• University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Bath Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Sheffield Featured Masters Courses
"mineral" AND "exploratio…×
0 miles

Masters Degrees (Mineral Exploration)

We have 29 Masters Degrees (Mineral Exploration)

  • "mineral" AND "exploration" ×
  • clear all
Showing 1 to 15 of 29
Order by 
Application period/deadline. March 14 - 28, 2018. High level education covering the whole mine value chain. Shared courses in geosciences and engineering, including both theory and practice. Read more

Application period/deadline: March 14 - 28, 2018

• High level education covering the whole mine value chain

• Shared courses in geosciences and engineering, including both theory and practice

• Excellent, cutting-edge infrastructure for research and education in close cooperation with the mining industry

The international master´s degree programme in Mineral Resources and Sustainable Mining (MRSM) is a two-year programme focusing on education in mining-related subjects. The programme provides master’s degrees in two fields: geosciences and engineering.

The specialisation lines in the field of geosciences are Economic Geology and Quaternary Geology and in the field of engineering sciences, they are Mining Engineering, Mineral Processing, and Applied Geophysics.

The programme will give you excellent skills and understanding on the whole mine value chain and principles of sustainable mining, including:

• Theoretical studies in geosciences and engineering

• Economical and environmental aspects of mining

• Hands-on practice in the well-equipped Oulu Mining School Research Centre and in the field

• The latest modelling and simulation education related to the topics

• Instrumental skills in mineral analytics

The two-year programme has five specialisation options:

Economic Geology focuses on characterisation of mineral deposits and geological processes behind their genesis, forming a basis for mineral exploration. Central topics include ore geology, regional geology, mineralogy, geochemistry, mining industry, and exploration. The obtained proficiency can be used in mineral exploration or exploitation of natural resources in private companies or research institutes.

Quaternary Geology covers a wide range of sub-disciplines including glacial geology, sedimentology, ore prospecting techniques, and hydrogeology. Education is also covering global change issues in the northern hemisphere and the Arctic. The programme will give in depth understanding of the properties of glacial sediments and deposits, their genesis and use for ore prospecting and for geotechnical purposes.

Mining Engineering covers a wide range of topics, including geotechnique, mining technologies, analysis of production capacity, and financing. The expertise can be used in design and management of metal mines as well as in other operations related to exploitation of raw materials.

Mineral Processing deals with the processes to economically separate valuable minerals from the ores. Oulu Mining School has unique, continuous mode in-house concentrating plant that provides an excellent infrastructure for training and education purposes. The environmental aspects of processing, health and safety in the plants, and collaboration with the mining industry are essential parts of education.

Applied geophysics concentrates on the basic phenomena in geophysics and how to apply the knowledge for example in exploration, mapping and management of natural resources, and in environmental and engineering studies. In the life cycle of a mine, geophysics plays an important role in all stages: before opening the mine in mineral exploration and resource assessment, during active mining operations in exploration for additional resources and environmental monitoring, and after the closure of the mine in environmental monitoring and mapping of potentially contaminated areas.

Graduating students understand and govern the technical, geological, financial, regulatory, environmental and social aspects of sustainable mining. Job opportunities exist in all fields related to the mining value chain including exploration, mining, mineral processing, and other kinds of rock engineering both in the industry and in research.

Email Now



Read less
Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction. Read more

Exploration geology is concerned with the location of ore and other materials found within the earth. Their work is essential to energy and production industries as it acts as a starting point for extraction.

This MSc will equip students with specialist, essential knowledge and skills that are required when exploring and evaluating new mineral deposits around the world. As major orebodies are exhausted, the search for viable deposits in more complex geological terrains and in remote regions has intensified, creating a need for trained geologists able to carry out mineral exploration in varied environments.

The collection, interpretation and reporting of geoscientific data is the major focus of this course; based around a robust understanding of current theories for orebody genesis, exploration techniques and the application of industry-leading software. You will have the opportunity to gain experience in acquiring, synthesising and critically evaluating data from a range of remote sensing, geophysical, geochemical and drill hole sources. The programme provides pathways to careers in the national and international exploration and mining sectors as well as important transferable skills used in the broader geotechnical, site investigation and environmental industries.

