• University of Edinburgh Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
OCAD University Featured Masters Courses
Coventry University Featured Masters Courses
"mineral" AND "processing…×
0 miles

Masters Degrees (Mineral Processing)

We have 17 Masters Degrees (Mineral Processing)

  • "mineral" AND "processing" ×
  • clear all
Showing 1 to 15 of 17
Order by 
Backed by an unparalleled reputation for expertise and innovation in mineral extraction, mineral processing and environmental protection, the graduate program in Mining Engineering has two types of students in mind. Read more

MASTERS OF APPLIED SCIENCE

Backed by an unparalleled reputation for expertise and innovation in mineral extraction, mineral processing and environmental protection, the graduate program in Mining Engineering has two types of students in mind:

Those from industry who wish to improve their workplace skills; and

Those who wish to pursue research leading to advances in state-of-the-art or state-of-the-practice mining and mineral process engineering.

In order to best meet the needs of these two groups, the program encourages interaction between universities in North America and other countries. In many cases, this collaborative outlook leads to joint research projects and student exchanges.

Program Overview

The graduate program in Mining Engineering offers opportunity for study in the fields of mining and mineral processing, including mine environment and coal preparation. Areas of research interest are indicated below.
1. Mining. Mine economics and valuation, mine design, drilling and blasting methods, rock mechanics and slope stability, optimization and simulation of mining operations, advanced mining methods, mine services (particularly mine ventilation), and climatic control.
2. Mineral processing. Unit operations, comminution, process modeling and optimization, expert systems, instrumentation and computer control. Flotation, surface chemistry, fines recovery, coal recovery, treatment of fine and oxidized coal, and precious metals recovery.
3. Mining and Environment. Acid rock drainage, environmental protection, effluent control and treatment. Social and legal aspects of sustainable mining practices, small-scale mining in developing countries.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Mining Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Applied Science

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. High level education covering the whole mine value chain. Shared courses in geosciences and engineering, including both theory and practice. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• High level education covering the whole mine value chain

• Shared courses in geosciences and engineering, including both theory and practice

• Excellent, cutting-edge infrastructure for research and education in close cooperation with the mining industry

The international master´s degree programme in Mineral Resources and Sustainable Mining (MRSM) is a two-year programme focusing on education in mining-related subjects. The programme provides master’s degrees in two fields: geosciences and engineering.

The specialisation lines in the field of geosciences are Economic Geology and Quaternary Geology and in the field of engineering sciences, they are Mining Engineering, Mineral Processing, and Applied Geophysics.

The programme will give you excellent skills and understanding on the whole mine value chain and principles of sustainable mining, including:

• Theoretical studies in geosciences and engineering

• Economical and environmental aspects of mining

• Hands-on practice in the well-equipped Oulu Mining School Research Centre and in the field

• The latest modelling and simulation education related to the topics

• Instrumental skills in mineral analytics

The two-year programme has five specialisation options:

Economic Geology focuses on characterisation of mineral deposits and geological processes behind their genesis, forming a basis for mineral exploration. Central topics include ore geology, regional geology, mineralogy, geochemistry, mining industry, and exploration. The obtained proficiency can be used in mineral exploration or exploitation of natural resources in private companies or research institutes.

Quaternary Geology covers a wide range of sub-disciplines including glacial geology, sedimentology, ore prospecting techniques, and hydrogeology. Education is also covering global change issues in the northern hemisphere and the Arctic. The programme will give in depth understanding of the properties of glacial sediments and deposits, their genesis and use for ore prospecting and for geotechnical purposes.

Mining Engineering covers a wide range of topics, including geotechnique, mining technologies, analysis of production capacity, and financing. The expertise can be used in design and management of metal mines as well as in other operations related to exploitation of raw materials.

Mineral Processing deals with the processes to economically separate valuable minerals from the ores. Oulu Mining School has unique, continuous mode in-house concentrating plant that provides an excellent infrastructure for training and education purposes. The environmental aspects of processing, health and safety in the plants, and collaboration with the mining industry are essential parts of education.

Applied geophysics concentrates on the basic phenomena in geophysics and how to apply the knowledge for example in exploration, mapping and management of natural resources, and in environmental and engineering studies. In the life cycle of a mine, geophysics plays an important role in all stages: before opening the mine in mineral exploration and resource assessment, during active mining operations in exploration for additional resources and environmental monitoring, and after the closure of the mine in environmental monitoring and mapping of potentially contaminated areas.

Graduating students understand and govern the technical, geological, financial, regulatory, environmental and social aspects of sustainable mining. Job opportunities exist in all fields related to the mining value chain including exploration, mining, mineral processing, and other kinds of rock engineering both in the industry and in research.

