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The Machine Learning MSc at UCL is a truly unique programme and provides an excellent environment to study the subject. It introduces the computational, mathematical and business views of machine learning to those who want to upgrade their expertise and portfolio of skills in this domain. Read more
The Machine Learning MSc at UCL is a truly unique programme and provides an excellent environment to study the subject. It introduces the computational, mathematical and business views of machine learning to those who want to upgrade their expertise and portfolio of skills in this domain.

Degree information

Students develop an understanding of the principles underlying the development and application of new techniques in this area, alongside an awareness of, and ability to analyse the range and scope of algorithms and approaches available, and design, develop and evaluate appropriate algorithms and methods for new problems and applications.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (30 credits), six optional modules (90 credits) and a research project (60 credits).

Core modules
-Supervised Learning
-Either Graphical Models
OR
-Probabilistic and Unsupervised Learning

Optional modules
-Machine Vision
-Bioinformatics
-Information Retrieval and Data Mining
-Advanced Topics in Machine Learning
-Inverse Problems in Imaging
-Affective Computing and Human-Robot Interaction
-Approximate Inference and Learning in Probabilistic Models
-Applied Machine Learning
-Computational Modelling for Biomedical Imaging
-Programming and Mathematical Methods for Machine Learning
-Statistical Natural Language Programming
-Numerical Optimisation

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation ( maximum length of 120 pages) in the form of a project report.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, class discussions and project supervision. Student performance is assessed though a combination of unseen written examination, coursework (much of which involves programming and/or data analysis), practical application, and the research project.

Careers

Graduates from this programme have an excellent employment record. Substantial sectors of UK industry, including leading, large companies already make extensive use of intelligent systems techniques in the course of their business activities, and the UK has a number of very successful developers and suppliers of the technology. Students also benefit from strong corporate and academic connections within the UCL Computer Science alumni network.

Graduates have machine learning research degrees in domains as diverse as robotics, music, psychology, bioinformatics at the universities of Basel, Cambridge, Edinburgh, Nairobi, Oxford and at UCL. Graduates have also found positions with multi national companies such as BAE Systems and BAE Detica.

Top career destinations for this degree:
-Software Engineer, Bisual
-PhD Computer Programming, Newcastle University
-Software Developer, Total Gas & Power
-Risk Analyst, National Bank of Greece
-Research Engineer, Xerox Research Centre India

Employability
Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. Machine Learning graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our graduates. Similarly graduates now work in companies in, amongst others, Germany, Iceland, France and the US in large-scale data analysis. The finance sector has also hired several graduates recently.

Why study this degree at UCL?

UCL Computer Science is recognised as a world leader in teaching and research, and our Master's programmes have some of the highest employment rates and starting salaries.

We take an experimental approach to our subject, enjoy the challenge and opportunity of entrepreneurial partnerships and place a high value on our extensive range of industrial collaborations.

This MSc is one of the few leading Master's programmes entirely dedicated to machine learning. It combines a rigorous theoretical academic framework along with specific knowledge of a variety of application fields to fast-track your commercial career or to prepare for PhD research.

Read less
During this programme, students study, employ and reflect on the principles underpinning computer science. The programme is designed for individuals wishing to pursue careers as computer science professionals. Read more
During this programme, students study, employ and reflect on the principles underpinning computer science. The programme is designed for individuals wishing to pursue careers as computer science professionals.

From organisational culture and human-computer interaction to web services and distributed computing on virtualised and cloud based systems, this programme leads students to reflect on the choice of methods and tools. It will provide practical experience in the analysis and understanding of problems, systems and structures through the study of realistic case studies. The student will be equipped to deal with the intense demands of modern software development, critically evaluate and employ appropriate concepts and principles to build solutions of commercial, industrial or research value.

Students may choose options focusing on cyber security and forensics, data warehousing and business intelligence or user-centered web engineering and software engineering management.

Through our short course centre opportunity may also be provided to study for the following professional qualifications: Microsoft Technology Associate Exams; Certified Professional Java SE Programmer; Java Certified Associate; Oracle Certified Associate (OCA).

The availability of some courses is subject to satisfying constraints that may come into effect in the year of entry.

Visit the website http://www2.gre.ac.uk/study/courses/pg/com/cgcs

Computing - General

Come and study in the award-winning Department of Computing & Information Systems on the magnificent Greenwich Campus. Welcoming home and international students from all backgrounds, CIS provides an exciting, diverse and friendly environment in which to study.

The latest university league table published in the Sunday Times, has rated the computer science department as seventh in the UK for teaching excellence.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

PG Project (SST) (60 credits)
Systems Development Management and Governance (15 credits)
Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)
Programming Enterprise Components (15 credits)
Clouds, Grids and Virtualisation (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 15 credits from this list of options.

Mobile Application Development (15 credits)
User Centred Web Engineering (15 credits)
Big Data (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
Data Warehousing (15 credits)
Enterprise Web Programming (15 credits)
Computer Crime and Forensics (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Systems Development Management and Governance (15 credits)
Programming Enterprise Components (15 credits)
Essential Professional and Academic Skills for Masters Students
English Language Support Course (for Postgraduate Students in the School of Computing and Mathematical Sciences)

Students are required to choose 30 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)
Clouds, Grids and Virtualisation (15 credits)

- Year 2:
Students are required to study the following compulsory courses.

PG Project (SST) (60 credits)

Students are required to choose 15 credits from this list of options.

Enterprise Software Engineering Development (15 credits)
Enterprise Patterns and Frameworks (15 credits)
Clouds, Grids and Virtualisation (15 credits)

Students are required to choose 15 credits from this list of options.

Mobile Application Development (15 credits)
Data Warehousing (15 credits)
User Centred Web Engineering (15 credits)
Big Data (15 credits)

Students are required to choose 30 credits from this list of options.

Audit and Security (15 credits)
Enterprise Web Programming (15 credits)
Computer Crime and Forensics (15 credits)
Business Intelligence and Data Mining (15 credits)
Enterprise Systems Integration (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, coursework and a project.

Professional recognition

This programme is accredited by the British Computer Society (BCS). On successful graduation from this degree, the student will have fulfilled the academic requirement for registration as a Chartered IT Professional (CITP) and partially fulfilled the education requirement for registration as a Chartered Engineer (CEng) or Chartered Scientist (CSci). For a full Chartered status there are additional requirements, including work experience. Please contact the BCS for further information. The programme also has accreditation from the European Quality Assurance Network for Informatics Education (EQANIE).

Career options

Graduates from this programme are equipped for employment in industry, commerce or education with a proficiency in the key theoretical and practical areas in computer science, including their application to modern software systems development.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X