Modules

Please note constituent modules and pathways may be updated, deleted or replaced in future years as a consequence of programme development. Details at any time may be obtained from the programme website.

  • Research project and dissertation;
  • Ore deposit geology and industrial minerals;
  • Economics, processing and environment;
  • GIS and remote sensing;
  • Site investigation including near surface geophysics;
  • Advanced geoscientific computing and data management;
  • Exploration targeting;
  • Exploration and mining geology.

Assessment method

The programme is delivered through a mix of lectures, workshops, tutorials, practical activities, case studies, industry visits, computer simulations, project work and a dissertation.

Fieldwork

On this MSc programme you will receive a great deal of practical experience of working within the minerals industry. The programme aims to produce high-quality graduates who can enjoy high employment rates and easy transition into further PhD study. Emphasis remains on applied teaching and research relevant to careers in the earth resources and renewables sectors. Field visits and practical field-based assignments are used, where appropriate, to emphasise key areas within each module.

You will spend a significant proportion of your time in the field during the autumn term. Over the Easter period you are required to participate in an international field trip to visit mines and exploration projects in Scandinavia. This trip will prepare you to undertake typical greenfields and brownfields exploration work, including boulder tracing, stream sediment sampling and glacial till investigations, and link the results back to exploration targeting and existing operating mines.

Research areas

From May to September you will undertake a major research project, usually in association with a mining/exploration company, and present a dissertation. Recent projects have been carried out in West Africa, Canada and Europe.

Examples of recent mineral exploration research projects

  • A Geochemical Assessment of the Exploration Potential for Alkalic (Cu-Au) and Calc-Alkalic (Cu ± Mo ± Au) Porphyries within the Quesnel Terrane, British Columbia, Canada
  • Using stream sediment geochemistry to aid polymetallic-Sn-W exploration targeting in the Vosges Mountains, France
  • Petrographic investigations into the potential for REE-pegmatite and orogenic gold deposits, Sierra Leone
  • A Remote Sensing Study into the mineral potential of the Taimyr Peninsula, Arctic Russia
  • Gold and REE exploration in the Birimian Greenstone Belt, Ivory Coast


Read less
Mineral resources are a part of almost everything surrounding our everyday life. Finding those resources is the job of economic geologists, multidisciplinary scientists who use geochemistry, mineralogy, geophysics, petrology and structural geology to understand, describe, and explore for mineral resources. Read more

Mineral resources are a part of almost everything surrounding our everyday life. Finding those resources is the job of economic geologists, multidisciplinary scientists who use geochemistry, mineralogy, geophysics, petrology and structural geology to understand, describe, and explore for mineral resources.

The MSc in Mineral Resources will prepare you to enter a career in the mineral industry or to pursue PhD research. The degree has been designed by recommendations from industry, and provides practical training involving methodologies and technologies at the forefront of mineral exploration.

Key experiences include field excursions to a world-class ore deposit in the UK and the Rio Tinto mine in southern Spain to study the genesis of volcanic massive sulphide deposits and innovative acid mine drainage remediation methods.

Highlights

  • Delivers a wide range of experience in the field of mineral resources based on the “mineral system” approach.
  • Focuses on current genetic models of ore deposits, applied field training, 3D geological modelling and mineral exploration.
  • Designed in collaboration with the mineral resources industry.
  • Provides key industry skills, such as sub-surface mapping, core logging, integration of multiple spatial data sets and 3D modelling.
  • Dynamic working atmosphere supported by collegial staff and student community.

Teaching format

The MSc in Mineral Resources is a comprehensive course that combines core knowledge, field work, short courses and a research dissertation and integrates that with first-hand experience through a diverse and challenging set of industry-relevant mapping, logging and 3D geological modelling skills.