Email Now



Read less
Come join one of the world’s leading mining schools. Receive a Master of Engineering Degree from one of the world’s strongest mining departments, at a top ranked university and in one of the most beautiful and liveable cities in the world. Read more

MASTERS OF ENGINEERING

Come join one of the world’s leading mining schools.

Receive a Master of Engineering Degree from one of the world’s strongest mining departments, at a top ranked university and in one of the most beautiful and liveable cities in the world.

The purpose of a M.Eng. degree is to increase student’s skills and knowledge in a particular aspect of mining or mineral processing. This program has the same admission requirements as the MASc and offers the same courses but instead of a thesis, students are expected to take additional courses. Currently, M.Eng. degree students can specialize in four areas:
- Mining geotechnics,
- Mineral processing,
- Mine economics, or
- Mining sustainability and the environment.

Gain practical experience with an 4-8 month paid work term.

Take advantage of our institute’s strong sense of community and close industrial support.

The Master of Engineering in Mining Engineering (M.Eng.) is an intensive study program designed for professionals and engineering graduates eager to upgrade their skills in order to build a solid base for a career in the global mining industry. It includes at least 30 credits of course work with the option to complete a coop work term. The program takes up to 2 years to complete.

Quick Facts

- Degree: Master of Engineering
- Specialization: Mining Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Applied Science

Read less
The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business. Read more
The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry
• Establishing networks with industry professionals and across specialisms
• Opportunity to view world class mines during the mine study tour
• A value chain view of the mining industry
• Industry focused using real world case studies and examples
• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Programme structure

This programme provides a robust understanding of the complete mining life cycle, from exploration and development to extraction and processing methods to waste management and mine closure. It is an excellent programme for new entrants into the mining business as a fast-track career induction.

Modules

The following are examples of the modules you might expect to study;

• Module 1 - Discovery: Introduction to the Mining Value Chain; Introduction to Geology, Rock Properties and Ore Forming Processes; Mineral Exploration; The Mining Business and Mineral Economics.

• Module 2 - Design: Deposit Evaluation and Resource Estimation; Introduction to Mining Methods and Mine Method Selection; Mine Planning and Mine Construction and Pre-production Decision Making

• Module 3 - Recovery: Principles of Surface Mining Operations; Principles of Underground Mining Operations; Mineral Processing; Mine Waste Management and Mineral Products

• Module 4 - Impacts: Environmental and Social Impacts of Mining; Economic Impacts of Mining (downstream and side stream investment); Mine Closure and Remediation and Corporate and Social Responsibility and the License to Operate

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for up to date information http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/pgcert-mining-professional/#Programme-structure

Read less
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists. Read more
This course is for non-metallurgy scientists and engineers who wish to pursue a career in the minerals industry as extractive metallurgists.

It will provide you with a knowledge and understanding of the core areas of mineral processing and extractive metallurgy.

As a graduate, you could obtain employment in the extractive metallurgy sector of mining and chemical companies or further your career within the minerals industry.

Career opportunities

Graduates can obtain employment in the extractive metallurgy sector of mining and chemical companies, or further their careers within the minerals industry.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Notes

A number of units include an on-campus laboratory requirement in Kalgoorlie. You will need to meet all travel and accommodation expenses incurred in meeting this requirement.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business. Read more
The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

[[Course aims ]]
The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry
• Establishing networks with industry professionals and across specialisms
• Opportunity to view world class mines during the mine study tour
• A value chain view of the mining industry
• Industry focused using real world case studies and examples
• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Read less
Your programme of study. Read more

Your programme of study

If you have an interest in the earth in relation to minerals extraction Geophysics has plenty of scope to get involved in the profession itself and expertise required to explore different types of terrain but in a newly evolving landscape of assistive technology companies offering the latest methods of discovering production and risk issues beneath the earths surface. You learn these latest methods of finding out data to understand risk and potential engineering issues in difficult to reach places. Signal processing uses the latest advances in sensor development to set up an alert system to monitor specific areas which are normally difficult to reach. Seismic processing looks at how the earth moves not only in times of earthquakes but natural movement from chemical reactions beneath the surface of the earth.

Borehole extraction is used in mineral extraction but also to determine if reserves are live or loading is safe and much and more. The skills you learn apply equally to current and future mineral extraction as they do to land and sea where extraction has historically taken place and where there is application for a different use from a remediated coal mine for example where loading can be critical to risk for future use. The programme equips you with skills in hydrocarbon, minerals and associated industries or research. You understand structure from near surface to deep interior learning from geophysical data analysis and interpretation.