The MSc degree requires two semesters of full-time (or four semesters part-time) coursework, equivalent to a total of eight taught modules. The assessment for the taught modules is based on coursework and written examinations.

The final three months of your course will be focused on independent research which concludes with a 15,000-word field- and laboratory-based dissertation.

Further particulars regarding curriculum development.

Modules

The modules in this programme have varying methods of delivery and assessment. For more details of each module, including weekly contact hours, teaching methods and assessment, please see the latest module catalogue which is for the 2017–2018 academic year; some elements may be subject to change for 2018 entry.



Read less
Join us for our. Master Open Day. to find out more about our courses. Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods. Read more

Join us for our Master Open Day to find out more about our courses.

Geophysics is the remote study of the Earth's interior through physical techniques – principally analysing seismic data, but also applying gravity, magnetic, electrical and electromagnetic methods.

It is a key element of oil, gas and mineral exploration, environmental and archaeological assessment, and engineering site investigation.

This course prepares you to embark on a career in resource exploration, environmental and engineering geophysics.

Running continuously for over 50 years it is very firmly established and has strong links to industry. It provides you with a broad range of practical skills, underpinned by a theoretical understanding that equips you to become a professional in your chosen field.

You will also undertake a four-month individual project, mostly in association with an external company or institute and often in their offices.

Demand for geophysicists continues to be high and this well-established course has an exceptionally good record of job placement for both UK/EU and overseas students.

Course highlights:

  • Network with energy, geophysical acquisition, processing and software companies, who visit regularly to engage and recruit our students.
  • Complete a 4 month individual project, mostly in association with an external company or institute and often in their offices.
  • Access our state-of-the-art computer suite that runs a comprehensive range of industry-standard software on hi-spec twin-screen workstations.
  • Develop your field skills with our sector-leading portfolio of field geophysical equipment.
  • Apply for a scholarship – we have a large number of School and dedicated external (industry) scholarships for UK/EU applicants.


Read less
The internationally recognised. Camborne School of Mines. is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business. Read more

The internationally recognised Camborne School of Mines is offering a brand new Mining Professional Programme, comprising a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry

• Establishing networks with industry professionals and across specialisms

• Opportunity to view world class mines during the mine study tour

• A value chain view of the mining industry

• Industry focused using real world case studies and examples

• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.

Programme structure

This programme provides a robust understanding of the complete mining life cycle, from exploration and development to extraction and processing methods to waste management and mine closure. It is an excellent programme for new entrants into the mining business as a fast-track career induction.

Modules

The following are examples of the modules you might expect to study;

• Module 1 - Discovery: Introduction to the Mining Value Chain; Introduction to Geology, Rock Properties and Ore Forming Processes; Mineral Exploration; The Mining Business and Mineral Economics.

• Module 2 - Design: Deposit Evaluation and Resource Estimation; Introduction to Mining Methods and Mine Method Selection; Mine Planning and Mine Construction and Pre-production Decision Making

• Module 3 - Recovery: Principles of Surface Mining Operations; Principles of Underground Mining Operations; Mineral Processing; Mine Waste Management and Mineral Products

• Module 4 - Impacts: Environmental and Social Impacts of Mining; Economic Impacts of Mining (downstream and side stream investment); Mine Closure and Remediation and Corporate and Social Responsibility and the License to Operate

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Please see the website for up to date information http://www.exeter.ac.uk/postgraduate/taught/mining-engineering/pgcert-mining-professional/#Programme-structure



Read less
This full time 12 month intensive programme. is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more

This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include;

  • Research Project and Dissertation;
  • Resource Estimation;
  • Ore Deposit Geology and Industrial Minerals;
  • Techniques in Mining Geology ;
  • Excavation and Geomechanics ;
  • Economics, Processing & Environment

Optional modules

Some examples of the optional modules are;

  • Advanced Techniques for Mineral Analysis
  • Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.



Read less
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Read more
The MRes in Geological Sciences is a full-time programme running over 12 months from the date of first registration for the programme. Applications will be accepted for a start date in October or January. The programme consists of (a) a major research thesis and (b) taught modules on generic and transferable skills, with an emphasis on scientific writing, oral presentations, and general research skills. Part-time study for this programme is not available.

Prospective students are advised to contact the Programme Coordinator (Prof. Andy Wheeler in advance of application via http://www.pac.ie (PAC code CKS82) to discuss possible project areas.

Visit the website: https://www.ucc.ie/en/bees/courses/postgrad/

Course detail

Students undertake a total workload equivalent to 90 credits over the 12 month programme, the principal element of which is the completion of a major research thesis of approximately 25,000 words. In parallel, students must take and pass taught modules to the value of 20 credits.

Modules

Students take 20 credits from the following available modules:

GL6002 Igneous and Metamorphic Terrain Mapping (10 credits)
GL6003 Coal Exploration (5 credits)
GL6005 Basin Analysis and Sedimentary Fancies Analysis (10 credits)
GL6006 Geotechnical Investigations of Soils and Rocks (5 credits)
GL6007 Practical Offshore Geological Exploration (5 credits)
GL6008 Geological Application of Geographical Information Systems (5 credits)
GL6010 Field Exploration Methods and Professional Development (5 credits)
GL6011 Structural Geology for Hydrocarbon Exploration (5 credits)
GL6012 Structural Geology for Mineral Exploration (5 credits)
GL6013 Geology of Ore Deposits (5 credits)
GL4002 Petroleum Geology and Basin Analysis (5 credits)
GL4003 Applied Geophysics (5 credits)
GL4004 Advanced Igneous Processes (5 credits)
GL4011 Economic Geology (5 credits)
GL4024 Exceptional Glimpses of Ancient Life (5 credits)
GL4027 Geochemistry (5 credits)

Students may elect to take other, relevant modules (subject to availability) that are offered by the University that are not listed above to fulfil the elective requirement with approval from the MRes coordinator, research supervisor and Head of School of Biological, Earth and Environmental Science.

Students will also undertake independent research towards completion of a research thesis to a student workload equivalent of 70 credits on a selected topic in Geological Science.

Current projects

- Palynology and palynofacies of the Booley Bay Formation of Co.Wexford
- Palaeoenvironments recorded in the Lias of Northern Ireland
- Taphonomy of insects in the Daohuguo Konservat-Lagerstätte (Jurassic, Inner Mongolia)
- Characterising deformation in unconsolidated sediments
- Early tectonic fabric development in sedimentary rocks
- Petrological and structural mapping of the Fanad Lineament, Co. Donegal
- Quantifying the climate-controlled Pleistocene erosion of the Irish landmass (over the last 2.5 ma)

Programme Learning Outcomes

On successful completion of this programme, students should be able to:

- Carry out an independent and original research project to address an emerging question in Geological Sciences.
- Prepare and write a dissertation of their research project in a critical, logical and systematic manner, in keeping with the standards of postgraduate research.
- Display advanced theoretical knowledge and practical understanding within a research area of Geological Science.
- Understand the basis and application of field and laboratory methods used in Geological Science and a knowledge of their limitations
- Avail of relevant workshops or modules to increase scientific technical skills
- Source, review, critically assess and evaluate relevant primary literature and summarize material for presentation to peers and for inclusion within the research dissertation.
- Design, write and defend a scientific research proposal based on their current research topic or a proposed topic.
- Evaluate their skill set and identify skills that should be acquired.
- Develop professional practice skills including team-work, negotiation, time-management, scientific writing and oral communication.