Courses listed for the programme

Semester 1

  • Earth Physics, Structure and Processes
  • Seismic Reflection Processing, Imaging and Quantitative Interpretation
  • Time Series Analysis and Signal Processing
  • Geophysical Inverse Theory and Statistics

Semester 2

  • Seismology and Earth Imaging
  • Field Geophysical Data Acquisition
  • Borehole Geophysics', Including Petrophysics and Well- Log Analysis
  • Topics in Advanced Applied Geophysics

Semester 3

  • Project in Geophysics

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You will gain hands on experience within our facilities with a large range of relevant equipment
  • Join the Aberdeen Geological Society for guest lectures and learning and networking opportunities
  • Study in a department ranked no 1 in Scotland for Earth Sciences
  • We research Earth Science over time, with strengths in Geology, Sedimentology, Geochemistry and more.

Where you study

  • University of Aberdeen
  • Full time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs 



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
The programme provides advanced studies in chemical engineering, reflecting the research expertise and scholarship within the Department of Chemical & Environmental Engineering. Read more
The programme provides advanced studies in chemical engineering, reflecting the research expertise and scholarship within the Department of Chemical & Environmental Engineering. Relevance to industry is a strong feature of this course which offers a unique combination of science and engineering skills.

It offers graduates with a Bachelor level (BEng) accredited degree the further learning requirement for chartership. The department provides a strong and dynamic environment with close links between research and teaching. Students on this programme will be able to think and function in an integrated manner across the area of chemical engineering.

This course is accredited by the Chartered Institute of Chemical Engineers( IChemE) and is designed to meet the UK-SPEC requirements of IChemE for those students who already hold BEng, BSc or non-accredited chemical engineering degree and wish to proceed to chartered status.

You will gain skills in advanced engineering practice, which includes design, operations, problem-solving and practical elements. The advanced practice is centred on themes in energy and environmental applications, so you can gain significant experience in areas such as petroleum processing, energy efficiency, carbon capture and water treatment.

Students will develop:
skills in research, project management, problem solving and reporting
ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
ability to exercise original thought
ability to plan and undertake an individual project
interpersonal communication and professional skills

Previous research projects have included:

Electricity Storage
Microwave Processing of Hydrocarbons
Novel Mineral Traps to permanently sequester CO2
Application of advanced measurement techniques to bubble columns


Scholarship information can be found at /http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

This course is also taught at The University of Nottingham Malaysia Campus

Read less
Join us for our. Master Open Day. to find out more about our courses. Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods. Read more

Join us for our Master Open Day to find out more about our courses.

Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods.

It is a key element of oil, gas and mineral exploration, environmental and archaeological assessment, and engineering site investigation.

This course prepares you to embark on a career in resource exploration, environmental and engineering geophysics.

Running continuously for over 50 years it is very firmly established and has strong links to industry. It provides you with a broad range of practical skills, underpinned by a theoretical understanding that equips you to become a professional in your chosen field.

You will also undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.

Demand for geophysicists continues to be high and this well-established course has an exceptionally good record of job placement for both UK/EU and overseas students.

Course highlights:

  • Network with energy, geophysical acquisition, processing and software companies, who visit regularly to engage and recruit our students.
  • Complete a 4 month individual project, mostly in association with an external company or institute and often in their offices.
  • Access our state-of-the-art computer suite that runs a comprehensive range of industry-standard software on hi-spec twin-screen workstations.
  • Develop your field skills with our sector-leading portfolio of field geophysical equipment.
  • Apply for a scholarship – we have a large number of School and dedicated external (industry) scholarships for UK/EU applicants.


Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.A.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology. Read more

On this course you gain the knowledge the skills you need to work as an engineer, building on your existing degree in science or technology.

A rewarding career

Engineers apply scientific and technological principles to solve problems in a creative way. It’s a well-paid and rewarding career that is constantly changing with new developments in technology. And with a shortage of electrical and electronic engineers in the UK, your skills will be in demand.

Electrical engineers are at the forefront of many innovations in the way we live and work today. They design, produce and install systems which power and control a range of products and digital communications.

What you study

You can follow your interests to create the right programme of study for you. Initially, you take two modules in engineering principles. Then, with guidance from your course leader, you select from a range of technical modules covering topics including electrical and control engineering and electronic systems.

In addition to your technical modules, you also take an engineering management subject and participate in a multidisciplinary product development project with MSc students from a range of engineering specialisms. You develop an understanding of how engineering projects work and how they relate to the commercial world, as well as becoming part of our engineering community and learning to think like an engineer.

One third of your study will be an individual project and dissertation. You specialise in a technical area of your interest and carry out your own in-depth investigation into a particular problem. Where possible, this will be an industry-related problem.

Expertise

Many of our academic staff are actively involved in research. Examples of recent projects include • developing equipment to monitor the bone mineral density of young children for Sheffield Children's Hospital • developing palm-sized robots to enable firefighters to safely enter and negotiate hazards in burning buildings.

Course structure

Core modules

  • engineering principles
  • electrical and electronic engineering
  • international product development (group project)

Plus one of either

  • project and quality management

or

  • global supply chain and manufacturing strategy.