How to apply

MRes Animal and Plant Science Brochure: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinAnimalandPlantScience.pdf

Prospective students should also consult the following guide to procedures realting to applying for the MRes Animal and Plant Science: https://www.ucc.ie/en/media/academic/schoolofbees/documents/MResinANimalandplantscience-Studentguidetoproceduresbeforeandafterentrytotheprogramme24March2016.pdf

Read less
UBC and the Province of British Columbia offer exceptional opportunity for combined field and laboratory research. The Canadian Cordillera offers research opportunities in. Read more

Program Overview

UBC and the Province of British Columbia offer exceptional opportunity for combined field and laboratory research. The Canadian Cordillera offers research opportunities in:
- petrology of intrusive and volcanic rocks of many kinds, and of metamorphic rocks of all grades
- structural studies of complex metamorphic terrains exposed in three dimensions
- metalliferous deposits of varied genetic types
- mineral exploration methods; mineralogy associated with many different environments
- complexly folded and faulted successions of bedded rocks in the mountain belts and plateaus, and in virtually undisturbed coal- and gas-bearing strata of the north-eastern province
- numerous problems of engineering, environmental geology-related to water, slope stability, natural geological hazards, and hydrogeology (lakes, fjords, deltas, tidal flats, continental shelf, and oceanic depths provide a wide range of aquatic environments for students interested in sedimentology, geochemistry, biostratigraphy, and geological oceanography)

Numerous research units in the Department of Earth, Ocean and Atmospheric Sciences maintain excellent provisions for research and study in a wide range of geological sciences.

Quick Facts

- Degree: Master of Science
- Specialization: Geological Sciences
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Options
- Faculty: Faculty of Science

Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.A.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Read more

Program Overview

Theoretically, experimentally, and observationally oriented Master of Science (M.Sc.), Master of Applied Science (M.A.Sc.), and Doctor of Philosophy (Ph.D.) programs are offered in a number of key areas of geophysics. Current interests include topics in observational and theoretical glaciology; climate variability; geodynamics of the crust, mantle, and core of Earth and other planets; geological fluid mechanics; volcanic processes; origin and structure of planetary magnetic fields; reflection seismology; time-series analysis and wavelet processing; inversion methodologies with application to reflection seismology, mineral exploration, and environmental studies; computational electrodynamics; seismology with observational programs in crustal and upper mantle studies; earthquake studies focused on understanding past and current tectonic processes in Western Canada; and theoretical model studies to investigate wave propagation in laterally heterogeneous media.

Program Requirements

Geophysics students who have not completed a course in physics of the Earth at either the senior undergraduate or graduate level will be required to register for EOSC 453. The M.Sc. program consists of a 12-credit thesis and 18 credits of coursework. A minimum of 24 credits must be at the 500-level and above.

Quick Facts

- Degree: Master of Science
- Specialization: Geophysics
- Subject: Science
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Science

Read less
Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. Read more

Quantum technology has been selected by the UK Government as a key area of innovation, moving science into real-world applications. The first phase of the UK National Quantum Technology initiative has received £350 million of government funding to create a flourishing industry in this area in the UK.

Four Quantum Technology Hubs have been established as flagship projects in this program. This postgraduate training programme is aligned with the UK National Quantum Technology Hub in Sensors and Metrology, an £80 million collaborative effort led by the University of Birmingham in partnership with the Universities of Glasgow, Nottingham, Southampton, Strathclyde and Sussex, the National Physical Laboratory and over 70 companies.

Course details

The MRes programme offers a unique opportunity for students to undertake a research-based Masters degree in a multi-disciplinary environment between science, engineering and industry. Students benefit from participating in both the technology translation and applied research activities carried out within the UK National Quantum Technology Hub in Sensors and Metrology, and from the educational programmes offered by the College of Engineering and Physical Sciences. The programme comprises classroom taught quantum physics-oriented modules for students with engineering backgrounds; technology-orientated modules for students with physics backgrounds; and an independent research project that is documented in a substantial thesis.

The research project consists of a team element; all students will organise themselves to present a technical demonstration at a national or international conference. There is also an individual research element, which takes place in industry or in relation to a participating company.

It will include 70 credits of classroom taught modules and a research project worth 110 credits, consisting of team and individual elements.