Options

Your remaining four modules are themed in the following subjects.

You can choose to specialise in one theme or a mix of both:

Electrical and Control Engineering

• electrical energy systems • efficient machines and electromagnetic applications • control of linear systems • industrial automation

Electronic Systems

• digital electronic systems design • mixed signal design • digital signal processing • microprocessor engineering

Assessment

Assessments will be a mix of coursework and exam, depending on the specific module studied.

Employability

You can work in areas such as • global telecommunications • consumer electronics • computer electronics • aerospace • automotive • railway • robotics • general manufacturing • water, gas and electricity supply.

You can specialise in the design of • computers • mobile phones • media streamers • satellite dishes • instrumentation and control systems • aeroplanes • military equipment • cars • electrical energy systems.

Our graduates have developed careers with companies including • BBC • Tata Steel • Emhart Glass • Sony Mobile Communications • Honeywell Control Systems • Motorola • Rolls-Royce • First ScotRail • Siemens • Vodafone.



Read less
Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. Read more

Labelled by the European Institute of Innovation and Technology (EIT), AMIS is a Master program in Advanced Materials for Innovation and Sustainability which explores the theme of “Substitution of critical or toxic materials in products for optimized performance”. It also covers the topics of “Material chain optimization for end-of-life products” and “Product and services design for the circular economy” - all of which are central themes of the AMIS. The primary focus of the AMIS program is metal and mineral raw materials. Bio-based and polymer materials are studied in view of their substitution potential. Other materials are also analyzed in the context of multimaterial product recycling. In addition, the AMIS program includes a solid package of courses and project work in innovation and entrepreneurship.

Program structure

Mobility is integrated within the two-year program, during which students study at two of the consortium partner universities. Upon completion of the program, graduates are awarded 120 ECTS and a double degree delivered by two of the five partner institutions where they studied. Students begin the Master program at Grenoble INP, Aalto University or T.U. Darmstadt. In their second year, students specialize in another partner university:

  • To attend the specialization year offered at the University of Bordeaux, prospective students must attend the first year at either Aalto University or the Technical University of Darmstadt.

Year 2 specializations are the following:

  • University of Bordeaux: Advanced Hybrid Materials: Composites and Ceramics by Design
  • T.U. Darmstadt: Functional Ceramics: Processing, Characterization and Properties
  • Aalto University: Nanomaterials and interfaces: Advanced Characterization and Modeling
  • University of Liège: Nanomaterials and Modeling
  • Grenoble INP: Materials Interfaces: Surfaces, Films & Coatings

SEMESTER 1 TO 4 CONTENT

Master 1: Basic level competencies.

Mandatory courses in:

  • Fundamentals of materials science
  • Applied materials
  • Modelling tools and materials
  • Innovation, business and entrepreneurship.

Joint collaboration courses with AMIS partners:

  • Inno project I: business model development and the commercialization process of new technologies.
  • Summer camp: a week intensive course working in teams on industry case studies to create and produce new ideas, innovative technologies, improved products or services.
  • Internship: work experience in a company or research organization to develop a solution-focused approach by translating innovations into feasible business solutions and commercializing new technologies.

Master 2: Specialization year.

Mandatory courses in:

  • Advanced functional materials with a specialization in material interfaces, nanomaterials, ceramics or hybrids.

Joint collaboration course with AMIS partners:

  • Practical work on various industrial projects integrated with innovation and entrepreneurship contents.
  • Inno project II: a specialized approach on business model development and commercialization process of new technologies.

Master thesis:

  • A research and development experience in material science jointly supervized by the home university professors and the host partners. The results of the Master thesis will be defended during a presentation. Certain subjets may lead to setting up a business or a spin-off.

Strengths of this Master program

  • Develop expertise in the field of innovative and sustainable advanced materials.
  • Meet, study and work with relevant academic and non-academic contacts in the innovation and entrepreneurship ecosystem.
  • Gain a holistic view on value and process chains.
  • Acquire transferable skills through modern teaching methods. These transferable skills include: entrepreneurship, negotiation techniques, intellectual property, problem solving, working cooperatively and creatively, co-designing, and life cycle approaches.

After this Master program?

As a resource engineer, students may continue in the following fields:

Freelance and entrepreneurship:

  • Create a business or become a consultant

Resource industry:

  • SMEs in chemistry, exploration, green energy, machinery and plant construction, metal working industry, ceramics, environmental economy (R&D, product development, management, production, marketing and sales)

Research:

  • Universities, research institutions, lecturer or managerial position
  • Circular economy
  • Production, analytics, management, marketing and sales

And also:

  • Science journalism, consulting, project development and management, advisor to policy makers, administration, specialist agencies and media.


Read less

Show 10 15 30 per page



Cookie Policy    X