The team element of the research project teaches technical, team working, project management, communication and presentation skills with an emphasis on responsible research and innovation. The individual element of the research project focuses on problems relevant to industry and will be carried out in close collaboration with industry partners.

Related links

Learning and teaching

The Birmingham led UK National Quantum Technology Hub in Sensors and Metrology is a cross-disciplinary centre, involving staff from the Schools of Physics, Civil, Electrical and Materials Engineering, as well as staff from a number of other Schools across the University. It will translate fundamental science and applied research in quantum sensors and metrology based on atomic probe particles, providing high level educational opportunities in these fields.

The Hub’s research activities include research in the development of sensors for gravity, magnetic fields, rotation, electromagnetic fields and time. It also researches their applications in a diverse range of sectors including aviation, communication, construction, defense, energy, finance, healthcare, oil and mineral exploration, transport and space.

The Translational Quantum Technology programme aims at preparing students for the challenges in translating quantum sensors and metrology devices based on atoms as probe particles into real-world applications. After the programme, students should understand the underpinning science and technology; the needs of end-user applicants; and the impact of these quantum technology devices on society. They should be able to move seamlessly between academia and industry, and translate scientific outcomes into technology.

The programme will create a strongly networked cohort of students with practical experience in academia and industry. It aims:

  • to develop students' research and technological skills, and their knowledge of research methods applicable to the specific issues arising in quantum technology-related research;
  • to ensure that students are aware of state-of-the-art developments in quantum technology in specific technical and operational topic areas;
  • to allow students to develop the understanding necessary to identify new and emerging research needs in the emerging quantum technology industry;
  • to enable students to develop the knowledge and skills required to independently undertake a significant research project of relevance to the quantum technology industry including users of quantum technology.

Employability

This programme is a unique opportunity to acquire translational skills, including specific skills of relevance to the emerging quantum technology industry. The UK National Quantum Technology Hub in Sensors is actively engaged with a growing number of industry partners, currently standing at 70 companies from various sectors of the economy. Industry secondments to our partners will foster career prospects.



Read less
The world's long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. Read more

Why study International Mineral Resources Management at Dundee?

The world's long-term economic development depends on the existence of efficient, innovative and creative energy and resources industries. These in turn rely on individuals who possess a sound grasp of their legal, economic, technical and policy backgrounds.

The Centre for Energy, Petroleum and Mineral Law and Policy (CEPMLP), University of Dundee is at the heart of these issues and provides the best in advanced education in its field, preparing its graduates to meet the challenges posed by the evolving global economy. Stimulated by oil and gas developments in the North Sea, the CEPMLP was established in May 1977.

Our students achieve the practical and professional skills needed to mastermind complex commercial and financial transactions in the international workplace, with exposure to many varied and exciting opportunities. Our interdisciplinary approach to teaching, research and consultancy provides a unique perspective on how governments, business and communities operate, providing the professionals of today with the ability to meet the challenges of tomorrow

What's great about International Mineral Resources Management at Dundee?

The MBA programme offers students an unrivalled ability to tailor their programme of study to their own particular interests and learning objectives. These allow for the development of in depth and specialist knowledge of business management, legal, economic and policy issues in the mining and related sectors of the world economy.

This programme is designed for graduates with a good first honours degree or equivalent, who aspire to work in the mining sector and who have a particular interest in the management segment of the Oil & Gas or related sectors.

You will achieve the practical and professional skills you need to mastermind complex commercial and financial transactions in the international workplace, and we will expose you to many varied and exciting opportunities. Why not take a few minutes to complete our application form - it could be the most far-reaching career move you'll ever make!

How you will be taught

Modes of delivery

Each module will be delivered by distance learning using the My Dundee - our online learning system.

The Study Guide

The student will receive a hard copy of the Study Guide
The Study guide will be available on the My Dundee
This Study Guide has the following aims:

To introduce the student to the key concepts and issues of debate.
To guide the student towards a wide range of reading material from which they may choose what research topics to pursue.
To provide the student with some opportunity for self-evaluation through a combination of short questions, tasks, exercises and case studies.
Reading Material

A core reading book will be provided to the DL students
Core and additional reading material will be available on the My Dundee.
Academic Support/Guidance

A core team of distance learning academic staff and tutors will provide support to the students with relation to:

Information on the structure and content of the programme
Guidance on using the full range of learning guides and tools
Academic questions relating to particular issues in the field of study
Preparation of assessments and research papers
Feedback on assessments and research papers

Methods of Teaching and Assessment

Each distance learning module will be assessed by at least two methods: EITHER

Written examination and research paper (most modules are assessed in this way). The exam and research paper are each worth 50% of your total mark.

OR

Written examination and case studies. The exam is worth either 60% or 70% and the case studies are worth either 40% or 30% of your total mark respectively.

a dissertation of up to 15,000 words on a topic approved by an academic supervisor, or
an Internship report - students who choose this option are required to source an organisation willing to offer a 3-month work placement, approved by an academic supervisor, or
Project Report of up to 8,000 words on a topic approved by academic supervisor for MSC and MBA programmes

What you will study

Course structure

Compulsory Modules

Natural Resources Sectors: A Multidisciplinary Introduction

Project Report or Internship

Core Modules

Core Compulsory Modules

Core Specialist Modules

Core Business and Management Modules

Careers

It is important to be aware that as with any job it depends upon your level of experience and skills set as to whether the role would be suitable for you, there is no one size fits all.

Past alumni have found employment with a variety of organisations including National Oil Companies, Exploration and Production Companies, Government and Ministries and Commercial Organisations including Banks, Law Firms and Global Consultancies.

Read less
What is the Master of Geology all about?. You will gain much from the strong emphasis on research in this programme. Read more

What is the Master of Geology all about?

You will gain much from the strong emphasis on research in this programme. Besides enhancing knowledge and skills in numerous specialised courses, including a field-mapping course, you will conduct your own master’s thesis project within a research team (professor(s), postdoc(s), PhD-student(s)) and at the same time develop important scientific skills, such as reporting and presenting, needed in your future career. 

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The master’s programme offers 4 different majors: Geodynamics and Georesources, Surface Processes and Paleoenvironments, Geology of Basins and Soil and Groundwater.

  • In Geodynamics and Georesources, you will study rock-forming processes and mineral resources in the subsurface. The interaction between various physico-chemical processes in the Earth forms the core of this major. You will develop the ability to analyse and explain the complexity of the various interacting physical and chemical rock-forming processes and apply this knowledge to the exploration of natural resources.
  • In Surface Processes and Paleoenvironments, you will study the interaction between the geosphere, hydrosphere, atmosphere and biosphere. The focus is on understanding present-day and past processes and placing these processes in a context of global change on various time scales. You will develop the ability to analyse and explain the complex interaction of surface processes relating to the variability of various aspects of the Earth’s surface.
  • In Geology of Basins, you will study the processes steering the genesis and evolution of sedimentary basins and the surrounding areas. Special attention is given to sedimentary fluxes, the spatial organisation of basins, the evolution of the paleoenvironment, dating of events and exploration strategies. You will develop the ability to analyse and explain the complexity of interacting processes that determine the evolution of sedimentary basins.
  • In Soil and Groundwater, you will study hydrogeological and pedological characteristics and processes with a focus on fundamental and applied aspects of soils and groundwater, including the response to external influences and aimed at sustainable management and protection of these resources. You will develop the attitude to analyse and explain the complexity of physical and chemical processes influencing soil and groundwater, and to come up with remedial measures. 

Departments

The programme is firmly rooted in the research of the Department of Earth and Environmental Sciences (KU Leuven) and the Department of Geology (Ghent University). Both departments continuously develop and maintain innovative and widely recognised research programmes on fundamental and applied aspects of geoscience. These generally involve collaborative efforts in various international research networks.

Career perspectives

As a Master in Geology you may be involved in development tasks, research or management functions. In consultancy, you are likely to find a job in environmental geology, hydrogeology or geotechnology. In industry, you will be involved in exploration, exploitation andtreatment of natural resources. In governmental agencies and research institutions, you may be responsible for the inventory, management, research and use of the subsurface or for environmental issues.

If you dream of an academic career, you can start by embarking on a PhD-project in Leuven, Ghent, or elsewhere.



Read less
The internationally recognised. Camborne School of Mines. offers a. Mining Professional Programme. , comprising of a suite of courses for international mining staff giving an insight into every part of the mining business. Read more

The internationally recognised Camborne School of Mines offers a Mining Professional Programme, comprising of a suite of courses for international mining staff giving an insight into every part of the mining business.

You will start by getting a flexible, industry-relevant immersion into the mining value chain and this can be followed by more detailed study of Mining Engineering: an integrated postgraduate programme delivered by mining experts and aligned with industry needs.

This is the future of mining education; industry aligned courses, learning while you work, forming interdisciplinary industry wide professional networks and exposure to diverse international mining practices.

Open to experienced mining industry staff; even without degrees but with appropriate experience, the course opens up the entire mining value chain, from finance, mineral deposit geology and exploration through mining and mineral processing methods to environmental & social impacts and mine closure.

Course aims

The overall aim is to equip students with the business knowledge of the entire mining pipeline and the technical knowledge to support career progression in the area of mining operations. Students will gain interdisciplinary mine-site problem solving, and critical industry insight.

The programme is suitable for mining, engineering and geology graduates currently employed in the minerals industry, and other commercial and technical mining staff with suitable experience. The course cohort will ideally comprise those with widely differing roles across the mining industry. The blended learning approach allows these industry staff to undertake accredited educational studies while maintaining their industry work roles.

In addition to gaining the headline qualification, the programme will also deliver the following unique benefits:

• The course is particularly designed for those currently working in industry

• Establishing networks with industry professionals and across specialisms

• Opportunity to view world class mines during the mine study tour

• A value chain view of the mining industry

• Industry focused using real world case studies and examples

• Involves both technical and professional skills development

Diverse course delivery methods and assessment types are utilized to develop well-rounded Mining Professionals with broad industry knowledge.



Read less
Goal of the pro­gramme. Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. Read more

Goal of the pro­gramme

Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. The Master's Programme in Geology and Geophysics trains you to address pressing questions concerning our home planet's evolution, its role as the source of raw materials needed by modern civilisation, and environmental issues. Key questions include:

How can we decode Earth’s rock record to reveal the evolution of Earth’s crust and mantle over billions of years?

How do we make natural resource exploration and extraction more sustainable and environmentally friendly?

What can the Earth’s history tell us to help us forecast the impacts of climate change?

Where can we safely construct power plants or store nuclear waste?

The programme includes four specialist options: Petrology and Economic Geology; Hydrogeology and Environmental Geology; Palaeontology and Global Change; and Solid Earth Geophysics.

Upon completion of the programme, you will have gained expertise in a number of scientific and professional skills, including, depending on your specialist option:

  • Assessment of geological materials (minerals, rock types, bedrock, groundwater)
  • Understanding the genesis and sustainable use of mineral commodities
  • Sustainable use of the environment from the Earth Science perspective
  • Palaeontology and modelling global change using the geological record
  • The physical evolution of the Earth (plate tectonics, interplay of the mantle and crust)
  • Independent and team-driven project research
  • High-level scientific writing (M.Sc. thesis and related work)
  • Presentation of scientific results to scientists, students, and the general public

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

At the beginning of the advanced studies, you will familiarise yourself with the central research methods in the field. The studies consist of intensive learning in small groups on practical work courses, guided laboratory work on specialised courses, and tailored short-term courses led by international and Finnish experts. In addition, you will be able to take part are a variety of field courses and excursions (in Finland and beyond) to familiarise yourself with research topics in their natural surroundings.



Read less

Show 10 15 30 per page



Cookie Policy    X